Decline in Aerobic Fitness after Long-Term Stays on the International Space Station Peggy Lynn, Charles Minard, Alan Moore FACSM, Adriana Babiak-Vazquez. Wyle Integrated Science and Engineering Group, Houston, TX

U.S. and non-Russian International Partner astronauts who participate in long-term International Space Station (ISS) expeditions perform submaximal cycle exercise tests before, during, and after space flight. The heart rate (HR) and oxygen uptake (VO₂) responses to exercise are used to estimate peak VO₂ (EVO₂pk). **Purpose:** To determine if the following factors are associated with the preflight-to-post flight change in EVO_2pk : gender, age, body weight (BW), number of aerobic exercise sessions/wk⁻ during flight, length of flight, EVO₂pk measured before and late during the flight, ISS Expedition number and time between landing and the first post flight test. **Methods:** Records of 37 ISS astronauts (30 \triangleleft , BW=81.6±8.6 kg; 7 \heartsuit , BW=66.1 \pm 4.9 kg [mean \pm SD]), age 46 \pm 4 years, were retrospectively examined. Peak HR and VO₂ were measured ~9 months before flight to establish the test protocol. The submaximal cycle test consisted of three 5-minute stages designed to elicit 25, 50, and 75% of VO₂pk. EVO₂pk was calculated using linear leastsquares extrapolation of average HR and VO_2 during the last minute of each stage to predict VO_2 at maximal HR. VO_2 was not measured during flight and was assumed to not be different from preflight. Testing was performed ~45 days before launch, late during flight, and during the week after landing. A randomintercept multivariate model was used to determine which characteristics significantly contributed to post flight EVO₂pk. Results: In-flight aerobic exercise averaged 5.4±1.2 sessions/wk. ISS flight duration averaged 163±39 d. Mean EVO₂pk values were 3.41±0.64 L·min⁻¹ before flight, 3.09±0.57 L·min⁻¹ late in flight, and 3.02±0.65 L·min⁻¹ after flight. Late- and after-flight values were lower (p<0.05) than preflight values and did not differ from each other. Time between landing and post flight testing was 4.5±1.6 days. The only factor significantly associated with the post flight EVO₂pk value was the late-flight EVO₂pk score. Conclusion: Testing performed late during a mission provides a prediction of EVO₂pk after landing. This approach may be implemented during longer missions.