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Aircraft movements on taxiways at busy airports often create bottlenecks. This paper
introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Schedul-
ing Problem. The outputs of the model are in the form of optimal taxi schedules, which
include routing decisions for taxiing aircraft. The model extends an existing single route
formulation to include routing decisions. An efficient comparison framework compares
the multi-route formulation and the single route formulation. The multi-route model is
exercised for east side airport surface traffic at Dallas/Fort Worth International Airport
to determine if any arrival taxi time savings can be achieved by allowing arrivals to have
two taxi routes: a route that crosses an active departure runway and a perimeter route
that avoids the crossing. Results indicate that the multi-route formulation yields reduced
arrival taxi times over the single route formulation only when a perimeter taxiway is used.
In conditions where the departure aircraft are given an optimal and fixed takeoff sequence,
accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6
hours more than the single route formulation. If the departure sequence is not optimal,
the multi-route formulation results in less taxi time savings made over the single route
formulation, but the average arrival taxi time is significantly decreased.

Nomenclature

(u, v) An edge from node u to node v.
D The set of departure aircraft.
A The set of arrival aircraft.
P The set of all aircraft.
Ri The set of all routes for aircraft i.
Np

i A set of ordered nodes denoting aircraft i’s pth route.
Ep

i A set of ordered edges denoting aircraft i’s pth route.
fpik The kth node in aircraft i’s pth route.
oi The origin or activation node for aircraft i.
di The destination or final node for aircraft i.
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Υi The set of all nodes aircraft i can visit (e.g., Υi =
⋃

pN
p
i ).

Λi The set of all edges aircraft i can visit (e.g., Λi =
⋃

pE
p
i ).

Ziju A binary variable that is equal to 1 if aircraft i arrives at node u before aircraft j and is 0 otherwise.
Γir A binary variable that is equal to 1 if aircraft i uses route r and is 0 otherwise.
ρij A binary variable that is equal to 1 if aircraft i arrives at a runway before aircraft j and is 0 otherwise.
tiu A continuous variable that represents the time that aircraft i arrives at node u.
Sep The minimum spatial separation between two aircraft on the taxiway.
luv The length of edge (u, v).
ETDi The estimated touchdown time for arrival aircraft i.
PBTi The earliest push-back time for departure aircraft i.
Vij The minimum time separation between leading departure aircraft i and trailing departure aircraft j due to wake vortex.
el The maximum number of aircraft allowed on runway exit edge l.
T l
ij The time aircraft i should leave runway exit edge l due to incoming aircraft j.
T i
dep The average time departure aircraft i requires to depart.

Suv
max The maximum velocity an aircraft can travel on edge (u, v).
Suv
min The minimum velocity an aircraft can travel on edge (u, v).
M An arbitrarily large positive real number.

I. Introduction

Departure and arrival ground movements on taxiways at busy airports often create bottlenecks [1][2],
and surface delays can result in large operating costs [3]. Often, aircraft wait in long queues to depart due
to airport capacity limitations or non-optimal surface planning. Currently, ground and local controllers tend
to make aircraft sequence decisions on a first-come-first-served basis or with simple heuristics based on local
information [5]. While first-come-first-served is a good strategy for providing fair schedules, it guarantees
neither maximum throughput nor minimum taxi times. The fundamental problem that this paper addresses
is to find optimal taxi schedules for aircraft on the airport surface for a given time horizon.

Various mixed integer linear and integer linear models have been developed to generate optimal taxi
schedules. The mixed integer linear programs in [6] and [7] yield good taxi solutions, but neither of them
include routing decisions for aircraft. Moreover, [6] has been shown to have a large number of unnecessary
decision variables [7]. Integer programs in [8] and [9] have successfully incorporated multiple route decisions
for taxiing aircraft, but both have neglected aircraft type. By neglecting aircraft type both models cannot
allow for a precise separation between taxiing aircraft resulting in loss of optimality. Also, the computation
times of models [9] and [8] are directly proportional to the fidelity of the model.

No optimization model has effectively incorporated alternative route decisions for aircraft, while simul-
taneously enabling precise aircraft separation. The multi-route formulation described in this paper extends
the model presented in [7]. The multi-route model incorporates additional decision variables to effectively
model multiple route decisions. Since the model presented in this paper is an adaptation of [7], the authors
have included aircraft type along with all other required safety constraints.

At the Dallas/Fort Worth Airport, arrival aircraft often taxi directly across active departure runways
to get to their assigned gates while simultaneously preventing departure aircraft from taking-off [9]. The
multi-route model can effectively determine when arrivals should use the perimeter taxiway to decrease their
taxi-in time. While the concept of using perimeter taxiways [10] has been studied for many airports, the
multi-route model has been implemented for an airport modeled after Dallas/Fort Worth Airport.

The paper is organized as follows. In Section II, currently accepted optimization models [9], [8], [7],
and [6] are reviewed. The optimization model and notation are introduced in Section III. A comparison
framework and results are presented in Section IV.

II. Problem Setup and Background

This paper introduces a mixed integer linear program for solving a Multiple Route Aircraft Taxi Schedul-
ing Problem (MRATSP). The problem is described as follows. Given a set of taxi routes for all departing
and arriving aircraft, schedule all aircraft along their chosen routes so that the time for all aircraft to finish
using the taxiway and runway is minimized subject to the following constraints:

2 of 18

American Institute of Aeronautics and Astronautics



Figure 1: Runway and taxiway layout on the east side of Dallas/Fort Worth International Airport.

1. Safety Constraints: Each taxiing aircraft must be separated by a minimum distance from any other
aircraft. Any two aircraft traversing in the same direction on the same taxiway segment can not overtake
each other. Similarly, any two aircraft which will traverse in opposite directions on a bidirectional
taxiway segment can not simultaneously occupy the taxiway segment (no head-on collisions).

2. Runway Constraints: Departing aircraft off the same runway must be separated by the minimum wake
vortex separation while departing in sequence. Arrivals which occupy a departure runway prevent
departures from using the runway.

3. Speed Constraints: All taxiing aircraft are subject to not exceed maximum speed. A minimum taxiing
speed can also be considered.

The problem of optimally scheduling aircraft along a given single route subject to the above constraints
is known as the Aircraft Taxi Scheduling Problem (ATSP) [6],[7],[8] and [9]. An ATSP is identical to a
MRATSP with the exception of multiple route selection.

Although there are no known formulations which use both continuous and discrete variables for solving
a MRATSP, there exist formulations for solving an ATSP. These formulations are known as mixed integer
linear programs (MILP). By utilizing a finite number of continuous time variables, MILP formulations can
be formulated with infinite fidelity for a fixed number of spatial locations. Because of the high fidelity that
MILP formulations have, they can account for various aircraft types and include precise aircraft separation
on the taxiway and runway. [7].

Integer programs (IP), which only use discrete variables, have been formulated for solving a MRATSP.
In the literature, [8] and [9] are IP for solving a MRATSP, where time and space is partitioned into blocks
of uniform or non-unform size. A typical construction is to allow a set of time slots for an aircraft at several
chosen locations on the airport surface, thereby modeling aircraft movements. The integer program modeled
in [8] decomposes the airport into discrete taxiway segments and ensures each taxiway segment has single
occupancy.
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There are limitations of the IP formulations in [8] and [9]. Increasing fidelity of these formulations can
be problematic since the computational complexity of the problem is highly dependent on the number of
time slots (e.g., there is a strong tradeoff between optimality and fidelity). Without good fidelity though,
considerable taxi space can be wasted. The model in [8] decides aircraft taxi separation based on the largest
aircraft size. Another issue is that these IP formulations do not consider the runway scheduling problem as
part of their model. Without optimal sequencing between departures and arrivals at runways there can be
unnecessary delay to aircraft on the surface.

Table 1 summarizes for each model, the formulation type (IP or MILP), advantages, and limitations.
The table is not meant to be exhaustive as there exists other formulations with similar characteristics.

Table 1: Summary of Existing Mixed Integer Linear Programs and Integer Programs

Model IP or MILP Problem Scope Advantages Limitations

[6] MILP Taxi scheduler Includes aircraft type Missing runway constraints,
necessary safety constraints,
and routing decisions.

[7] MILP Taxi and runway sched-
uler

Includes aircraft type
and models all safety
constraints

No route choice

[8] IP Taxi scheduler Includes routing deci-
sions

Coarse estimate of aircraft
separation. Missing runway
constraints.

[9] IP Taxi scheduler Includes routing deci-
sions

Coarse estimate of aircraft
separation. Missing runway
constraints.

To encapsulate multi-route decisions, high temporal fidelity, and runway scheduling, a mixed integer
linear program is built on the existing decisions variables presented in [7] with additional architecture to
support multi-route decisions. The rest of this paper is dedicated to describing the optimization model as
well as showing the benefits of using multiple routes at Dallas/Fort Worth International Airport.

III. Optimization Model

In the following section we provide a mixed integer linear programming for the Multiple Route Taxi
Scheduling Problem. Section B illustrates each of the decisions variables and Section C describes how those
decision variables are used to build the model. Some important definitions are provided below to aide in
understanding the optimization model. All other definitions can be referenced from the nomenclature.

A. Definitions

Given a taxi layout of an airport, each taxi intersection on the layout is represented by a node. Each taxiway
joining any two intersections is represented by an edge. Let G = (V,E) be a directed graph with V denoting
the set of all nodes and E denoting the set of all edges. Each edge, (v1, v2) ∈ E joining nodes v1 and v2, is
directed and indicates the direction an aircraft can travel along that edge. When a taxiway is bi-directional
(e.g., aircraft can travel in both directions along the taxiway), two directed edges are used. Let D be the
set of all departing aircraft, and A be the set of all arriving aircraft. Then all aircraft are elements of the
set P (e.g., A ∪D = P ).

An aircraft is allowed to choose any route from a set of available routes. Let ni be the total number of
routes specified for aircraft i and let these routes be denoted by Ri = {N1

i , N
2
i , ..., N

ni
i } where Np

i is the
pth route for aircraft i. The route Np

i , is denoted by an ordered set of nodes, {oi, fpi1, f
p
i2, ..., f

p
imip

, di} where

oi, f
p
i1, f

p
i2, ..., f

p
imip

, di ∈ V . Here, the nodes oi ∈ V and di ∈ V are the nodes that respectively denote the

origin (activation) and destination (termination) of aircraft i. If aircraft i chooses to follow its pth route,
then i will first travel along the taxiway joining origin oi to node fpi1, and then from fpi1 to fpi2, and so on
until it reaches its destination di. Let the set of all nodes present in all the routes of aircraft i be denoted by
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Υi, i.e., Υi =
⋃

kN
k
i for all i ∈ P . Let the set of all edges present in all the routes of aircraft i be denoted

by Λi, i.e., Λi =
⋃

k E
k
i for all i ∈ P .

B. Decision Variables

Mixed Integer Linear Programs are built by using decision variables to construct logical and meaningful linear
constraints. To build the model, we use sequencing variables Ziju, timing variables tiu, runway variables ρij ,
and routing variables Γir.

Ziju is adapted from [6]. Ziju is a binary variable which is equal to 1 if aircraft i arrives at node u before
aircraft j. If Ziju is equal to 0 aircraft i does not arrive to node u before aircraft j or that either i or j did
not use a route with node u. These variables will be used to model most taxiway decisions.

Furthermore, tiu is a continuous timing variable which represents the time that an aircraft i arrives at u
(a node in its route). These variables will serve as the primary outputs for this problem.

ρij is a sequencing variable that is particular to runway events. The logic is as follows: ρij is equal
to 1 if aircraft i arrives at a shared runway before j, otherwise it is equal to 0. This variable is used to
build many constraints around the runway, such as wake vortex separation and runway incursions. Although
it is possible to model all runway constraints with Ziju, it is more convenient to use ρij without adding
complexity to the problem.

Finally, the last decision variable is Γir. Γir is equal to 1 if aircraft i uses route r and is equal to 0
otherwise. This variable is used to incorporate multiple route decisions for taxiing aircraft.

C. Constraints

In the following section the constraints of the optimization mode are describedl. Frist, the basic components
of the formulation such as domain constraints are described,followed by the more complicated constraints
such as aircraft separation and runway constraints.

The following constraints constrain the variables to their respective domains:

Ziju ∈ {0, 1} ∀i, j ∈ P,∀u ∈ Υi (1)

Γir ∈ {0, 1} ∀i ∈ P,∀r ∈ Ri (2)

ρij ∈ {0, 1} ∀i, j ∈ P (3)

tiu ∈ <+ ∀i ∈ P,∀u ∈ Υi (4)

(5)

The following constraint ensures that any aircraft is permitted to take only one route.∑
r

Γir = 1 ∀i ∈ P (6)

For all i, j ∈ P such that i 6= j, for all u ∈ Υi ∩Υj ,

Ziju ≤
∑

r:u∈Nr
i

Γir (7)

Ziju ≤
∑

r:u∈Nr
j

Γjr (8)

Equations (7) and (8) imply that if either aircraft i or j do not use a route with u in it, then no sequencing
variable Ziju can be equal to 1. These constraints complete the logic behind decision variable Ziju.

1. Sequencing Constraints

For all i, j ∈ P such that u ∈ Υi ∩Υj ,

Ziju + Zjiu ≤ 3− (
∑

r:u∈Nr
i

Γir +
∑

r:u∈Nr
j

Γjr) (9)
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Ziju + Zjiu ≥ 2(
∑

r:u∈Nr
i

Γir +
∑

r:u∈Nr
j

Γjr)− 3 (10)

Equations (9) and (10) are used jointly to imply sequence consistency. Together, (9) and (10) express
that if both aircraft i and j use a route with node u, then only one can come first through that node.

2. Overtaking and Head-on Constraints

For all i, j ∈ P such that (u, v) ∈ Λi ∩ Λj ,

Ziju − Zijv ≤ 2− (
∑

r:(u,v)∈Er
i

Γir +
∑

r:(u,v)∈Er
j

Γjr) (11)

Ziju − Zijv ≥ (
∑

r:(u,v)∈Er
i

Γir +
∑

r:(u,v)∈Er
j

Γjr)− 2 (12)

Equations (11) and (12) are used to make sure that the no overtaking can occur. Any two aircraft which
share the same edge and are traveling in the same direction must not pass each other.

For all i, j ∈ P , for all (u, v) ∈ Λi, and for all (v, u) ∈ Λj ,

Ziju − Zijv ≤ 2− (
∑

r:(u,v)∈Er
i

Γir +
∑

r:(v,u)∈Er
j

Γjr) (13)

Ziju + Zijv ≥ (
∑

r:(u,v)∈Er
i

Γir +
∑

r:(v,u)∈Er
j

Γjr)− 2 (14)

Similarly, constraints (13) and (14) are required to keep aircraft from colliding head-on with each other.
Pictorially, every edge can only be used in one direction (Fig. 2).

Figure 2: A edge can only be used in one direction, in which overtaking of aircraft is not permitted.

3. Release Constraints

Departing aircraft i can not be scheduled any earlier than its earliest available push-back time, PBTi.
Likewise, an arrival aircraft j can not be scheduled any earlier than its estimated touch-down time, ETDi.

For all j ∈ A,

tjoj ≥ ETDj (15)

For all i ∈ D,

tioi ≥ PBTi (16)

4. Speed Constraints

For all i ∈ P and for all edges (u, v) ∈ Λi,∑
r:(u,v)∈Er

i

Γir(tiv − tiu) ≤ luv
Suv
max

(17)

∑
r:(u,v)∈Er

i

Γir(tiv − tiu) ≥ luv
Suv
min

(18)
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Equations (17) and (18) set limits on aircraft taxi speed. These constraints are highly nonlinear and non-
convex and are not able to be solved with a guarantee on optimality. A linearization, however, is possible
by using a well known technique. Constraints are linearized by choosing a suitably large positive value M .
The linearizations of the constraints are expressed as follows.

For all i ∈ P and for all edges (u, v) ∈ Λi,

(tiv − tiu) ≤ luv
Suv
max

(M −M
∑

r:(u,v)∈Er
i

Γir +
∑

r:(u,v)∈Er
i

Γir) (19)

(tiv − tiu) ≥ luv
Suv
min

(M
∑

r:(u,v)∈Er
i

Γir −M +
∑

r:(u,v)∈Er
i

Γir) (20)

5. Separation Constraints

Separation between aircraft is provided at intersecting nodes and are formulated below. The separation
constraints will also depend on the selection of route (e.g., Γ). Two distinct separation constraints have been
identified in [7] and are discussed for clarification.

The first separation situation occurs when aircraft i is leading aircraft j and i just leaves node u. Then j
cannot reach node u until i has gone far enough so that the minimum separation distance Sep is maintained.
Situation one is shown in Fig. 3a. This separation depends on the speed of i on (u, v) and the speed of j on
(w, v).

The second separation situation occurs when the approach speed of aircraft j is considered. Aircraft j
must not enter (w, v) at a speed which could possibly violate separation parameter Sep. Situation two is
shown in Fig. 3b.

For all i, j ∈ P such that i 6= j and for all u ∈ Υi ∩Υj where (u, v) ∈ Λi,

(Ziju)(
∑

r:(u,v)∈Er
i

Γir)(
∑

r:u∈Nr
j

Γjr)(`1 − Sep) ≥ 0 (21)

For all i, j ∈ P such that i 6= j and for all v ∈ Υi ∩Υj where (w, v) ∈ Λj ,

(Zijv)(
∑

r:(w,v)∈Er
j

Γjr)(
∑

r:v∈Nr
j

Γir)(`2 − Sep) ≥ 0 (22)

These constraints will not work in a linear programming environment since they are nonlinear. Instead,
an application of the technique used in (17) and (18) is provided. Now both separation equations read:

For all i, j ∈ P such that i 6= j and for all u ∈ Υi ∩Υj where (u, v) ∈ Λi,

tju − tiu − (tiv − tiu)
Sep

`uv
≥ −[3− (Ziju +

∑
r:(u,v)∈Er

i

Γir +
∑

r:u∈Nr
j

Γjr)]M (23)

For all i, j ∈ P such that i 6= j and for all v ∈ Υi ∩Υj where (w, v) ∈ Λj ,

tiv − tjv − (tjv − tjw)
Sep

`wu
≥ −[3− (Zjiv +

∑
r:(w,v)∈Er

j

Γjr +
∑

r:v∈Nr
i

Γir)]M (24)

`1 =
tju − tiu
tiv − tiu

`uv (25)

`2 =
tjv − tiv
tjv − tjw

`wv (26)

7 of 18

American Institute of Aeronautics and Astronautics



tiu tju tiv
Time 

Distance traveled
from vertex u

luv

l1
(0,0)

Aircraft i

Aircraft j

(a) Separation Situation 1

tjw tjvtiv

Time 

Distance to reach
vertex v lwv l2

(0,0)

Aircraft i

Aircraft j

(b) Separation Situation 2

Figure 3: Space-time diagrams to calculate aircraft separation at nodes.

6. Runway Occupancy Constraints

Departures are not allowed to takeoff sequentially from the same runway without proper separation. De-
parture separation time is dependent the departure sequence and the weight class of aircraft departing.
Physically, this is due to restrictions on aircraft departing into another aircraft’s wake vortex. If aircraft i
departs before aircraft j then the proper wake vortex separation, given in units of time, is denoted by Vij .
The constraint which prevents a violation in the separation between consecutive departures is given by:

ρij(tjdj
− tidi

− Vij) ≥ 0 ∀i, j ∈ D, i 6= j (27)
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The linearization is as follows:

tjdj
− tidi

− Vij ≥ −(1− ρij)M ∀i, j ∈ D, i 6= j (28)

A runway will usually have multiple entrance and exit points and should be protected from all possible
conflict combinations. For example, Dallas/Fort Worth International Airport has arrival crossing points
along the edge of 17R (Fig. 4). Equation (2) restricts an arrival aircraft from crossing 17R while a departure
is occurring. Similarly, an aircraft wishing to depart must wait for the arrival to finish crossing. This is
expressed below in (30). We have denoted T i

dep as the time it takes a departure to take-off (usually taken as

40-60 seconds). Note that bk and ak are nodes corresponding to the kth runway exit.

ρij(tjbk − tidi
− T i

dep) ≥ 0 ∀j ∈ A,∀i ∈ D (29)

ρji(tidi
− tjak

) ≥ 0 ∀j ∈ A, i ∈ D (30)

The corresponding linearization:

tjbk − tifi
ni
− T i

dep ≥ −M(1− ρij) ∀j ∈ A,∀i ∈ D (31)

tifi
ni
− tjak

≥ −M(1− ρji) ∀j ∈ A, i ∈ D (32)

Figure 4: Multiple runway entrance and exit points

7. Capacity Constraints for Runway Crossing Queue

At Dallas/Fort Worth International Airport there are four exit edges off the arrival runway 17C. Each of
these edges have capacity constraints so that each does not exceed a prescribed capacity, el. If cl denotes
a runway crossing node (Fig. 4), then arrival aircraft, which use edge l, must leave that node before the
edge capacity el is violated. el is the capacity, given in units of aircraft, for the lth taxi exit. In order to
formulate this mathematically, it is easier to introduce the time T l

ij . T
l
ij is equivalent to ETDj , and also we

require that i lands before j, i and j both use the same edge l, and that el aircraft arrive between i and j.
Furthermore, let L be a set of all exit taxi edges. Then the capacity constraint reads,

9 of 18

American Institute of Aeronautics and Astronautics



For all i 6= j ∈ A, for all l ∈ L
ticl ≤ T l

ij (33)

D. Objective Functions

Two objective functions have been identified to solve a MRATSP. The first objective function minimizes the
total time that all aircraft spend in the system, denoted by (34).Throughout the rest of this paper the total
time spent in the system is equivalent to the total taxi time of all aircraft.

min
∑
i∈P

tidi (34)

The second objective function tries to maximize the throughput of the departure aircraft. This objective
function is naturally written in the following way:

min max tidi
∀i ∈ D (35)

And can be rewritten more applicably with some arbitrary real variable S:

tidi
≤ S ∀i ∈ D (36)

minS (37)

E. Additional Constraints

Useful departure constraints can be added to the problem to decrease computation time. A difficult aspect
of this problem is in deciding which departure aircraft should use the runway first for takeoff. Deciding the
departure sequence at the runway is a subproblem in a MRATSP and is known as the departure scheduling
problem [13],[14].

For all i, j ∈ D such that the type of aircraft j is equal to the type of aircraft i and the unimpeded taxi
time of i plus PBTi is less than or equal to the unimpeded taxi time of j plus PBTj ,

ρij = 1 (38)

ρji = 0 (39)

This constraint is only valid when considering departure throughput as an objective and when the de-
partures are released from a nodes where taxiway collisions are not possible. Also, it will not hold if you
try to optimize arrivals simultaneously. For example, a departure sequence at the departure runway based
on the above constraint may not be optimal because arrivals may cause departures to delay on the taxiway.
In section IV.C we discuss how this constraint is used in conjunction with objective functions (35) and, to
some degree, (34) to find isolated optimal departure throughput solutions.

IV. Simulation and Results

The following section illustrates how the above optimization model is used to solve a MRATSP problem
on the east side of Dallas/Fort Worth International Airport. An arrival taxi time comparison between the
model used in [7] and the multi-oute model is made by incorporating additional perimeter routes for arrivals.
Section A describes all the model parameters, Section B describes how the inputs are configured for three
different scenarios, Section C outlines an efficient method for comparing the single route formulation and
the multi-route formulation, and Section D presents the results.

A. Simulation Inputs

This section provides a description of each input and the numerical values which correspond to the simulation.
Fig. 5 is the node-edge model used in the simulation. Each node has been accurately placed using Global
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Positioning System data. The perimeter taxiway was created using the known distance from the south-
end of 17R and represents a decent approximation of the actual perimeter taxiway at Dallas/Fort Worth
International Airport. The node-edge model has two active runways: one for departures (17R) and one for
arrivals (17C). Arrival aircraft enter the airport just before the crossing nodes off 17C (orange rectangles).
All departures are released from queue nodes, which are located in the departure queue just before the
runway takeoff point (aqua-teal rectangles). Often at Dallas/Fort Worth International Airport there are
large queues that form right before the runway and by releasing departures close to the runway entry we try
to mimic this occurrence.

All departures start moving within a few minutes of each other so that there is adequate pressure on 17R
from the departures. Arrival aircraft arrive in sixty second intervals and no more than three can occupy the
same queue to cross 17R, so that el = 3 for all runway exit edges. When using the multi-route model, two
routes are supplied to arrival aircraft: one shortest path route that crosses the runway and another longer
route that goes along the perimeter of 17R (as discussed in section IV.C).

To simulate medium-to-heavy scenarios, we use 22-, 26-, 30-, and 34-sized aircraft problem instances.
These scenarios have equally distributed departures and arrivals. Aircraft weight classes are distributed
according to the particular scenario, as explained in Section IV.B. The departure separation matrix given
in Table 2 was empirically collected using surface surveillance data [11] from Surface Management System
records [9].

Figure 5: Thee east side of Dallas/Fort Worth International Airport node-edge model used in the simulations.
The perimeter taxi route is outlined by a red dotted line.

Aircraft separation at each node is variable depending on the aircraft sizes (e.g., Table 3) and aircraft
speed (e.g., Equations 21 and 22). There is a buffer separation of ten meters at each node. Aircraft sizes
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Table 2: Inter-departure aircraft separation in seconds. For proper separation column aircraft lead row aircraft.

Small Large Heavy B757

Small 59 88 109 110

Large 59 61 109 91

Heavy 59 61 90 91

B757 59 61 109 91

have been correlated to the weight class of the aircraft for simplification and are 30m, 40m, 60m, and 70m
for small, large, heavy, and B757, respectively.

Table 3: Aircraft separation at all nodes given in meters.

Small Large Heavy B757

Small 40 45 55 60

Large 45 50 60 65

Heavy 55 60 70 75

B757 60 65 75 80

For all problems, it is assumed that departures take an average of fifty-five seconds to depart (e.g., T i
dep = 55

sec). M is equal to the sum of the unimpeded taxi times for all aircraft. This is a conservative estimate on all
linearizing constants and faster convergence can be obtained with tighter constants. The speed bounds are
uniform for all aircraft and are 11.6-17.5 knots. Speed bounds will not apply to departure aircraft because
their activation nodes are the same as their destination nodes (e.g., oi = di for all departures i). Also, the
arrival aircraft are allowed to wait (zero speed) at runway exit nodes cl subject to the capacity as explained
in Section III.C.

B. Scenario Description

Two scenarios have been developed to illuminate various features of the optimization model solutions. This
subsection describes discrepancies between two scenarios. Except for the following conditions, all other
inputs are identical according to the above description.

Scenario 1

1. Aircraft weight classes are distributed uniformly.

2. Departures are given priority with an optimal departure throughput schedule.

Scenario 2

1. Aircraft weight classes are distributed based on actual data. This distribution has been collected with
surface traffic data at Dallas/Fort Worth International Airport and is approximately 85% large, 5%
heavy, 5% small, and 5% B757 classes.

2. Departure aircraft are given successively less priority by allowing a maximum increase to the makespan
of 15, 30, 45, and 60 seconds.

For the the results section below, it will be useful to distinguish each sub-scenario where the optimal
makespan is successively increased. For each sub-scenario that successively gives departures less priority we
adopt the notation 2.x. The appended number x indicates the maximum increase to the optimal departure
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makespan. For example, 2.15 indicates we are using Scenario 2 conditions with fifteen seconds of maximum
increase to the optimal departure makespan. Likewise, 2.0 indicates we are using scenario 2 conditions with
zero seconds of maximum increase to the optimal departure makespan. In this way, there is no confusion
between any condition lumped in Scenario 2.

With these scenarios, the effects of weight class distribution and departure throughput on the arrival taxi
times by virtue of increased or decreased perimeter route usage can be illustrated. The results using the
above scenarios are discussed in SectionIV.D.

For each scenario, the authors use traffic level sizes of 22, 26, 30, and 34 aircraft. For all scenarios 100
problem instances are solved for and among those 100, there are 25 attributed to each traffic level. For
example, 25 instances of scenario 1 use 22 aircraft, 25 use 26 aircraft, 25 use 30 aircraft, and 25 use 34
aircraft. From instance to instance within the same Scenario, departure aircraft types, arrival aircraft taxi
exits, arrival aircraft routes, and arrival aircraft types can vary.

C. Optimization Program Setup

Using optimization suite CPLEX [12] in conjunction with its C++ application programming interface, the
authors have developed a four-step optimization technique to find optimal taxi times for arrivals given an
optimal departure sequence. The solving scheme is summarized as follows:

1. Use the above optimization model under objective function (35) to solve the departure sequencing
problem with no arrivals using cuts described in Section III.E.

2. Setup a new problem considering the arrivals and fix all tiu for all departures based on the solution
found in step one. The departure times tiu are not hard constraints for Scenario 2 since they successively
suffer an increase in makespan, but the departure time of the last aircraft to depart will be no farther
than 15, 30, 45, or 60 seconds from its optimal time.a

3. In the new problem, provide two routes for arrival aircraft: a shorter route which crosses the departure
runway and a longer perimeter route which will not interfere with departures.

4. Finally, solve this problem with the above optimization model under objective function (34).

The method is formulated for efficient comparison of a single route formulation and the multi-route
formulation. In step one, an optimal departure sequence is calculated without considering any arrival aircraft
on the surface. Step one is the most computationally expensive process in this methodology, and this is one
reason a problem instance is not solved for at once. Using the above methodology, however, a guaranteed
solution on the Pareto surface between optimal throughput for departures and optimal taxi times for arrivals
is achieved.

The optimal departure sequence for the departure aircraft can be found trivially by noting that the opti-
mal solution is always {Small,Small,...,Large,Large,...,B757,B767...,Heavy,Heavy,...}. To avoid pre-processing,
constraints from section Section III.E can be used. These constraints may be used because its assumed all
aircraft can arrive at the departure runway at the same time. This assumption is acceptable because during
times of peak traffic at Dallas/Fort Worth International Airport departure queues near the runway are full
and any departure sequence can be obtained from the spots. This assumption also implies that all departure
delay is due to departure queues.

D. Preliminary Results

In this section results from using Scenarios 1 and 2 are compared and contrasted with respect to basic
scheduling performance parameters. In order to determine if arrival taxi times are effected by using the
perimeter taxiway, the total arrival taxi time savings has been calculated. The total or accumulated arrival

aThe authors understand that there may be more than one optimal departure sequence when solving Scenario 1 and Scenario
2, which may determine various arrival taxi times. This discrepancy, however, is inconsequential for the model comparison made
in this paper. In the future it will be desirable to determine the departure sequence that minimizes the arrival taxi times.
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taxi time savings is calculated by taking the difference of the total arrival taxi times found from the single
route formulation and the total arrival taxi times found from the multi-route formulation. This value is then
summed across all instances for a particular traffic load. While total arrival taxi time savings is an indicator
of performance across models, it does not indicate the decency or quality of the taxi schedules. Therefore
to capture individual schedule quality, average arrival taxi times are presented. Additional calculations are
done to determine the number of problem instances (out of twenty-five) to use the perimeter taxiway.

For Scenarios 1 and 2 the results indicate that the multi-route formulation yields reduced taxi times over
the single route formulation for arrivals only when a perimeter taxiway is used. The optimal solution of the
multi-route formulation and the single route formulation are identical when there is no perimeter taxiway
use.

Both graphs in Fig. 6 show how arrival perimeter taxiway use is directly correlated with arrival taxi
savings. The top graph is the total arrival taxi savings versus problem instance, and the bottom graph is the
associated perimeter use. On the bottom graph the two red bars indicate problem instances where the single
route formulation could not find a solution. There are no arrival taxi time savings for problem instances
when the single route formulation is infeasible, because there is no baseline for comparison.

An interesting result, which is highlighted by the red bars, from Fig. 6 is that the single route formulation
is infeasible only when a perimeter route is used. The number of infeasible values for the single route
formulation also show up in Tables 4-9. A complete analysis has not been accomplished to indicate why
there are infeasible solutions for the single route formulation; however, an intuitive reason for the infeasible
solutions is provided. The capacity constraints on the high-speed taxi edges are violated and cannot be
mitigated. The multi-route formulation deals with this by moving an arrival aircraft to the perimeter
taxiway.

For the remainder of this section the authors will refer to Tables 4, 5, 6, 7, 8, and 9. These tables give the
total arrival taxi time savings, perimeter route use, feasibility of the single route model, the average arrival
taxi times, and computational times. These results are displayed as a function of the number of aircraft
being scheduled for each table. Scenario 2 conditions are represented in Tables 5-9 with differences only in
the maximum makespan for departures. We use the notation described in Section IV.B, where 2.x indicates
we are using Scenario 2 conditions with x seconds of maximum increase to the optimal departure makespan.

The total arrival taxi time savings are significantly larger for Scenario 2.0 conditions. Scenario 2.0 provides
departure aircraft with an optimal throughput schedule and uses actual aircraft weight class distributions.
Since the majority of aircraft are large ( 85%) there is simply not enough time between consecutive departures
for arrivals to cross. Hence, many perimeter routes are used to accommodate long arrival crossing waiting
and feasibility.

While the total arrival taxi savings are the largest for Scenario 2.0, the average arrival taxi time is the
greatest. The large taxi times are due to a large number of perimeter routing decisions. From Table 5, one
can see that as the traffic load rises from 22 to 34 aircraft the perimeter use goes from 92 (23/25) to 100
(25/25) percent. The consequence of high perimeter use is larger average arrival taxi times. The average
arrival taxi times eventually converge to fifteen minutes, which is approximately the time it takes on average
for an aircraft to take the perimeter route from 17C.

Table 4: Summary of results for Scenario 1

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Average
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 35.67 537.38 2 1 3 9 2.4

26 302.52 594 3 1 7.01 11.37 3.12

30 884.11 676.75 7 0 15.34 41.87 5.89

34 678.4 734.84 6 0 27.9 52.68 13.49

To illustrate the effect that departure makespan has on the arrival taxi times, consider Scenarios 2.0,
2.15, 2.30, 2.45, and 2.60. From Tables 5-9, we can draw on an apparent phenomenon. The perimeter
taxiway use goes down significantly from almost 100% (2.0) use to almost 0% (2.60) use, and the average
arrival taxi time decreases largely from about 900 seconds (2.0) to 690 seconds (2.60). For an exchange of
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Figure 6: Arrival perimeter taxiway use (bottom) and total arrival taxi savings (top) per instance for Scenario
1.

Table 5: Summary of results for Scenario 2.0

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Average
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 3262.18 669.13 23 4 4.4 8.62 2.32

26 3842.13 751.02 24 12 9.7 23.92 3.14

30 12955 819.5 25 9 19.8 34.86 9

34 7071.9 898.86 25 18 40.5 195.5 14.9

about sixty seconds of makespan in the departures, we can save 210 seconds of taxi time per arrival aircraft
on average. For scenarios with thirty-four aircraft, we save about one hour of taxi time per problem instance
by increasing the departure makespan by sixty seconds.
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Table 6: Summary of results for Scenario 2.15

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Average
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 260.31 538.18 2 0 48.05 437.3 2.52

26 380.06 607.22 7 0 950 14885 5.71

30 1935.32 684.53 12 0 4078 18808 10.3

34 2201.3 760.45 16 0 12866 20178 184.67

Table 7: Summary of results for Scenario 2.30

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Average
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 Aircraft 0 511.38 0 0 5.17 10.73 2.66

26 Aircraft 0 574.9 0 0 18.33 177.47 5.89

30 Aircraft 156.16 644.53 1 0 205.19 2260.63 9.95

34 Aircraft 52.8 756.64 1 0 1014.57 3849.9 38.49

Computationally, the multi-route formulation is relatively efficient for problem instances where the de-
parture makespan is fixed. However, when the departure makespan is progressively changed with 0 to 60
seconds of maximum deviation from the optimal makespan, the computation times become significant. The
average computation time for Scenario 2.0 (fixed makespan) for thirty-four aircraft is 40.5 seconds and for
Scenario 2.15 the average computation time is 3.6 hours.

Table 8: Summary of results for Scenario 2.45

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Avgerage
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 0 504.98 0 0 5.0 11.35 2.55

26 0 565.37 0 0 11.67 27.36 4.16

30 0 632.34 0 0 41.9 319.63 9.23

34 38.3 694.82 1 0 295.38 4318.13 27.3

Interestingly, the average computation times reduce for even larger potential changes in the optimal
departure makespan. In Scenarios 2.30, 2.45, and 2.60 the average computation times for thirty-four aircraft
are 1014.57 seconds, 295.38 seconds, and 27.9 seconds, respectively.

V. Conclusion

A mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem (MRATSP)
was introduced. The model is a generalization of the model presented in [7] to include routing choices.
MRATSP models the airport as a node-edge graph to incorporate fundamental safety considerations such as
head-on collisions, safety separation between aircraft, and proper departure constraints. New and necessary
constraints are included to model capacity constraints on high speed arrival runway exits.
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Table 9: Summary of results for Scenario 2.60

Computation Times (sec)

Number of Aircraft Total Arrival
Taxi Savings
(sec)

Avgerage
Arrival Taxi
Time (sec)

Perimeter
Count

Infeasibility
Count

Average Max Min

22 0 499.25 0 0 5.36 10.78 2.5

26 0 559 0 0 .01 27.58 4.78

30 0 626.5 0 0 15.34 67.71 17.72

34 0 688.6 0 0 27.9 339.28 38.02

A comparison is made between a similar single route formulation in [7] and the multi-route formulation to
understand if arrival taxi time savings can be realized by using additional perimeter taxiways under optimal
and suboptimal departure throughput. Results indicate that the multi-route formulation can yield better
arrival taxi schedules under conditions when the departures have a fixed makespan or when an actual aircraft
weight class distribution is used. Additional comparisons suggest that by increasing the departure makespan
successively from 0 to 60 seconds, approximately 210 seconds per arrival aircraft of taxi time can be avoided
resulting in less frequent perimeter taxiway use.

Perimeter taxiway decisions are just one application of the multi-route formulation.In the future it will be
useful to explore alternative applications of the multi-route formulation. For example, another application
can consider multiple routes for departing aircraft to multiple runways. In this way, optimal runway use can
be better understood. This problem is usually referred to as a runway balancing problem. To extend on the
current application it will be useful to build a framework where departure/arrival priority can be adjusted
by preference. For instance, scalarization or weighting techniques may be applied to individual aircraft time
variables.
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