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ABSTRACT 
 
The Kepler space telescope is designed to detect Earth-like planets around Sun-like stars using transit photometry by 
simultaneously observing 100,000 stellar targets nearly continuously over a three and a half year period. The 96-
megapixel focal plane consists of 42 charge-coupled devices (CCD) each containing two 1024 x 1100 pixel arrays. 
Cross-correlations between calibrated pixels are introduced by common calibrations performed on each CCD 
requiring downstream data products access to the calibrated pixel covariance matrix in order to properly estimate 
uncertainties. The prohibitively large covariance matrices corresponding to the ~75,000 calibrated pixels per CCD 
preclude calculating and storing the covariance in standard lock-step fashion. We present a novel framework used to 
implement standard propagation of uncertainties (POU) in the Kepler Science Operations Center (SOC) data 
processing pipeline. The POU framework captures the variance of the raw pixel data and the kernel of each 
subsequent calibration transformation allowing the full covariance matrix of any subset of calibrated pixels to be 
recalled on-the-fly at any step in the calibration process. Singular value decomposition (SVD) is used to compress 
and low-pass filter the raw uncertainty data as well as any data dependent kernels. The combination of POU 
framework and SVD compression provide downstream consumers of the calibrated pixel data access to the full 
covariance matrix of any subset of the calibrated pixels traceable to pixel level measurement uncertainties without 
having to store, retrieve and operate on prohibitively large covariance matrices. We describe the POU Framework 
and SVD compression scheme and its implementation in the Kepler SOC pipeline. 
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1. INTRODUCTION 
 
On March 6, 2009 at 10:50pm EST, the Kepler spacecraft was launched aboard a Delta II rocket from NASA’s 
Kennedy Space Center at Cape Canaveral, Florida beginning an historic search for habitable planets orbiting distant 
stars. From an Earth-trailing orbit around the sun, Kepler will continuously observe approximately 160,000 stars in 
our galaxy over a three and one-half year period.1

                                                             
∗ bruce.d.clarke@nasa.gov; kepler.nasa.gov  

 The field of view is 105-square degrees in the Cygnus and Lyra 
constellations. The science instrument is a photometer designed to detect variations in starlight as small as 100 parts-

1 There are enough consumables onboard to support observations for at least six years. Since the science instrument and 
spacecraft are currently performing to the design requirements, there is an extended mission proposal in process to fund an 
additional two years observing. 
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per-million; the amount of dimming expected as an Earth sized planet passes in front of a Sun-like star. Kepler will 
observe these extra-solar transits using a 0.95-meter Schmidt telescope which provides a slightly defocused  image 
of the field of on a 95-megapixel focal plane consisting of forty-two 2200 x 1024 pixel charge-coupled devices 
(CCD). Each CCD consists of two separate outputs providing 84 separate 1100 x 1024 pixel array channels across 
the focal plane. The slight defocusing reduces the photometric noise by spreading the light from any one particular 
star over typically about one hundred pixels. In order to prevent saturation, the pixel data are read out every 6.539 
seconds. Two-hundred and seventy reads are accumulated and time tagged producing the “long cadence” data, the 
primary science data for the transit search mission. Data at nine-read accumulations, called “short cadence” data, is 
also produced and made available for other studies such as asteroseismology. The long cadence sampling interval is 
29.42 minutes while the short cadence interval is 58.85 seconds (1/30 long cadences).i Communications bandwidth 
constraints, lack of an articulating high gain antenna, limited onboard data storage capacity and spacecraft 
operations combine to preclude down linking the readout from the entire focal plane on the long and short cadence 
intervals.2

2. THE SOC DATA ANALYSIS PIPELINE 

 The pixel data for only the selected 160,000 long cadence and 512 short cadence target stars is stored 
onboard and transmitted to the ground once a month through the Deep Space Network (DSN) and stored at NASA’s 
Data Management Center (DMC). This raw pixel data, which represents about 6% of the focal plane image, is then 
available from the DMC for processing through the data analysis pipeline operated and maintained at the Kepler 
Science Operations Center (SOC) at the NASA Ames Research Center in Mountain View, California. 

 
The SOC pipeline ingests the raw pixel data received from the DMC and produces calibrated pixels, target flux 
(calibrated pixel aggregates), diagnostic metrics to assess photometer performance and a list of planetary candidates, 
each with an associated report. The analysis segment consists of six Computer Software Configuration Items 
(CSCIs) – Calibration (CAL), Photometric Analysis (PA), Pre-Search Data Conditioning (PDC), Transiting Planet 

                                                             
2 A few full frame images (FFI) at long cadence accumulations are stored and down linked at the beginning of each month. These 
are used by the Kepler Science Office to verify target pixel assignments and to analyze image artifacts.  

 

Figure 1– Left - Drawing of Kepler spacecraft some of the external components shown. Right – the focal plane 
assembly prior to integration into the photometer at Ball Aerospace in Boulder, Colorado. The focal plane is mounted 
inside the photometer at the location of the CCD radiator. 1 



Search (TPS), Data Validation (DV) and Photometer Data Quality (PDQ).ii The monthly data flows through the 
CAL-PA-PDC-TPS-DV pipeline in a serial fashion, one channel at a time. CAL performs the pixel level calibration, 
PA uses the calibrated pixels to estimate and remove background flux and produce calibrated flux time series, PDC 
assesses and corrects artifacts from the calibrated flux time series, TPS flags suspected transit events in the corrected 
flux time series and generates a list of planet candidates and DV fits transit models to the flagged events and 
generates a report for each planet candidate. Every three months a quarterly pipeline run is performed on the three 
preceding months of data in order to eliminate edge effects inherent in segmenting the data on a monthly basis. PDQ 
is a stand-alone hybrid version of the CAL-PA segment with the added functionality of attitude determination. It 
operates on only a few select targets per channel but over the full focal plane at once and provides photometer 
performance metrics and a spacecraft pointing solution every few days based on a small set of reference pixels.iii

 

  

Data is passed between CSCIs using software written in JAVA. The algorithms internal to the CSCIs are 
implemented in compiled MATLAB. 
 

3. PIXEL LEVEL CALIBRATION 
 
Calibration applies a scale factor and removes known instrument and image artifacts converting raw pixel data in 
analog-to-digital-units (ADU) per cadence to photoelectrons (e-) per cadence. Known artifacts include; static and 
dynamic pixel biases which are mitigated by the 2D and dynamic 1D black corrections, nonlinear step response of 
the analog readout electronics which is mitigated by the undershoot correction, nonlinear static response of the 
readout amplifiers and analog-to-digital converters which is mitigated by the nonlinearity correction, variations in 
pixel sensitivity across the focal plane which are mitigated by the flat field correction, smearing of the image during 
readout due to shutter-less operation which is mitigated by the smear correction, and a constant bias current inherent 
to CCDs which is mitigated by the dark current correction.iv

 

 Some of these calibrations are based on models 
determined from pre-launch data and some are based on collateral data collected along with the photometric science 
data.  

CAL estimates uncertainties for the calibrated pixels. The raw pixel variance is estimated as the quadrature sum of 
the modeled read noise, the calculated shot noise and the effective quantization noise. Each pixel read is assumed to 
be independent and the raw uncertainty is simply the square root of the variance. During the calibration process, the 
common corrections applied across large subsets of pixels introduce correlations. These correlations must be 
estimated in order to correctly estimate the uncertainties. This means the pipeline must propagate the full covariance 
matrix through the calibration operations. 
 
Collateral data calibration 
The object of collateral data calibration is to produce the dynamic 1D black, smear level and dark level corrections 
for use in the photometric pixel calibrations. Collateral data consists of masked smear, virtual smear and trailing 
black pixels (Figure 4). The CAL collateral pixel processing steps are; 1) 2D black correction - subtract static 2d 
black model from trailing black, masked and virtual smear, 2) estimate dynamic 1D black from trailing black 
columns, 3) dynamic 1D black correction - subtract dynamic 1D black estimate from black, masked and virtual 
smear, 4) undershoot correction - apply undershoot filter per row to the smear pixels, 5) nonlinearity correction - 
multiply smear pixels by nonlinearity model, 6) gain correction - multiply smear pixels by gain model and 7) 
estimate smear correction and dark current correction from the calibrated masked and virtual smear pixels. 

The two largest contributors to calibration induced correlations are the smear correction and 1D black correction 
which are both estimated from the collateral data. The smear correction correlates pixels which share a common 
column on the CCD, the dynamic 1D black correction ties together pixels which share a common row. 

Photometric data calibration 
Photometric data consists of pixels from the exposed silicon region. The pixels near stars of interest are called target 
pixels (used to measure the light output from a particular target star) and the pixels that fall in the space between 
stars are the background pixels (used to estimate the amount of background light). The calibrations applied to the 
target and background pixels include those applied to the collateral data plus smear and dark level corrections which 
are estimated from the collateral datav and the flat field corrections which is estimated from pre-launch test data. The 
CAL photometric pixels processing steps are; 1) 2D black correction - subtract static 2d black model from target and 



background pixels, 2) dynamic 1D black correction – subtract dynamic 1D black estimate, 3) undershoot correction 
- apply undershoot filter per row, 4) nonlinearity correction- multiply pixels by nonlinearity model, 5) gain 
correction - multiply pixels by gain model, 6) smear level correction – subtract smear level, 7) dark level correction 
– subtract dark level and 8) flat field correction – divide pixels by the flat field model. 

4. THE COVARIANCE PROBLEM AND A NOVEL SOLUTION 
 
The covariance problem 
The traditional method of propagating covariance is to transform the covariance matrix alongside the underlying 
data. This conventional lock-step method is not viable in the SOC pipeline since the memory required for both 
operating on and storing the covariance matrix for the full set of calibrated pixels are beyond the processing and 
storage capabilities of the pipeline.  
 
CAL processes up to 75000 target and background pixels plus 3400 collateral pixels for each of the 84 channels. A 
double precision representation of the associated covariance matrix would require 22.5 gigabytes/cadence for 
storage. Furthermore, it is not possible to hold a 75000 x 75000 element covariance matrix in RAM in order to 
operate on it without using a segmenting scheme which would dramatically increase the CAL run time. Finally, 
CAL is required to process three months (one quarter) of long cadence data at a time which would require a 
whopping 100 terabytes/channel/quarter, or 8400 terabytes/quarter for the entire focal plane for storage of the pixel 
covariance alone. For comparison, storage of the calibrated pixel data and the associated uncertainties for the entire 
focal plane for one quarter requires about half a terabyte. 
 
A novel solution 
Rather than propagate the full covariance matrix at each step, the SOC employs a custom data structure storing only 
the uncorrelated primitive data and the small metadata kernel of each transformation. Each calibration 
transformation and its corresponding Jacobian matrix are reconstructed as needed.3

                                                             
3 The Jacobian alone is sufficient to propagate the covariance matrix however; some of the transformations involved in 
calibration are functions of the underlying data, that is, they are nonlinear, and so are the Jacobians. In order to minimize the 
amount of metadata stored, the underlying transformations must also be reconstructed in order to provide the underlying data at 
any point in the transformation chain. 

  The covariance matrix of the 

 

Figure 2 – Row and column layout one CCD channel. The pixels are pulled down row by row and read out pixel by pixel to 
the left. Row and column dimensions of the readout include the 1100 x 1024 photometric pixel array on exposed silicon plus 
the collateral pixels which are 20 rows masked from exposure to light by a thin layer of aluminum, 26 virtual (over-clocked) 
rows which do not exist as physical silicon, 20 virtual columns at the end of each row and 12 serial register columns (also 
virtual columns) at the beginning of each row. The effective array size is 1070 rows x 1132 columns. Masked and virtual 
rows are used to measure the smear of the image and are referred to as “masked” and “virtual” smear pixels. Virtual columns 
at the end of the readout are used to estimate pixel biases per cadence. They are referred to as the “trailing black” pixels. The 
serial register columns at the start of the row readout could also be used to estimate the black pixel value and are called the 
“leading black” pixels.  



calibrated pixel products is produced by cascading the primitive covariance through the reconstructed chain of 
transformations.  
 
The custom data structure reduces the amount of memory needed to propagate covariance by no more than a factor 
of 78000. But CAL is required to process up to three months of a single channel of long cadence data at a time. For 
that unit of work, even the relatively small set of primitive data plus metadata needed turns out to be quite large so a 
data compression scheme is employed. Some of the metadata is compressible across cadences in a lossless fashion. 
The primitive data and metadata derived from the primitive data are compressible across cadences using singular 
value decomposition (SVD)vi. Since we expect the primitive data and metadata to be slowly varying function of 
time, selecting only the highest power components of the SVD eliminates outliers which occur at spurious high 
frequencies. Truncating the SVD in this way not only dramatically reduces the number of bytes to store but provides 
low pass filtering. The cost of the SVD compression is a tolerable loss of fidelity in covariance elements of less than 
a part in 104. The Akaike Information Criteria is used on a per pixel basis to determine the appropriate number of 
SVD components to use without over-fitting.vii

 
  

The combination of this novel Propagation of Uncertainties (POU) framework and SVD data compression allows 
the SOC pipeline to provide full covariance information of the calibrated products, traceable to the raw pixel 
uncertainties.  

5. STANDARD PROPAGATION OF UNCERTAINTIES 
 
The pixel level calibrations are a series of transformations on multidimensional data converting an input vector of 
raw pixels to an output vector of calibrated pixels. We propagate the covariance in the spatial using “standard 
propagation of uncertainties” (POU) in which the Jacobian of each transformation at x = x0 is approximated as the 
first order Taylor expansion in x – x0.viii

 

 The following matrix formulation illustrates the chain of multidimensional 
transformations on the underlying data and the corresponding transformation of the covariance using the Jacobians. 

Standard POU formalism 
Given a functional relationship (f) between an input vector (x0) and an output vector (y0): 
 

 
 

 

(1) 

 
The transformation, T(x0), may be written as: 
 

 

 

(2) 

 
And the Jacobian of the transformation, J(x0), may be written as: 
 

 

 

(3) 

 
Such that the underlying data and corresponding covariance transform like: 
 



  (4) 
 
Since the output of one calibration operation is the input to the next, the result of a chain of j calibration operations 
taking x0 to z0 can be written: 

 
 

(5) 
 
With the propagated covariance is given by: 
 

 
 

(8) 
 
 
Implementing standard POU in CAL 
The operations in CAL are represented by a small set of simple transformations, each with small kernels. The 
Jacobian matrix (J) follows directly from the transformation matrix (T) by applying equations (2) and (3). We 
present several of these simple transformations and associated Jacobian matrices below.ix Table 1   lists the supported 
types. The MATLAB equivalents to the matrix multiplications are also shown.  
 
Scale an input vector by a scalar constant (k) – transformType = ‘scale’  
 

 
 

 
 

 
 
Scale an input vector by a vector constant (v) – transformType = ‘scaleV’ 
 

 
 

 
 

 
 

Add or subtract two input vectors element by element - transformType = ‘addV’ or ‘diffV’ 
 

Table 1 - Complete list of transformations supported by the POU framework as of SOC release 6.1 

 transformType Definition MATLAB notation 
1 scale Scale variable vector by a constant z = k.* x 
2 scaleV Scale variable vector by a constant vector z = v.* x 
3 addV Add two variable vectors z = x + y 
4 diffV Subtract two variable vectors z = x – y 
5 multV Multiply two variable vectors z = x .* y 
6 divV Divide two variable vectors z = x ./ y  
7 wSum Weighted sum of elements in a variable vector z = sum( w .* x ) 
8 wMean Weighted mean of elements in a variable vector z = mean( w .* x ) 
9 bin Bin the elements of a variable vector z(i)z = sum( x(j:k) )  
10 wPoly Apply a weighted polynomial design matrix z = scalecol( w, M ) * x 
11 filter Filter the input data z = filter( b, a, x ) 
12 userM User defined matrix transformation z = M * x 
13 selectIndex Select a subset of input data based on index z = x( index, : ) 
14 concatRows Concatenate data row-wise z = [ x; y ] 
15 fillRows Fill rows in x at index with rows of y z = x; x(index) = y 
16 eye Identity transformation – Start of transform chain z = I * x 

 



 
 

 
 

 
 

Multiply two input vectors element by element - transformType = ‘multV’ 
 

 
 

 
 

 
 

Divide two input vectors element by element - transformType = ‘divV’  
 

 
 

 

 
 

 
 
 

6. THE POU FRAMEWORK 
 
The propagation of uncertainties (POU) framework is implemented in CAL as a MATLAB structure. The 
transformation chain is stored by first capturing the raw pixel data and its variance then the kernel of each 
transformation in turn. The framework expands as the chain grows to accommodate new transformations. We 
describe the data structure and associated functions to store transformations and retrieve transformed data. 
 
Creating the POU structure 
A 2D array (variables x cadences) of empty POU structures is initialized (called errorPropStruct in CAL) using the 
top level constructor. Column wise there is one array element for each CAL product plus several intermediate data 
products required for two input transformations – see Figure 5. The primitive data, its covariance, row and column 
index, indices gaps and cadence gaps are stored at the top level. Transformations are stored in the second level in the 
order they are applied. Metadata is stored in the third level. For the transformation types which take input of two 
vectors, the field yDataInputName is a pointer to another array element, allowing transformation chains to merge. 
Output of the constructors for the top level, second level and third level are shown below 
 



empty_errorPropStruct() = …   % top level POU array element     
   variableName: []   % name of variable 
     xPrimitive: []   % raw data 
    CxPrimitive: []   % variance of raw data 
                     row: []   % ccd row indices if needed 
                     col: []   % ccd row indices if needed 
                  gapList: []   % index into xPrimitive 
              cadenceGapped: 0   % boolean gap indicator 
           cadenceGapFilled: 0   % Boolean fill indicator 
                               size: [1x1 struct]  % used for compression scheme 
                      originalShape: [1x1 struct]  % used for compression scheme 
               transformStructArray: [1x1 struct]  % transformation array (chain) 
 
 
empty_tStruct() = …    % transformation array element 
               transformType: []   % transform type 
   disableLevel: 0   % apply transformation or not  
        yDataInputName: []   % variable name of y-data 
       yIndices: []   % indices of y-data 
           size: [1x1 struct]  % used for compression scheme 
                   originalShape: [1x1 struct]  % used for compression scheme 
        transformParamStruct: [1x1 struct]  % metadata for transform 
 
empty_tParamStruct() = …   % metadata for transform    
         scaleORweight: []   % scalar or nx1 vector 
        filterCoeffs_b: []   % filter coefficients 
        filterCoeffs_a: []    
      polyOrder: []   % order of weighted poly 
    polyXvector: []   % vector to evaluate poly 
       binSizes: []    
    FCmodelCall: [] 
          userM: []   % user defined matrix 
       xIndices: []   % select indices 
     size: [1x1 struct]  % used for compression scheme 
         originalShape: [1x1 struct]  % used for compression scheme 
 
Append transformations 
The POU array elements are populated with primitive data and augmented with subsequent transformation metadata 
in lock-step with the calibrations in CAL. Primitive data is inserted using the ‘eye’ type. Subsequent transformations 
must be consistent with the supplied metadata. A ‘disableLevel’ parameter allows selective enabling of the base 
transformation and the Jacobian. This feature is useful in the case of the undershoot correction in which a filter 
transformation is applied to the underlying data but not to the propagated covariance.x

 
  

Cascade transformations 
Given a column of POU array elements the transformation chain associated with any variable name may be executed 
drawing transformations from the structure as the chain progresses. Other array elements are propagated in recursive 
fashion as they are referenced as inputs to any transformations in the chain. The transformed primitive data and the 
propagated covariance matrix are returned. 

7. COMPRESSION 
 
The size of the fully populated POU structure for a typical channel is 25 gigabytes per quarter in the MATLAB 
workspace which compresses to about 11 gigabytes when stored. This is still about twice the size of the stored 
calibrated pixels and uncertainties. In order to minimize the load on the database, the array of POU structure 
elements is compressed in a two step process and stored in an array of compressed data structure elements.  
 
Compression step 1 
The 2D array of POU structure (variables x cadences) is minimized through a process of lossless concatenation and 
conversion to sparse representation. The 2D array of elements containing fields with 1D vectors are collapsed into a 
1D array of elements containing fields with 2D arrays by first padding the 1D field arrays for consistency then 
concatenating across cadences. The original shape of the 1D array is saved in order to restore the original structure 
when the data is reconstituted. Common elements of these 2D field arrays are further condensed into 1D arrays 
where possible. Field arrays are converted to the MATLAB sparse representation where a savings is realized. 



 
Compression step 2 
The resulting 2D primitive data arrays and selected transformation metadata which closely resembles the primitive 
data are decomposed using singular value decomposition (SVD). A user defined number of the highest power 
components are selected and the resulting row and column basis vectors and the associated singular values for only 
these components are saved in a data structure. The original data is replaced with a pointer to the compressed data. 
The optimal model order as determined by the Akaike Information Criteriaxi

 

 and the chi-square of the fit residual 
(residual power) is computed for each row. The model order selection prevents over fitting and the chi-square 
provides a metric on the fidelity of the reconstructed data. 

Compressed data array element compressedData(3) is an example for 1132 virtual smear pixels over 476 cadences. 
The CxPrimitive and transformData fields also contain an SVD decomposition set of basis vectors (U,V), singular 
values (S) and the associated optimal model order and residual power vector. The top level corresponding element in 
the original POU structure array after compression is errorPropStruct(3). Primitive data has been replaced in this 
structure by the string ‘SVD’ indicating the data is stored in compressed form in a separate structure. 
 
compressedData(3) = … 
      variableName: 'vSmearEstimate' 
        xPrimitive: [1x1 struct]  % primitive raw data 
                    U: [476x10 double]  % SVD decomposition 

 

Figure 3 – Data flow diagram of operations performed in CAL. The variable names used in the POU structure are indicated 
on the diagram under ‘calibrated data’ and ‘intermediate data’. The variable names are typically chosen to reflect the end 
product of the transformation chain. For example, ‘vSmearEstimate’ is the variable name for the transformation chain which 
begins with raw virtual smear pixels. 



                    S: [10x1 double] 
                    V: [1132x10 double] 
             convFlag: 0    % non-convergence flag 
      minimumAicOrder: [1132x1 double]  % optimal model order 
        residualPower: [1132x1 double]  % chi-squared 
 
       CxPrimitive: [1x1 struct]      % primitive variance 
     transformData: [1x2 struct]  % transform metadata 
   
errorPropStruct(3) = … 
            variableName: 'vSmearEstimate' 
              xPrimitive: 'SVD' 
             CxPrimitive: [] 
                     row: [] 
                     col: [] 
                 gapList: [1 2 3 4 5 6 7 8 9 10 11 12 1113 1114 1115 1116 1117 1118 1119 1120 
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132] 
           cadenceGapped: [476x1 logical] 
        cadenceGapFilled: [476x1 logical] 
                    size: [1x1 struct] 
           originalShape: [1x1 struct] 
    transformStructArray: [7x1 struct] 

8. RETRIEVING CALIBRATED PIXEL COVARIANCE 
 
The minimized and compressed POU structure is passed between CSCIs in the pipeline and stored in the database as 
a Binary Large OBject (BLOB)xii allowing consumers of the calibrated pixels access to the covariance. One such 
consumer is the Photometric Analysis CSCI (PA) which estimates and removes the background photometric signal 
and aggregates the target pixels to form flux time series for each target.xiii

 

 The pixel covariance matrix for any subset 
of photometric pixels is retrieved for any given cadence given row and column indices, the corresponding POU 
structure array and a chunk size parameter used to throttle function performance.  

The need for providing the covariance matrix as a measure of the pixel correlations is evident through examination 
of the covariance images as correlations up to several percent are noted. Figure 6 shows the location of 525 target 
and background pixels covering a 130 row x 160 column patch on one CCD and Figure 7 shows the calibrated pixel 
covariance for this set of pixels, retrieved from the CAL POU BLOB. The covariance is normalized to the median of 
the diagonal elements providing an upper limit on the correlation coefficients for the off-diagonal elements. Most of 
these off-diagonal elements are clustered around 0.42% with variations of 0.0003%. The banding in the row-sorted 
image identifies groups of pixels correlated at the 0.36% level. The column sorted equivalent image shows this 
banding to be localized over columns 439-442 and that the cross correlation of pixels within this band but not 
sharing a common column is close to the nominal 0.42%. The zoomed versions of the column-sorted images show 
the detail of the blocking along the diagonal indicating correlations as high as 3.6% with variations to 0.3% for most 

 

Figure 4 - Left – Location of pixels for eight targets and five groups of background pixels from quarter 1 long cadence 
flight data. Right – variance of these pixels normalized to the median. 



pixels sharing a common column and up to 7.2% with variations to 1% for those within the banded region. 
Speculation as to the source of the banding is beyond the scope of this paper. 
 

9. CONCLUSIONS AND FORWARD WORK 
 
The SOC implementation of the POU framework provides information about calibration induced pixel correlations 
traceable to the raw pixel uncertainties. The SVD compression scheme provides useful low pass filtering and makes 
propagation of the full covariance a tractable problem. The fidelity of the propagated uncertainties is preserved to 
better than 0.01%. Forward work includes expanding the POU framework to accept inputs from the background and 
target flux transformations in PA in order to evaluate target correlations based the propagated covariance. The 
structure should also be extended to accept a full primitive covariance matrix rather than simply a variance vector. 
Additionally, the POU framework should be implemented as a formal MATLAB class, for consistency with the rest 
of the pipeline code.  
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Figure 5 – Top left – row-sorted covariance normalized to median variance. Bottom left – column-sorted covariance 
normalized to median variance. Top left and bottom left – column sorted covariance normalized to median variance for two 
regions of interest in the bottom left image. The color axis limits have been adjusted on all images to enhance detail.  



REFERENCES 

[1] Koch, D.G., et al., “Kepler Mission design, realized photometric performance, and early science,” Astrophysical 
Journal Letters, 713, L79-L86 (2010). 

[2] Jenkins, J.M., et al., “Overview of the Kepler science processing pipeline,” Astrophysical Journal Letters, 713, 
L87-L91 (2010). 

[3]  Haas, M.R., et al., “Kepler Science Operations,” Astrophysical Journal Letters, 713, LXXX-LYYY (2010). 
 
                                                             
i [ SPIE instrument paper, Doug Caldwell] 
ii Middour, C., et al., “Kepler Science Operations Center architecture,” Proc. SPIE, this volume (2010). 
iii  Klaus, T.C., et al., “The Kepler Science Operations Center pipeline framework,” Proc. SPIE, this volume (2010). 
iv Quintana, E.V., et al., “Pixel-level calibration in the Kepler Science Operations Center pipeline,” Proc. SPIE, this 
volume (2010). 
v Quintana, E.V., et al., “Pixel-level calibration in the Kepler Science Operations Center pipeline,” Proc. SPIE, this 
volume (2010). 
vi L.N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, 25-37, ( 1997). 
vii Akaike, H., “A New Look at the Statistical Model Identification,” IEEE Transactions on Automatic Control, AC-
19 (6), 716-723 (1974). 
viii [KADN-26185, POU in PDQ] 
ix [KADN-26185, POU in PDQ] 
x Quintana, E.V., et al., “Pixel-level calibration in the Kepler Science Operations Center pipeline,” Proc. SPIE, this 
volume (2010). 
xi Akaike, H., “A New Look at the Statistical Model Identification,” IEEE Transactions on Automatic Control, AC-
19 (6), 716-723 (1974). 
xii [SPIE database/file store paper, Sean McCaulliff] 
xiii Twicken, J.D., et al., “Photometric analysis in the Kepler Science Operations Center pipeline”, Proc. SPIE, this 
volume (2010). 


	1. INTRODUCTION
	2. THE SOC DATA ANALYSIS PIPELINE
	3. PIXEL LEVEL CALIBRATION
	Collateral data calibration
	Photometric data calibration

	4. THE COVARIANCE PROBLEM AND A NOVEL SOLUTION
	The covariance problem
	A novel solution

	5. STANDARD PROPAGATION OF UNCERTAINTIES
	Standard POU formalism
	Implementing standard POU in CAL

	6. THE POU FRAMEWORK
	Creating the POU structure
	Append transformations
	Cascade transformations

	7. COMPRESSION
	Compression step 1
	Compression step 2

	8. RETRIEVING CALIBRATED PIXEL COVARIANCE
	9. CONCLUSIONS AND FORWARD WORK

