

American Institute of Aeronautics and Astronautics

1

Cite as:
Thompson, S., Davies, M., and Gundy-Burlet, K., “Hybrid Decompositional Verification for Discovering Failures in

Adaptive Flight Control Systems.” In AIAA Infotech, Atlanta, Ga., April 20-22, 2010.

Hybrid Decompositional Verification for Discovering
Failures in Adaptive Flight Control Systems

Sarah Thompson*
SGT, Inc, Moffett Field, CA, 94035

Misty D. Davies† and Karen Gundy-Burlet‡
NASA Ames Research Center, Moffett Field, CA, 94035

Adaptive flight control systems hold tremendous promise for maintaining
the safety of a damaged aircraft and its passengers. However, most currently
proposed adaptive control methodologies rely on online learning neural
networks (OLNNs), which necessarily have the property that the controller is
changing during the flight. These changes tend to be highly nonlinear, and
difficult or impossible to analyze using standard techniques. In this paper,
we approach the problem with a variant of compositional verification. The
overall system is broken into components. Undesirable behavior is fed
backwards through the system. Components which can be solved using
formal methods techniques explicitly for the ranges of safe and unsafe input
bounds are treated as white box components. The remaining black box
components are analyzed with heuristic techniques that try to predict a
range of component inputs that may lead to unsafe behavior. The
composition of these component inputs throughout the system leads to
overall system test vectors that may elucidate the undesirable behavior.

I. Introduction

Adaptive flight control systems that utilize online learning neural networks (OLNNs) can
theoretically allow an aircraft to maintain controllability after catastrophic failure. A prototype
adaptive control system was successfully flown on the NASA F-15 ACTIVE aircraft using
technology developed by the NASA Intelligent Flight Control (IFCS) project. However, the
usefulness of these control systems is limited by their impermeability to standard validation and
verification (V&V) techniques. In real systems, unmodeled dynamics are rife. Online learning
neural networks will necessarily adapt based on these unmodeled dynamics, and it is difficult to
bound the worst-case performance of these changing and highly nonlinear systems. Even in the

* Staff Scientist, Intelligent Systems Division, Mail Stop 269-1, AIAA Senior Member.
† Research Computer Engineer, Intelligent Systems Division, Mail Stop 269-1, AIAA Member.
‡ Research Scientist, Intelligent Systems Division, Mail Stop 269-3, AIAA Associate Fellow.

https://ntrs.nasa.gov/search.jsp?R=20100036719 2019-08-30T12:33:51+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10556456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Institute of Aeronautics and Astronautics

2

cases where the performance of the ideal control system can be bounded, this boundedness is
usually achieved by making assumptions that limit the ability of the control system to adapt or by
unrealistically simplifying the dynamics of the aircraft. Traditional verification and validation
methods based on process (like those used to satisfy DO-178B requirements) are unlikely to
provide an acceptable guarantee of safety for learning systems, and new validation and
verification techniques are necessary1-3. Significant efforts towards the validation and
verification of OLNNs have been made, and a recent survey highlights promising efforts ranging
from the verification of the neural net design process to theoretical Lyapunov stability proofs that
take into account uncertainties in the system4. Recent formal methods advances include
symbolic bounded model checking using mathematical models of the system5,6. There has also
been recent progress made on optimization techniques that can bound the behavior of the system
given uncertainties7-9. In general, verification efforts have focused on verification of theoretical
models; with the exception of runtime monitoring10-14 the actual performance of the control
system as implemented in code remains a rarely tackled problem.

The Robust Software Engineering (RSE) group within the Intelligent Systems Division at
NASA Ames Research Center has developed a suite of techniques that, when used in
combination, may speed the discovery of adaptive control system failures as implemented in
flight software15-18. Compositional verification allows the breakdown of the overall system into
multiple components. Each component is tackled separately, and the behaviors of the
components are composed to describe the behavior of the entire system. Each component can be
analyzed using any of a plethora of formal methods techniques, including model-checking,
abstract interpretation, and symbolic execution, with the overall goal of finding component
inputs that would produce some undesirable output. The range of possible behaviors for the
entire system is not currently tractable to explicit techniques. At the system level, we use a
combination of unsupervised19 and supervised20,21 machine learning techniques in a directed
Monte Carlo global sensitivity analysis22 to model the behavioral structure of the component and
to predict the component-level input test vectors. Simulation-based validation depends on
heuristics and cannot guarantee that the system is safe; however, validation testing is likely to
uncover unsafe behaviors not discovered by using formal methods on simplified systems23-25.

II. Methodology
As a prototype for this methodology we are using one of the implementations of the IFCS direct
adaptive flight control system26-28. The control system we are using was implemented as a
Mathworks Simulink model and was used as a research-level tool to understand neural networks
in 2001. The model was not seeded with any known errors for the current paper; all errors
existed in the model at the beginning of our validation and verification effort. A high-level flow
graph is shown in Fig. 1. The output from the standard proportional-integral-derivative (PID)
controller for the aircraft is sent to the OLNNs. The OLNNs compare the PID controller output
with the output from the linearized plane reference model. The OLNNs attempt to drive the
error to zero by augmenting the output from the PID controller before it is fed into the nonlinear
dynamic inverse. The actuator model allows the control surfaces of the plane to be individually
failed at any configuration. This kind of model-based design allows for ease of decomposing the
overall system into modules, and then autocoding individually modeled blocks into C/C++ code.

American Institute of Aeronautics and Astronautics

3

Figure 1. The IFCS adaptive control
system. This is the working version of
the IFCS adaptive control system as
used in this paper. The original version
is modeled in Simulink. The Monte
Carlo Filtering techniques described in
this paper utilize the Simulink model
directly. The other verification
techniques described in this paper are
performed on the autocoded C/C++
from MATLAB’s Real Time Workshop.

 Decomposing the system
into modules is highly desirable
from the point of view of
automated verification – many
techniques tend toward execution
time that is exponential in the

size of the code under test, so the benefits are frequently substantially better than linear.
Secondly, the techniques that can be applied to a particular subsystem are dependent upon the
code itself, with linear algorithms being far more amenable to analysis than their nonlinear
counterparts. In order to maximize fidelity, the formal methods analysis is conducted on the
actual C/C++ flight code rather than on the Simulink model from which it was generated.
Decomposition was carried out at the level of the Simulink model, with subsystems rendered in
embeddable C++ source code separately by Real Time Workshop.
 An initial, naïve attempt was made to find failures in the system using a Monte Carlo
Filtering directed technique alone. Monte Carlo Filtering is a type of global sensitivity analysis
in which we choose the inputs and ranges most likely to lead to some output22. Most analyses of
this type are computationally expensive, tend to be limited to relatively small numbers of
theoretically independent inputs, and also tend to assume that relationships between the inputs
and outputs are smooth35,36. The types of problems being solved here involve failures—hence
they can be non-smooth and of high dimensionality. To overcome the complications involved in
finding the correlation coefficients for this sort of problem, we choose in practice to ignore the
correlation coefficients altogether and use machine learning techniques that sample the space and
solve the original question directly.
 For this testing, we dispersed 11 controller parameters: 8 parameters for the PID controller
and three learning gains within the neural controller. Each of these continuous controller
parameters was used in an 3-factorial Monte Carlo[Barrett] experiment with 5 discretized bins
for each parameter. The 3-factorial Monte Carlo approach assures that, for discrete variables,
every possible test vector containing three values is exercised. Choosing a random value from
within each bin discretizes continuous values. This process created 487 test vectors for the initial
Monte Carlo simulation.
 In general, we use the system-level requirements to create penalty functions for the Monte
Carlo Filtering analysis. Each time a requirement is shown not to hold, the run is marked as a
‘failure’ for that requirement. It is possible for an individual run to ‘fail’ more than one
requirement. We did not have access to the initial requirements document for the Simulink and

American Institute of Aeronautics and Astronautics

4

Stateflow example used here, and we were blind as to what failures (if any) might exist in the
code. The initial test suite was scanned for

• changes in the sideslip angle, β, greater than 5 degrees between time steps
• changes in the angle of attack, α, greater than 30 degrees between time steps
• changes in the absolute height, h, greater than 1000 feet between time steps
• a roll rate, p, greater than 200 degrees/sec at any time
• a pitch rate, q, greater than 110 degrees/sec at any time
• a yaw rate, r, greater than 30 degrees/sec at any time
• any run in which an output value became infinity or NAN

during a 10 second simulation with a time step of 0.005 seconds. The pilot input consisted of
one set of doublets simultaneously performed in all three axes. During the initial analysis of the
results we discovered that slightly over half of the runs had failed, and that these failure cases
produced NAN values.
 For the sensitivity analysis step of the Monte Carlo Filtering analysis, we chose to correlate
the NAN runs with their associated inputs. All of the runs with NAN values were sorted into
their own class, and we used a supervised machine learning algorithm known as TAR3, a
treatment learner[Menzies], to find rules involving a combination of up to 4 variables that
increased the probability of getting a NAN on a run. The treatment learner found only one input
in isolation—a PID roll controller gain, significantly correlated with the increase in probability
for a NAN run. The nominal value for this parameter was 0.5, and the variable was dispersed
between 0.1 and 0.6. As you can see in Fig. 2, values for this gain between 0.54 and 0.6
practically guaranteed a failure, with less than 10% of the runs in this range designated as
successes. However, NAN failures were distributed outside this range in almost equal
proportion to successes, and there appears to be no ‘safe’ range throughout the dispersion. This
is the best information we can glean from the Monte Carlo Filtering validation testing. Some
other technique must be used to determine the actual cause of the NANs.

Figure 2. Treatment Learner Results for the NAN failures. The treatment learner automatically predicts that a
PID roll controller gain between 0.54 and 0.60 will increase the probability of a NAN failure. Each data point on
this plot is an individual run. Blue circles are successes. Other colors are outlined by black boxes, and represent
runs in which output values became NAN. Failures are colored by a blue-red gradient, with red data points
corresponding to the runs that failed earliest. The red lines on the plot illustrate the range selected by the treatment
learner.

 We also naïvely attempted to run through an entire simulation using the MCP explicit-state
model checker16. To generate the C/C++ code for the simulation, we used MATLAB’s Real-
Time Workshop using the settings for embedded code and making sure that each block within
the Simulink model was written as its own reusable function. MCP is capable of directly
checking C and C++ code without prior translation or model extraction.

American Institute of Aeronautics and Astronautics

5

 Model checkers are often not recommended for general use in control system verification
because of the state-explosion problem—each state must be held in memory and, for large,
continuous systems, the model checker is likely to run out of memory before the program has
finished executing. When explicit model checkers have been used for control system
verification, they are usually limited to standard PID controllers that are not in a loop with the
plant and have been most successful when the system is abstracted30. The MCP model checker
ran out of memory the first time through the simulation loop, during the convergence iterations
for the neural network learning. As a sanity check, the simulation was repeated with only the
PID controllers in the loop—the neural networks were removed. The Monte Carlo testing was
repeated with the same test vectors and there were no NAN failures. During this attempt, MCP
managed to execute several times around the loop before running out of memory.
 Our next attempt used the compositional structure of the code imposed by the Simulink
model to divide the work between the Monte Carlo Filtering validation testing and the explicit-
state model checker. Given bounded inputs from other techniques, model checking is an
effective way to efficiently generate explicit counterexamples that make it very clear why a
particular piece of code has failed. The treatment learner’s choice of the PID roll controller gain
as the strongest correlation with the NANs, along with the fact that there were no NAN failures
when the neural networks were removed from the simulation, suggested that the problem lay
within the neural network component augmenting the roll command. We instrumented the
inputs and the outputs to the roll neural network controller (shown in Fig. 3) and monitored the
Simulink simulation for the outputs becoming NAN. We quickly found that there was a time step
in which Uad1 became NAN even when all of the input variables were real values. This input
test vector became the input values to the Roll_nn C++ function during MCP execution.

Figure 3. A Close-up of the Roll Controller Portion of the
Simulink Monitor. The input variables to Roll_nn—
sensors_in (a bus variable), roll_ch_in (a bus variable),
U_p_ad1 (a continuous value), nn_gains_in (a bus
variable)—along with the two continuous output variables,
were all monitored during Simulink execution. An input test
vector of all real numbers producing a output Uad1 value of
NAN was used as an input to the model checker.

III. Results
The autogenerated code from the roll neural network was fed into the model checker MCP.

The neural network code in isolation was small enough that MCP could analyze it to failure
without running out of memory. MCP has been modified to be able to detect NANs in the

American Institute of Aeronautics and Astronautics

6

floating point values and report the
trace of variables that led to the NAN.
A snippet of the results from the model
checker are shown in Fig. 4.

The autogenerated SIMULINK code
is well-annotated, as shown in Fig. 5. It

is easy, using the comments, to trace the autogenerated code back to the original SIMULINK
model. In this case, a value was not checked for its size before being fed to an exponential
function. Placing a limit on the size of the value before the exponential eliminated the NAN
results.

Figure 5. Selected Autogenerated
Code from Real Time Workshop.
The code is well-annotated, with
the comments directing the reader
back to the blocks in the original
SIMULINK model.
.

It is important to note that
this work in this paper made
no attempt to discover
whether the flaw was in the
original design of the
controller or in the
implementation of the control

design. The authors had no knowledge of the original requirements the designers had in mind.
Much more could have been done if those requirements had existed. However, a NAN result in
a controller could have been a fatal flaw had it been implemented on an aircraft. The process
described here is a highly automated way to discover these flaws.

IV. Conclusion
Model-based design is gaining traction in the space and aviation industries. Among its many
advantages it gives the validation and verification practitioner information about the ways that
the programmers decomposed the design. This information can be used in divide-and-conquer
compositional verification techniques where many tools can be used in concert to provide
automatic verification.
 The test example used here was research-level code. With very little information about the
original intended requirements for the code, we used a series of automatic techniques in order to
uncover a serious bug. In particular, we used a heuristic directed testing technique in order to
achieve the necessary scalability for the code, and then a formal methods technique in order to

Figure 4. Selected Results from the MCP
model checker. Using the input test vector of
all real numbers from the SIMULINK
instrumentation, the MCP model checker was
able to provide a trace for the NAN result.

American Institute of Aeronautics and Astronautics

7

order to get an explicit trace of the error. If we had received more information about the
intended requirements of the control system design (MATLAB allows you to specify
requirements with the model which will be autocoded as comments into the RTW code for code
traceability purposes) there are two more formal methods techniques which would have been
promising to use:

• Partial evaluation/Symbolic Execution. This approach allows certain functions (with
bounded loops, limited use of pointers and strictly linear arithmetic operations) to be
transformed into satisfiability modulo theorem (SMT) problems, which allow solvers
such as Yices34 to be used to generate test cases for arbitrarily chosen outputs.

• Abstract Interpretation. This approach31-33 allows some nonlinear functions to be safely
approximated, making it possible to derive useful information about their behavior.
Though this approach can generate false positives, when performed correctly it can never
yield false negatives – consequentially, if code is shown to be correct by this method, this
is a mathematically sound result.

As formal methods techniques become easier for the everyday practitioner to use, it is important
to counteract the impression that formal verification for control systems is too expensive and
difficult.

Acknowledgments
This research was conducted at NASA Ames Research Center. Reference herein to any

specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government.

References
1Jacklin, S., and Schumann, J. Gupta, P., Richard, M., Guenther, K., and Soares, F. “Development of Advanced Verification

and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications.” In AIAA Infotech
2005.

2Santhanam, V. “Can Adaptive Flight Control Software Be Certified to DO-178B Level A?” In NASA and FAA Software
and CEH Conference, 2005.

3Jacklin, S., Lowry, M., Schumann, J. Bupta, P., Bosworth, J., Zavala, E., Kelly, J., Hayhurst, K., Belcastro, C. and Belcastro,
C., “Verification, Validation, and Certification Challenges for Adaptive Flight Critical Control System Software.” In AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2004.

4Schumann, J. and Liu, Y. (ed.), Applications of Neural Networks in High Assurance Systems, Studies in Computational
Intelligence, Springer, Berlin, 2010, pp. 1-19.

5Gulwani, S. and Tiwari, A. “Constraint-based Approach for Analysis of Hybrid Systems,” In CAV 2008.
6Tiwari, A. “Formally Analyzing Adaptive Flight Control,” In NSV II (co-located with CPSWeek 2009).
7Crespo, L., Giesy, D., and Kenny, S., “Robustness Analysis and Robust Design of Uncertain Systems,” AIAA Journal, Vol.

46, No. 2, 2008, pp.388-396.
8Menon, P., Bates, D. and Postelthwaite, I., “Nonlinear Robustness Analysis of Flight Control Laws for Highly Augemented

Aircraft,” Control Engineering Practice, Vol. 15, 2007, pp.665-662.
9Menon, P., Bates, D. and Postelthwaite, I., “Computation of Worst-Case Pilot Inputs for Nonlinear Flight Control System

Analysis,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 1, 2006, pp.195-199.
10Yerramalla, S., Cukic, B., and Fuller, E. “Lyapunov Stability Analysis of Quantization Error for DCS Neural Networks,” In

The Proceedings of the International Joint Conference on Neural Networks, IJCNN 2003.
11Schumann, J. and Gupta, P. “Monitoring the Performance of a Neuro-adaptive Controller,” In Proceedings of the 24th

International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2004.
12Liu, Y., Yerramalla, S., Fuller, E., Cukic, B., and Gururajan, S. “Adaptive Control Software: Can We Guarantee Safety?” In

Proceedings of the 28h International Computer Software and Applications Conference; Workshop on Software Cybernetics,
2004.

13Liu, Y., Cukic, B., Jiang, M., and Xu, Z. “Predicting with Confidence—An Improved Dynamic Cell Structure,” Advances
in Neural Computation, Vol 1. Springer, Heidelberg, 2005, pp 750-759.

14Schumann, J., Liu, Y., “Tools and Methods for the Verification and Validation of Adaptive Aircraft Control Systems,” In
IEEE Aerospace Conference, 2007.
 15Giannakopoulou, D., Kramer, J. and Cheung, S.C. “Analysing the Behaviour of Distributed Systems Using Tracta,”

American Institute of Aeronautics and Astronautics

8

Journal of Automated Software Engineering, special issue on Automated Analysis of Software, Vol. 6(1), Kluwer Academic
Publishers, January 1999, pp. 7-35.
 16Brat, G. and Thompson, S. “Verification of C++ Flight Software with the MCP Model Checker,” IEEE Aerospace
Conference, March 2008.
 17Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T. “Tool Support for Parametric Analysis of
Large Software Systems”, Proceedings of Automated Software Engineering, 23rd IEEE/ACM International Conference, 2008.
Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of a Hover Test Vehicle Using
Advanced Test Generation and Data Analysis,” AIAA Aerospace, 2009.
 18Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of ANTARES Re-entry Guidance
Algorithms Using Advanced Test Generation and Data Analysis,” 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2007.
 19Fischer, B., and Schumann, J. “Autobayes: A System for Generating Data Analysis Programs From Statistical Models,”
Journal of Functional Programming, Vol. 13, 2003, pp. 483-508.
 20Hu, Y., “Treatment Learning: Implementation and Application,” Masters Thesis, Department of Electrical Engineering,
University of British Columbia, 2003.
 21Hu, Y., and Menzies, T. “Data Mining for Very Busy People,” IEEE Computer, Vol. 36, No. 11, 2003, pp. 22-29.
 22Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., Global
Sensitivity Analysis: The Primer, Wiley, Chichester, 2008, Chaps. 1, 5.
 23Bateman, A., Ward, D. and Balas, G. “Robust/Worst-Case Analysis and Simulation Tools.” In AIAA Guidance, Navigation,
and Control Conference and Exhibit, 2005.
 24Pacheco, C., Lahiri, S., Ernst, M., and Ball, T., “Feedback-directed Random Test Generation.” In ICSE’07, Proceedings of
the 29th International Conference on Software Engineering, 2007.
 25Satpathy, M., Yeolekar, A. and Ramesh, S. “Randomized Directed Testing (REDIRECT) for Simulink/Stateflow Models.”
In EMSOFT’08, 2008.
 26Kaneshige, J., Bull, J., and Totah, J., “Generic Neural Flight Control and Autopilot System.” In AIAA Guidance,
Navigation, and Control Conference, 2000.
 27Rysdyk, R. and Calise, A. “Fault-tolerant Flight Control via Adaptive Neural Network Augmentation,” AIAA American
Institute of Aeronautics and Astronautics, Vol. AIAA-98-4483, 1998, pp. 1722-1728.
 28Calise, A. and Rysdyk, R. “Nonlinear Adaptive Flight Control Using Neural Networks,” IEEE Control Systems Magazine,
Vol. 21, No. 6, pp. 14-26.

29Barrett, A., “A Combinatorial Test Suite Generator for Gray-Box Testing”, Third IEEE International Conference on Space
Mission Challenges for Information Technology, 2009.

30 Scherer, S., Lerda, F., and Clarke, E., “Model Checking of Robotic Control Systems.” In Proceedings of ISAIRAS 2005
Conference, 2005.
 31Futamara, Y. “Partial Evaluation of Computation Process—an Approach to a Compiler-Compiler,” Systems, Computers
Control, Vol. 2, Issue 5, 1971, pp. 45-50.
 32Jones, N., Gomard, C. and Sestoft, P., Partial Evaluation and Automatic Program Generation. Prentice Hall, Englewood
Cliffs, NJ, 1993.
 33Cousot, P. and Cousot, R. “Abstract Intepretation: a Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints,” Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1977, pp. 238-252.
 34Dutertre, B. and de Moura, L. “The Yices SMT Solver,” Tool paper found at URL: http://yices.csl.sri.com/tool-paper.pdf
[cited 4 November 2009].
 35Rose, K., Smith, E., Gardner, R., Brenkert, A. and Bartell, S. “Parameter Sensitivities, Monte Carlo Filtering, and Model
Forecasting Under Uncertainty,” Journal of Forecasting, Vol. 10, 1991: pp. 117-133.
 36Oakley, J. and O’Hagan, A. “Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach.” Journal of the
Royal Statistical Society B, Vol. 66, 2004, pp. 751-769.

