
Development of Implicit Methods in CFD
NASA Ames Research Center 1970’s - 1980’s

Thomas H. Pulliam

NASA Ames Research Center

Abstract

The focus here is on the early development (mid 1970’s-1980’s) at NASA
Ames Research Center of implcit methods in Computational Fluid Dynamics
(CFD). A class of implicit finite difference schemes of the Beam and Warm-
ing approximate factorization type will be addressed. The emphasis will be
on the Euler equations. A review of material pertinent to the solution of the
Euler equations within the framework of implicit methods will be presented.
The eigensystem of the equations will be used extensively in developing a
framework for various methods applied to the Euler equations. The devel-
opment and analysis of various aspects of this class of schemes will be given
along with the motivations behind many of the choices. Various acceleration
and efficiency modifications such as matrix reduction, diagonalization and
flux split schemes will be presented.

1. Introduction

The development employed here is based on the implicit approximate
factorization algorithm of Beam and Warming [1]. A particular application
in two dimensions was first presented by Steger [2] and for three dimensions
by Pulliam and Steger [3]. While there have been numerous developments
and variant implementations of implicit methods over the years, the original
work of Beam, Warming and Steger stands out as the backbone of modern
methods. I shall concentrate here on the theoretical development, application
and assessment of the implicit algorithms of the Beam-Warming-Steger type

Email address: Thomas.H.Pulliam@nasa.gov (Thomas H. Pulliam)

Preprint submitted to Elsevier January 28, 2010

https://ntrs.nasa.gov/search.jsp?R=20100038314 2019-08-30T12:32:07+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10556636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as they were developed at NASA Ames Research Center in the early 1970’s
to the 1980’s.

There are a number of considerations to weigh when choosing a numeri-
cal algorithm to apply to a set of partial differential equations. If we restrict
ourselves to finite difference schemes then the possibilities are narrowed some-
what to the two classical approaches for time integration, explicit and implicit
techniques. The merits of these have been extensively discussed in the lit-
erature. Explicit methods typically require less computational work and are
simpler both in derivation, application and parallelization. Implicit meth-
ods, while computationally expensive, have less stringent stability bounds
(classical stability analysis shows unconditional stability but in practice on
nonlinear problems bounds are encountered).

Implicit numerical schemes are usually chosen because we wish to obtain
solutions which require fine grid spacing for numerical resolution, and we do
not want to limit the time steps by employing a conditionally stable explicit
scheme. Explicit schemes are very useful and schemes such as MacCormack’s
explicit algorithm [4] were used extensively in the 1970’s - 1980’s. The extra
work required for an implicit scheme is usually offset by the advantages ob-
tained by the increased stability limits, and in general implicit schemes have
been very useful and successful for a variety of inviscid and viscous flowfield
calculations.

For unsteady, transient problems we wish to employ time accurate meth-
ods, initialize the flow with some realizable state and integrate forward in
time with time steps commensurate with the unsteady phenomenon being
simulated. Both implicit and explicit methods are capable of computing time
accurately. In steady state calculation we wish to integrate from some arbi-
trary state to the asymptotic solution in any manner which will get us there
with the least amount of computational work. Non-time-accurate techniques
(for instance relaxation methods, variable time steps, matrix precondition-
ing, large time steps) can be employed as long as they are convergent and
do not distort the steady state equations so as to produce inaccurate results.
The methods presented below can be employed either for time accurate cal-
culations or for steady state rapidly convergent solutions.

The algorithm to be presented is an implicit approximate factorization
finite difference scheme which can be either first or second order accurate in
time. Local time linearizations are applied to the nonlinear terms and an
approximate factorization of the two-dimensional implicit operator is used
to produce locally one-dimensional operators. This results in block tridi-

2

agonal matrices, which are easy to solve. The spatial derivative terms are
approximated with finite differences of various orders of accuracy, involv-
ing stencil sizes from 3 to 9 points. Explicit and implicit artificial dissipation
terms (which will not be discussed here, see Pulliam [5]) are added to achieve
nonlinear stability. A spatially variable time step is used to accelerate con-
vergence for steady-state calculations. A diagonal form of the algorithm is
also discussed, which produces a computationally efficient modification of the
standard algorithm where the diagonalization results in scalar tridiagonal or
pentadiagonal operators in place of the block operators. This diagonal form
of the algorithm produces a robust, rapid and versatile scheme for steady
state calculations.

2. Euler Equations

The Euler equations are comprised of the inviscid compressible continu-
ity, momentum and the energy equations. The Euler equations are of interest
for a number of reasons. They are the next step after the potential equation
in the hierarchy of equations which lead to the full Navier-Stokes equations.
Besides being valid for use in applications where viscous effect are negligible,
they are often used in analysis and development of algorithms which even-
tually are applied to the Navier-Stokes equations. Since the equations are
capable of capturing, convecting and creating vorticity, they are often used to
simulate vortical flows where either physical mechanisms (such as shocks) or
artificial mechanisms (fixed stagnation points, numerical dissipation) account
for the production of vorticity. In some cases, the resulting flows represent
acceptable physical solutions and in others the validity of the Euler solution
is in question relative to a more physical Navier-Stokes equation solution.

We shall restrict ourselves to the Cartesian form of the two dimensional
(2-D) equations in strong conservation law form. Strong conservation law
form is chosen because we wish to admit shock capturing. Typically the
extension of ideas to three dimensions (3-D) is rather straightforward. It
is usually a mistake to restrict oneself to just 1-D equations, since ideas
developed for 1-D often are difficult to extend formally to multidimensions.
In contrast, the extension from 2-D to 3-D is more easily accomplished.

2.1. Equations
The Euler equations in conservation law form are

∂tQ + ∂xE + ∂yF = 0 (1)

3

where

Q =

ρ
ρu
ρv
e

 , E =

ρu
ρu2 + p

ρuv
u(e + p)

 , F =

ρv
ρuv

ρv2 + p
v(e + p)

 (2)

Pressure is related to the conservative flow variables, Q, by the equation
of state

p = (γ − 1)

(
e− 1

2
ρ(u2 + v2)

)
(3)

where γ is the ratio of specific heats, generally taken as 1.4. The speed of
sound is c which for ideal fluids, c2 = γp/ρ.

∂te + ∂x(ρuh) + ∂y(ρvh) = 0 (4)

2.2. General Form

First, let us recast Eqs. 1 - 3 in a more general form

Q =

q1

q2

q3

q4

 , E =

q2

q2
2/q1 + p(q)
q2q3/q1

q2 (q4 + p(q)) /q1

 , F =

q3

q2q3/q1

q2
3/q1 + p(q)

q3 (q4 + p(q)) /q1

 (5)

with

p(q) = (γ − 1)(q4 −
1

2

(
q2
2 + q2

3)/q1

)
(6)

In using Eqs. 5, 6 we will always assume that the qi variables are linearly
independent. This is important when we will be examining linearizations
and Jacobians of the fluxes.

2.3. Flux Jacobians

The fluxes, E and F , defined in the previous section are nonlinear func-
tions of Q. In stability analysis and design of numerical algorithms for the
Euler equations, the flux Jacobians

A ≡ ∂E

∂Q
, B ≡ ∂F

∂Q
(7)

4

play a dominant role.
For example, if we attempt to use the 1st order implicit scheme (define

Qn = Q(n · ∆t))

Qn+1 −Qn

∆t
+ ∂xE(Qn+1) + ∂yF (Qn+1) = 0 (8)

to integrate Eq. 1, the second and third terms are nonlinear in Qn+1. We
can linearize that term to 2nd order accuracy by a Taylor series expansion

En+1 = En + An(Qn+1 −Qn) + O(∆t2) (9)

and similarly for F n+1, resulting in

[I + ∆t∂xA
n + ∆t∂yB

n] (Qn+1 −Qn) = −∆t (∂xE
n + ∂yF

n)

which is now linear in the solution variable Qn+1.
The easiest way to derive the flux Jacobians is to start with the general

form of the fluxes given in Eq. 5. The elements of A are defined as

Ai,j =
∂Ei

∂qj
(10)

where the qj are the independent variables. For example, E2 = ρu2 + p =
q2
2/q1 + p(q) and the element A2,1 is found to be

A2,1 =
∂E2

∂q1
= −q2

2

q2
1

+
(γ − 1)

2

(
q2
2 + q2

3

q2
1

)
= φ− u2 (11)

with φ = (γ−1)(u2+v2)
2 .

The Jacobian matrices for the two- dimensional Euler equations are

A =

0 1 0 0
φ− u2 (3− γ)u −(γ − 1)v (γ − 1)
−uv v u 0

a1u
(

γe
ρ − φ− (γ − 1)u2

)
−(γ − 1)uv γu

(12)

B =

0 0 1 0
−uv v u 0

φ− v2 −(γ − 1)u (3− γ)v (γ − 1)

a1v −(γ − 1)uv
(

γe
ρ − φ− (γ − 1)v2

)
γv

(13)

5

2.4. Homogeneous Property

The fluxes of the Euler equations have the very interesting and useful
property of being homogeneous of degree 1, E(sQ) = sE(Q). Since the fluxes
are homogeneous of degree 1 they can be shown to satisfy E = AQ, F = BQ
exactly. Beam and Warming took advantage of this in the original develop-
ment of their implicit approximate factorization algorithm [1]. Steger and
Warming [6] also used this property as an integral part of their development
of a flux split algorithm. We can use the homogeneous property here to show
that, for instance,

∂E

∂x
=

∂AQ

∂x
= A

∂Q

∂x
+

∂A

∂x
Q (14)

also

∂E

∂x
=

∂E

∂Q

∂Q

∂x
= A

∂Q

∂x
(15)

which implies that

∂A

∂x
Q = 0 (16)

One can verify this by using Eqs. 2 and 12,13. Similar expressions hold for
any derivative of E and F . Using such relations we can form the quasilinear
form of Eq. 1

∂tQ + A∂xQ + B∂yQ = 0 (17)

2.5. Eigenvector Matrices

The flux Jacobians A and B each have real eigenvalues and a complete
set of eigenvectors. Therefore, the Jacobian matrices can be diagonalized.
Warming, Beam, and Hyett [7] consider a general matrix which is a linear
combination of A and B,

Â = κxA + κyB (18)

The diagonalization similarity transformation is

Λκ = T−1
κ ÂTκ (19)

6

where Tκ is the matrix whose columns are the eigenvectors of Â and T−1
κ is

the corresponding left eigenvector matrix.

Λκ =

U
U

U + c
√

κ2
x + κ2

y

U − c
√

κ2
x + κ2

y

 (20)

Tκ =

1 0 1 1
u κ̃y (u + κ̃xc) (u− κ̃xc)
v −κ̃x (v + κ̃yc) (v − κ̃yc)
φ2

(γ−1) (κ̃yu− κ̃xv)
[

φ2+c2

(γ−1) + cθ̃
] [

φ2+c2

(γ−1) − cθ̃
]

(21)

T−1
κ =

(1− φ2/c2)
−(κ̃yu− κ̃xv)

β(φ2 − cθ̃)

β(φ2 + cθ̃)

(γ − 1)u/c2

κ̃y

β[κ̃xc− (γ − 1)u]
−β[κ̃xc + (γ − 1)u]

(γ − 1)v/c2

−κ̃x

β[κ̃yc− (γ − 1)v]
−β[κ̃yc + (γ − 1)v]

−(γ − 1)/c2

0
β(γ − 1)
β(γ − 1)

(22)

with U = κxu + κyv , φ2 = 1
2(γ − 1)(u2 + v2), and β = 1/(2c2), θ̃ =

κ̃xu + κ̃yv, and, for example, κ̃x = κx/
√

κ2
x + κ2

y.
We can recover the individual eigenvalue and eigenvector matrices for

A and B by using κx = 1, κy = 0 for TA, T−1
A , ΛA and κx = 0, κy = 1 for

TB, T−1
B , ΛB. An interesting relation exists between TA and TB of the form

N̂ = T−1
A TB, N̂−1 = T−1

B TA (23)

where

N̂ =

1 0 0 0
0 0 −µ µ
0 µ µ2 µ2

0 −µ µ2 µ2

 N̂−1 =

1 0 0 0
0 0 µ −µ
0 −µ µ2 µ2

0 µ µ2 µ2

 (24)

with µ = 1/
√

2.
Note that the matrix N̂ is not a function of the flow variables and is in

fact a constant matrix.

7

It is not possible to simultaneously diagonalize both of the flux Jacobians
of the Euler equations. It is possible to simultaneously symmetrize the equa-
tions which is often useful in stability analysis. The eigenvector matrices Tκ

and T−1
κ will diagonalize one and symmetrize the other flux Jacobian matrix

depending on the choice of κx and κy.

2.6. Flux Vector Splitting

In the early years of CFD, a number of schemes were developed based
on upwind differencing. The flux split scheme of Steger and Warming [6]
employed a decomposition of the flux vectors in such a way that each element
can be stably differenced in an upwind fashion. These schemes all claim (with
good justification) to be physically consistent since they follow in some sense
the characteristics of the flow. They in general can be shown to produce
sharp oscillation free shocks without added artificial dissipation. It should
be noted that these schemes have an inherent amount of internal dissipation,
due to the one sided differences.

The plus - minus flux split method of Steger and Warming [6] will be
used here to introduce the concept of flux splitting. The approach taken is
to split the eigenvalue matrix Λ of the flux Jacobians into two matrices, one
with all positive elements and the other with all negative elements. Then the
similarity transformations TA or TB are used to form new matrices A+, A−

and B+, B−. Formally,

A = TAΛAT−1
A = TA(Λ+

A + Λ−A)T−1
A = A+ + A− (25)

with

Λ±A =
ΛA ± |ΛA|

2
(26)

Here, |Λ| implies that we take the absolute values of the elements of Λ. The
two matrices, A+ and A− have by construction all positive and all negative
eigenvalues, respectively.

New flux vectors can be constructed as

E = AQ = (A+ + A−)Q = E+ + E−, F = BQ = (B+ + B−)Q = F+ + F−(27)

The Euler equations can now be written

∂tQ + ∂xE
+ + ∂xE

− + ∂yF
+ + ∂yF

− = 0 (28)

8

Different type of spatial differencing can now be used for each of the above
flux vector derivatives. In the case of the + terms a backward difference in
space can be used (forward difference for the − terms), the resulting scheme
maintains linear stability for the resulting ODE.

A generalized flux vector can be defined as

F̂ = TκΛ̂T−1
κ Q (29)

where

Λ̂ =

λ̂1

λ̂2

λ̂3

λ̂4

, (30)

with λ̂ any definition of an eigenvalue.
For example, we can have λ± from Eq. 26 to get E±, or we could use λ̂i =

u : i = 1, 2, 3, 4 producing a Eu and λ̂i = 0 : i = 1, 2 with λ̂3 = c, λ̂4 = −c
producing a Ec. Note that then E = Eu + Ec.

The generalized flux vector, see Steger and Warming [6], is written as

F̂ =
ρ

2γ

2(γ − 1)λ̂1 + λ̂3 + λ̂4

2(γ − 1)λ̂1u + λ̂3(u + cκ̃x) + λ̂4(u− cκ̃x)

2(γ − 1)λ̂1v + λ̂3(v + cκ̃y) + λ̂4(v − cκ̃y)
f1

(31)

where f1 = (γ−1)λ̂1(u2 +v2)+ λ̂3[(u+ cκ̃x)2 +(v+ cκ̃y)2]/2+ λ̂4[(u− cκ̃x)2 +

(v − cκ̃y)2]/2 + (3− γ)(λ̂3 + λ̂4)c2/(2(γ − 1)) and

λ̂1 = λ̂2 = κxu + κyv, λ̂3 = λ̂1 + c
√

κ2
x + κ2

y, λ̂4 = λ̂1 − c
√

κ2
x + κ2

y (32)

The original E and F can be recovered with the appropriate values of κx and
κy.

There is a very fundamental consideration pertaining to the flux vectors
defined above. In the case of the ± flux splitting and other splitting which
are a direct result of the similarity transform, Eq. 29, it is more often the

9

rule than the exception that the flux Jacobians of the resulting flux vectors
are not equal to the similarity matrices, i.e.

∂F±

∂Q
$= A± (33)

We shall not write out the exact Jacobians here, but we should note that for
the ± splitting it has been shown that the eigenvalues of the exact Jacobians,
while not Λ±, are positive and negative appropriately for the + and − fluxes.

3. Implicit Numerical Algorithms

3.1. Implicit Time Differencing

Consider an implicit three point time differencing scheme of the form (
Warming and Beam [1])

∆Qn =
ϑ∆t

1 + ϕ

∂

∂t
(∆Qn) +

∆t

1 + ϕ

∂

∂t
Qn +

ϕ

1 + ϕ
∆Qn−1 + O

[
(ϑ− 1

2
− ϕ)∆t2 + ∆t3

]
(34)

where ∆Qn = Qn+1−Qn and Qn = Q(n∆t). The parameters ϑ and ϕ can be
chosen to produce different schemes of either first or second order accuracy
in time.

For ϑ = 1 and ϕ = 0, we have the first order Euler implicit scheme, and
for ϑ = 1 and ϕ = 1/2, the three point implicit scheme.

Let us restrict ourselves to the first order scheme in time (although all
of the subsequent development can easily be extended to any second order
scheme formed from Eq. 34. Applying Eq. 34 with ϑ = 1 and ϕ = 0 to Eq. 1,
results in

Qn+1 −Qn + ∆t
(
∂xE

n+1 + ∂yF
n+1

)
= 0 (35)

3.2. Local Time Linearizations

We wish to solve Eq. 35 for Qn+1 given Qn. The flux vectors E and F
are nonlinear functions of Q and therefore Eq. 35 is nonlinear in Qn+1. The
nonlinear terms are linearized in time about Qn by a Taylor series such that

En+1 = En + An∆Qn + O(∆t2) F n+1 = F n + Bn∆Qn + O(∆t2)(36)

10

where A = ∂E/∂Q , and B = ∂F/∂Q are the flux Jacobians and ∆Qn is
O(∆t). The Jacobian matrices A and B are griver by Eq. 12, 13.

Note that the linearizations are second order accurate and so if a second
order time scheme had been chosen the linearizations would not degrade the
time accuracy.

Applying Eqs. 36 to Eq. 35 and combining the ∆Qn terms produces the
“delta form” of the algorithm

[I + ∆t∂xA
n + ∆t∂yB

n] ∆Qn = −∆t (∂xE
n + ∂yF

n) (37)

This is the unfactored form of the block algorithm. We shall call the
right hand side of Eq. 37 the “explicit” part (RHS) and the left hand side
the “implicit” part (LHS) of the algorithm.

3.3. Space Differencing
The next step is to take the continuous differential operators ∂x and ∂y

and approximate them with finite difference operators on a discrete mesh.
Introducing a grid of mesh points (j, k), variables are defined at mesh

points as

uj,k := u(j∆x, k∆y) (38)

The choice of the type and order of the spatial differencing is important
both in terms of accuracy and stability. In most applications second order
accuracy has proven to be sufficient provided the grid resolution is reasonable.
The choices for differencing type include central and upwind operators. These
choices are dictated by stability, accuracy, efficiency and programming issues.

Second order central difference operators can be used where, for example,

δc
xuj,k = (uj+1,k − uj−1,k) /(2∆x) , δc

yuj,k = (uj,k+1 − uj,k−1) /(2∆y) (39)

or upwind operators for the type dependent schemes

δb
xuj,k = (3uj,k − 4uj−1,k + uj−2,k) /(2∆x),

δb
yuj,k = (3uj,k − 4uj,k−1 + uj,k−2) /(2∆y) (40)

with a similar forward differencing forms.
We will not focus here on the details of the difference schemes, bound-

ary conditions, general geometry, etc. The pertinent aspect of the finite
differences is the stencil size and form obtained when a difference scheme is
chosen. In general, three to seven point operators can be employed, which
has a direct impact on the bandwidth of the resulting implicit operators.

11

3.4. Matrix Form of Unfactored Algorithm

We now turn to examining the matrices we get when difference formulas
are applied to the implicit algorithm. It is always instructive to examine the
matrix structure of any finite difference equation. With the application of
central differences to Eq. 37. it is easy to show that the implicit algorithm
produces a large banded system of algebraic equations. Let the mesh size in
x be Jmax and in y be Kmax. Then the banded matrix is a (Jmax · Kmax · 4)
× (Jmax · Kmax · 4) square matrix. Let h = ∆t, we have for the LHS matrix
operator

[
I + hδc

xA
n + hδc

yB
n
]

from Eq. 37, the matrix structure

[] [] []
[] [] [] []

[] [] [] []
[] [] []

[] [] [] []
.[

−hBj,k−1

2∆y

] [
−hAj−1,k

2∆x

]
[I]

[
hAj+1,k

2∆x

] [
hBj,k+1

2∆y

]

[] [] [] []
[] [] []

[] [] [] []
[] [] [] []

[] [] []

(41)

where the variables have been ordered with j running first and then k.
The matrix is sparse but it would be very expensive (computationally)

to solve the algebraic system. For instance, for a reasonable two-dimensional
calculation of transonic flow past an airfoil we could use approximately 300
points in the x direction and 80 points in the y direction. The resulting
algebraic system has a 96,000 × 96,000 matrix problem to be solved and
although we could take advantage of its banded sparse structure it would
still be very costly in both CPU time and memory. For a banded matrix
with bandwidth b and rank N , the operation count estimate for inversion
is O(b2N). In two dimensions, the bandwidth (for Eq. 41) is approximately
4×Kmax (4 for the block size and Kmax from the differencing in k for each
j line) for the above ordering. The rank is N = 4 × Jmax × Kmax, so that
the total operation count for the inversion is on the order of O(43 × Jmax ×
K3

max). For the above example grid sizes this gives ≈ 9.8×109 operations per

12

time step. In two dimensions this is not too difficult for today’s large scale
computer systems. In three dimensions, the block sizes are 5, bandwidth
is expanded by the extra dimension and the rank is also expanded leading
to a large operation count which is still beyond the capabilities of modern
computer systems.

3.5. Approximate Factorization

As we have seen, the integration of the full two-dimensional operator is
expensive. One way to simplify the solution process is to introduce an approx-
imate factorization of the two-dimensional operator into two one-dimensional
operators. The implicit side of Eq. 37 can be written as

[I + hδx An + hδy Bn] ∆Qn = (42)

[I + hδx An] [I + hδy Bn] ∆Qn − h2δxAnδyBn ∆Qn

The cross terms (h2 terms) are second order in time since ∆Qn is O(h).
They can therefore be neglected without degrading the time accuracy of any
second order scheme which we may choose.

The resulting factored form of the algorithm is

[I + hδxA
n] [I + hδyB

n] ∆Qn = −h [δxE
n + δyF

n] (43)

We now have two implicit operators each of which is block tridiagonal.
The structure of the block tridiagonal matrix [I + hδc

xA
n] is

[] []
[] [] []

[] [] []
.[

−hAj−1,k

2∆x

]
[I]

[
hAj+1,k

2∆x

]

[] [] []
[] [] []

[] []

(44)

Rewriting Eq. 43 as a two stage process, we have

Form Rn = −h [δxEn + δyF n] (45)

For all k lines [I + hδxAn] ∆Q̂n = Rn :: Block tridiagonal solve in j

For all j lines [I + hδyBn] ∆Qn = ∆Q̂n :: Block tridiagonal solve in k

13

The solution algorithm now consists of two one dimensional sweeps, one in
the x and one in the y direction. The block matrix size is now at most rank
N = (4 × max[Jmax, Kmax]) with bandwidth b = 8. Each step requires the
solution of a linear system involving a block tridiagonal which is solved by
block LU (lower-upper) decomposition. For the above example, there are
Kmax block tridiagonal inversions in x and Jmax block tridiagonal inversions
in y, resulting in 2× (Jmax×Kmax×4)×82 ≈ 12×106 operations, a decrease
in work by a factor of about 800. The resulting solution process is much more
economical than the unfactored algorithm in terms of computer memory and
CPU time.

3.6. Diagonal Form

Most of the computational work for the implicit algorithm is tied to the
block tridiagonal solution process. The computational work can be decreased
by introducing a diagonalization of the blocks in the implicit operators as de-
veloped by Pulliam and Chaussee [8]. The eigensystem of the flux Jacobians
A and B are used in this construction.

The eigenvalues and eigenvectors of the flux Jacobians A and B are given
in Section 2.5 and we have

Λx = T−1
A ATA and Λy = T−1

B BTB (46)

.
Here we take the factored algorithm in delta form, Eq. 43 and replace A

and B with their eigensystem decompositions.

[
TA T−1

A + h δx

(
TA Λx T−1

A

)] [
TB T−1

B + h δy

(
TB Λy T−1

B

)]
∆Qn = Rn (47)

At this point Eq. 43 and Eq. 47 are equivalent. A modified form of Eq. 47
can be obtained by factoring the TA and TB eigenvector matrices outside the
spatial derivative terms δx and δy. The resulting equations are

TA [I + h δx Λx] N [I + h δy Λy] T−1
B ∆Qn = Rn (48)

where N = T−1
A TB, see Eq. 23.

The explicit side of the diagonal algorithm (the steady-state finite differ-
ence equations) is exactly the same as in the original algorithm, Eq. 43. The
modifications are restricted to the implicit side and so if the diagonal algo-
rithm converges, the steady-state solution will be identical to one obtained

14

with the unmodified algorithm. In fact, linear stability analysis would show
that the diagonal algorithm has exactly the same unconditional stability as
the original algorithm. (This is because the linear stability analysis assumes
constant coefficients and diagonalizes the blocks to scalars, so the diago-
nal algorithm then reduces to the unmodified algorithm.) The modification
(pulling the eigenvector matrices outside the spatial derivatives) of the im-
plicit operator does affect the time accuracy of the algorithm. The eigenvec-
tor matrices are functions of x and y and therefore this modification reduces
the time accuracy to at most first order in time and also gives time accurate
shock calculations a nonconservative feature, i.e., errors in shock speeds and
shock jumps. However, the steady-state is fully conservative since the steady-
state equations are unmodified. Also, computational experiments by Pulliam
and Chaussee [16] have shown that the convergence and stability limits of
the diagonal algorithm are similar to that of the unmodified algorithm.

The diagonal algorithm reduces the block tridiagonal inversion to a set of
4 × 4 matrix multiplies and scalar tridiagonal inversions. In two dimension,
reqrite Eq. 48

Form Rn = −h [δxEn + δyF n] (49)

For all j and k Sn = T−1
A Rn :: 4× 4 matrix multiples

For all k lines Sn = [I + h δx Λx]
−1 Sn :: 3 scalar tridiagonal solves

For all j and k Sn = N−1Sn :: 4× 4 matrix multiples

For all j lines Sn = [I + h δy Λy]
−1 Sn :: 3 scalar tridiagonal solves

For all j and k ∆Qn = TBRn :: 4× 4 matrix multiples

Pulliam and Chaussee [8] showed that the operation count per grid point
associated with the implicit side of the full block algorithm is 410 multiplies,
356 adds, and 10 divides, a total of 776 operations, while the diagonal al-
gorithm requires 233 multiplies, 125 adds, and 26 divides or 384 operations.
Adding in the explicit side and other overhead such as I/O (input/output)
and initialization, the overall savings in computational work can be as high
as 40%. Note the the computational work was further decreased by noting
that the first two eigenvalues of the system are identical, Eq. 20. This allows
us to combine the coefficient calculations and part of the inversion work for
the first two scalar operators. Another advantage of the approximate factor-
ization is that the solution process is easily parallelized. One can parallelize
in y as you invert in x and parallelize in x for the y inversions.

15

3.7. Flux Split Forms

Flux split forms of the implicit algorithms have been exploited in many
ways. Starting with Steger-Warming [6] flux vector splitting and the equa-
tions given in Section 2.6 we have

∂tQ + δb
xE

+ + δf
xE− + δb

yF
+ + δf

y F− = 0 (50)

where the appropriate upwind differences are used. A first order implicit
delta form for Eq. 50 is

[
I + hδb

x(A
+)n + hδf

x(A−)n + hδb
y(B

+)n + hδf
y (B−)n

]
∆Qn = (51)

−h
(
δb
x(E

+)n + δf
x(E−)n + δb

y(F
+)n + δf

y (F−)n
)

Applying first, second or higher order upwind differencing would produce
a sparse large bandwidth system similar to the unfactored block implicit
scheme, Eq. 41 and work estimates which are excessive, especially in three
dimensions. Approximate factorization similar to Section 3.5 would produce

[
I + hδb

x(A
+)n + hδf

x(A−)n
] [

I + hδb
y(B

+)n + hδf
y (B−)n

]
∆Qn = (52)

−h
(
δb
x(E

+)n + δf
x(E−)n + δb

y(F
+)n + δf

y (F−)n
)

which produces work estimates similar to the approximate factorization of
that Section.

An alternative factorization would be to keep the positive terms together
and the negative terms together producing

[
I + hδb

x(A
+)n + hδb

y(B
+)n

] [
I + hδf

x(A−)n + hδf
y (B−)n

]
∆Qn = (53)

−h
(
δb
x(E

+)n + δf
x(E−)n + δb

y(F
+)n + δf

y (F−)n
)

Now each implicit operators is block tridiagonal, e.g. the structure of

[
I + hδb

x(A
+)n + hδb

y(B
+)n

]

16

is a lower block diagonal matrix

[]
[] []

[] []
[] []

[] []
.[

−h
B+

j,k−1

∆y

] [
−h

A+
j−1,k

∆x

] [
I + h

A+
j,k

∆x + h
B+

j,k

∆y

]

.
[] [] []

.
[] [] []

.
[] [] []

(54)

Similarly, the forward operators produce an upper block diagonal matrix.
The advantage of this factorization is that each matrix operator can be in-
verted by a forward and then a backward sweep process, e.g. a Lower-Upper
(LU) factorization solution process. The disadvantage of the LU schemes is
encountered when parallelization is attempted and the natural recursion for
the forward and backward sweeps preclude an easy parallel implementation.

4. Summary

The implicit schemes developed in the 1970’s and 1980’s by Richard
Beam, Robert Warming and Joseph Steger at NASA Ames Research Center
are the basic building blocks for a large segment of the CFD codes in use
today. The advantages of approximate factorization are realized every day
by modern codes in both the structured arena (e.g. OVERFLOW [9]) and
even in the unstructured world where LU factorizations are frequently em-
ployed. We have not focused here on the analysis and application of these
techniques, that work can be seen in the vast literature where the methods
described here are widely employed. One just has to pick up any textbook
which addresses CFD or any relevant journal to see numerous examples of
the use of these pioneering concepts.

17

References

[1] Beam, R. and Warming, R. F., An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation Law Form, J. Comp. Phys.
Vol. 22, 1976, 87-110

[2] Steger, J. L. Implicit Finite Difference Simulation of Flow About Arbi-
trary Geometries with Application to Airfoils , AIAA Paper 77-665,
1977

[3] Pulliam, T. H. and Steger, J. L. Implicit Finite- Difference Simulations
of Three Dimensional Compressible Flow, AIAA J , Vol. 18 1980 page
159

[4] MacCormack, R. W. The Effect of Viscosity in Hypervelocity Impact Cra-
tering, AIAA Paper 69-354, 1969.

[5] Pulliam, T. H., Artificial Dissipation Models for the Euler Equations
AIAA J., Vol 24, No 12 p. 1981

[6] Steger, J. L. and Warming, R. F. Flux Vector Splitting of the Inviscid
Gas Dynamic Equations with Applications to Finite Difference Methods
J. Comp. Phys. Vol 40, 263-293,1981

[7] Warming, R. F., Beam, R., and Hyett, B. J., Diagonalization and Simul-
taneous Symmetrization of the Gas-Dynamic Matrices, Math Comp,
Vol 29, 1037, 1975

[8] Pulliam, T. H. and Chaussee D. S.,A Diagonal Form of an Implicit
Approximate Factorization Algorithm, Journal of Computational
Physics, Vol 39, No. 2, Feb. 1981

[9] Buning, P. G., Chiu, I. T., Obayashi, S., Rizk, Y. M., and Steger, J.
L. 1988. Numerical Simulation of the Integrated Space Shuttle Vehicle in
Ascent, AIAA Paper 1988-4359, AIAA Atmospheric Flight Mechanics
Conference, Minneapolis, MN, 1988

18

