

USRA

The water cycle from space: Use of satellite data in land surface hydrology and water resource management

William Crosson, Charles Laymon, Clay Blankenship, Maudood Khan Universities Space Research Association at National Space Science and Technology Center Huntsville, Alabama, USA

Ashutosh Limaye

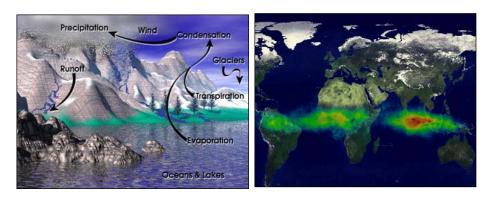
NASA-Marshall Space Flight Center at National Space Science and Technology Center Huntsville, Alabama, USA

Brian Hornbuckle and Tracy Rowlandson

Iowa State University Ames, Iowa, USA

Workshop on Space Technology Applications for Socio-Economic Benefits Istanbul, 14-17 September 2010

NASA's Earth Science Mission

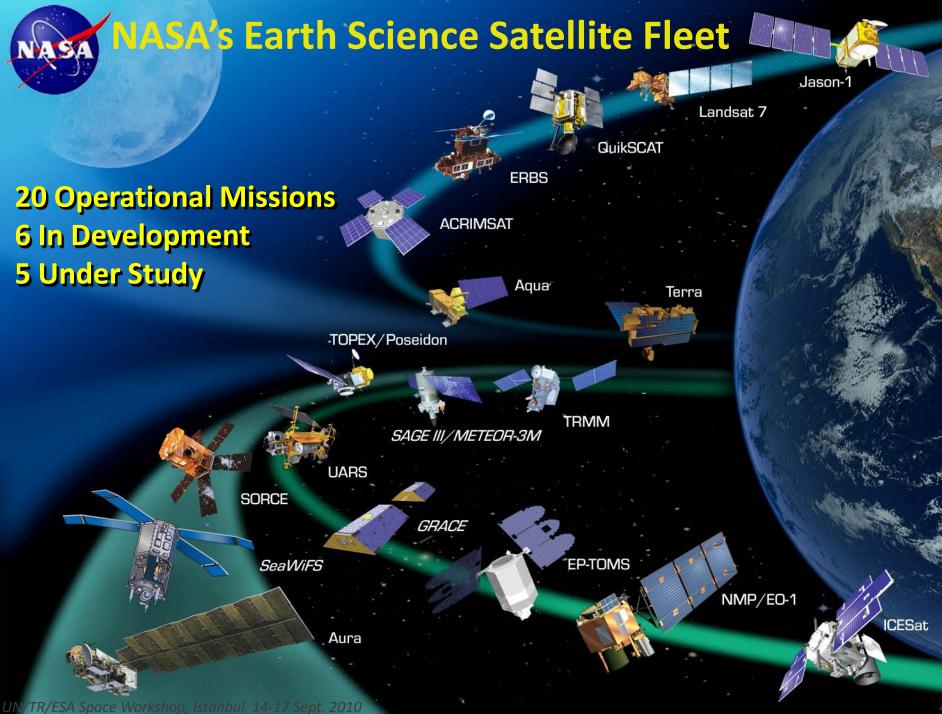

... to understand and protect our home planet by using our view from space to study the Earth system and improve prediction of Earth system change.

NASA's Earth Science Focus Areas

Earth Science Research Foci

- Atmospheric Chemistry and Composition
- Carbon Cycle and Ecosystems
- Climate Variability and Change
- Earth Surface and Interior
- Water and Energy Cycle
- Weather

Earth Science Applications


Agriculture

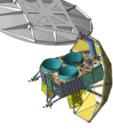
- Air Quality
- Climate
- Natural Disasters
- Ecological Forecasting
- Public Health
- Water Resources

Weather

Hydrometeorological Missions - Current

AMSR-E (NASA-JAXA) GRACE 2002-2015+ 2002-?? • On NASA Aqua satellite Provide detailed • 6 frequencies, 6.9-89 GHz measurements of C-band subject to serious Earth's gravity field **RFI; higher frequencies** Retrieve changes in used for soil moisture groundwater storage estimation Near-daily coverage TRMM (NASA-JAXA) SMOS (European Space Agency) 2009-?? 1997-?? • L-band imaging radiometer Radar, imager, VIS/NIR scanner, lightning Global observation soil sensor moisture and ocean salinity Estimates rainfall from equator to ~35° N/S Hourly - monthly rainfall estimates

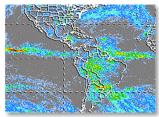
UN/TR/ESA Space Workshop, Istanbul, 14-17 Sept. 2010


Hydrometeorological Missions - Future

Aquarius (NASA/Argentina)

Expected launch 2011

- L-band radiometer/scatterometer
- Global coverage every 7 days
- Sea surface salinity, sea ice, rain, cloud water
- Map seasonal and inter-annual variations in sea surface salinity

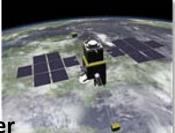


GPM

Expected launch 2013

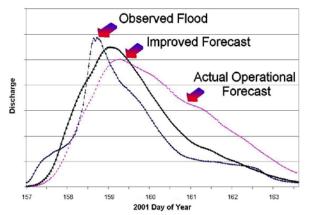
- International satellite network
- Global measurement of precipitation, its distribution, and physical processes
- Will improve the accuracy of weather forecasts and understanding of climate

SMAP

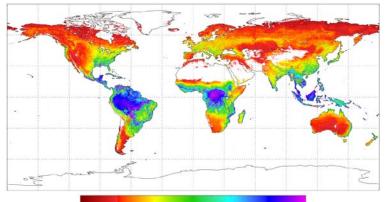

Expected launch 2015

L-band radiometer/radar
Global measurement of surface soil moisture and freeze/thaw state.

SWOT

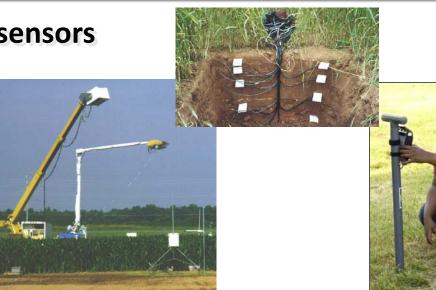

Expected launch 2020

- Ka-band radar interferometer
- First global survey of Earth's surface water
- Will measure water storage changes in all wetlands, lakes, and reservoirs
- Repeated measurements of water height during floods

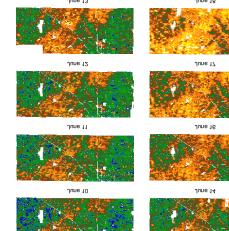


- Flood mapping/damage assessment
- Groundwater changes (GRACE mission)
- Precipitation
- Evapotranspiration
- Irrigation
- Lake and reservoir monitoring; streamflow forecasting
- Wetland mapping
- Soil moisture

UN/TR/ESA Space Workshop, Istanbul, 14-17 Sept. 2010



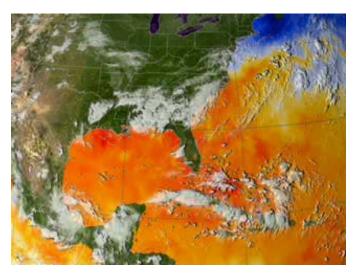
Soil Moisture Estimation - History


1970's-present: Ground-based sensors

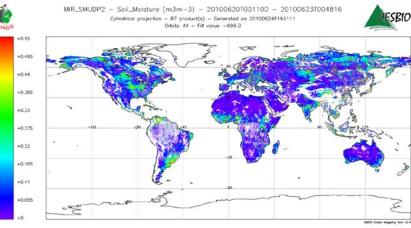
- Field experiments use ground-based radiometers, usually mounted on mobile booms
- Monitor temporal changes in soil moisture at a point
- No spatial mapping
- In situ measurements provide excellent validation

1980's – present: Airborne sensors

- Airborne radiometers used to map soil moisture at regional scale (~100 km)
- Monitor temporal changes in soil moisture over region via repeated flights
- In situ validation very labor-intensive



Soil Moisture Estimation - History

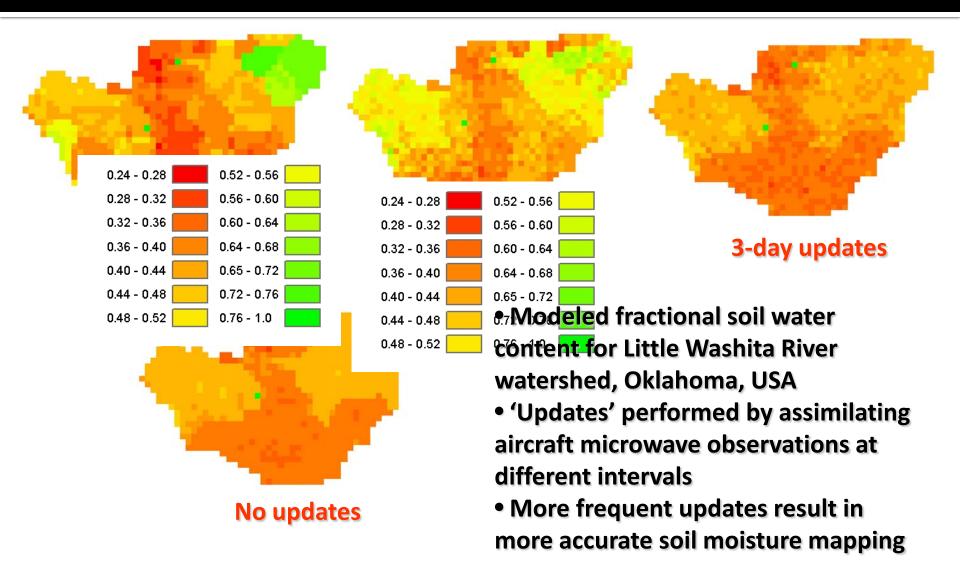

2002: AMSR-E

• Measures rainfall, atmospheric water vapor, cloud properties, snow cover, sea ice, sea surface temperature, soil moisture

Future: L-band satellite sensors (SMOS, SMAP, Aquarius)

- Provide soil moisture estimates globally except over densely vegetated regions
- Sensitive to soil moisture in top 3-5 cm
- Algorithms for mitigation/elimination of Radio Frequency Interference (RFI) being developed

UN/TR/ESA Space Workshop, Istanbul, 14-17 Sept. 2010



- Estimation of soil moisture using remote sensing typically relies on microwave radiometers (passive) and radars (active).
 - Active RS gives better spatial resolution.
 - Passive RS is more sensitive to soil moisture with fewer confounding factors.
- > Lower frequencies (L-band) allow more robust retrievals but introduce engineering problems (larger antenna required to achieve same spatial resolution as higher frequencies).

Band	Frequency (GHz)	Wavelength (cm)	Penetration depth (cm)	Sensitivity to vegetation	RFI contamination
L	1.4	21.3	3-5	Moderate	Moderate
С	6.9	4.3	1.0 – 1.5	High	Very high
Х	10.7	2.8	0.5 - 1.0	Very high	High

Assimilation of Soil Moisture in a Land Surface Model USRA

