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• As improvements are made to the Shuttle or its processes and as more is learned 
regarding its operation, the Shuttle PRA is updated

• Updates incorporated into Iteration 3.2 include 
− Addition of Orbiter Flight Software

− Updated Pyro modeling

− Incorporation of Orbiter Review Summit comments

− Updated MMOD and Ascent Debris

− Data was updated based upon iteration 3.0 review.
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The following table is a cross-referenced list showing the features included in each 
model iteration.

Model Features
Model Iteration

1.0 2.0 2.1 2.2 3.0 3.1 3.2

Integrated Model       

Phased Approach       

Engineering and Peer Reviewed Data      

Documented Model      

TPS Inspection and Repair    

Contingency Shuttle Crew Support (CSCS)    

Intact Aborts (RTLS, TAL, ATO)   

Collision During Rendezvous and Docking   

Orbiter Flight Software 
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• The Shuttle PRA has been incrementally developed over many years
- Mission Phases (Ascent, Orbit, Entry)
- Number of Systems Modeled
- Risk Factors considered (systems failures, phenomenological failures, human reliability, external 

events, etc.)
• The advent of established NASA requirements, standards, and tools - as well as the 

development of a strong shuttle program PRA team have resulted in significant recent progress
• Iteration 3.2 is the most comprehensive Shuttle PRA to date

SPRAT PRA 
Iteration 1.5

2003

Shuttle PRA

1998

Shuttle PRA

1995

Phase 1 

1993 

Galileo 
1988

1988
First 

somewhat 
integrated 

PRA
conducted on

the Space 
Shuttle. Done 
in support of 

Galileo 
Mission. 

(Ascent Only). 

1993
Update of the 
Galileo study  

results to 
reflect then 
current test 

and 
operational 
base of the 

shuttle. 
(Ascent Only) 

1995
First major 
integrated 

(multi phase) 
shuttle PRA. 
Done with 
input from 

prime 
contractors. 

1998
Unpublished 
analysis using 

QRAS. No 
integration of 

elements. 
Limited to 

three Orbiter 
systems and 

the 
Propulsion 
elements

SPRAT PRA
Iteration 2.0
2004/2005 

2004/2005
Integrated 

PRA with all 
elements, 18 

Orbiter 
Systems, 

MMOD and 
human 
actions 

included. 
Peer 

reviewed.

1987
Proof of 

concept study 
for applying 

PRA to Space 
Shuttle.  

Scope was 
limited to 
APUs for 

Orbiter and 
SRB

Proof of 
concept 

Study 1987

1:70 1:611:55 1:73 1:131 1:234

2003
Integrated 

PRA with all 
elements, 18 

Orbiter 
Systems, 

MMOD and 
human 
actions 

included. 
Presented to 
Peer review 

Team.

1:78

SPRAT PRA
Iteration 2.1

2005

SPRAT PRA
Iteration 2.2
2006/2007 

SPRAT PRA
Iteration 3.0

2008 

2005
Integrated 

PRA with all 
elements, 18 

Orbiter 
Systems, 

MMOD and 
human 
actions 

included. 
Peer 

reviewed.
Updated Pre-

valve 
modeling

1:67

SPRAT PRA
Iteration 3.1

2009 

2006/2007
Updated 

SPRA 
iteration 2.1 

with 
Inspection 
with Repair 
and Crew 
Rescue.  
Updated 

MMOD and 
Ascent Debris 

Modeling

1:77 1:81

2008
Updated 

SPRA 
iteration 2.2 
with Abort 
modeling, 

Rendezvous 
and Docking.  

Updated 
Functional 

Data, MMOD 
and Ascent 

Debris

SPRAT PRA
Iteration 3.2

2010 

2009
Updated 

SPRA 
iteration 3.0 

with 
corrected 

APU 
Hydrazine 

Leak 
Probabilities

2010
Updated 

SPRA 
iteration 3.1 

with updated 
MMOD, 
Ascent 
Debris, 

Orbiter Flight 
Software, 

Incorporated 
Orbiter 
Review 
Summit 

Comments

1:85 1:89

Mean Probability of LOCV

INCREASING FIDELITY AND EXPANDED SCOPE
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• The mean probability of LOCV for Shuttle as currently calculated by iteration 3.2 of the SPRA is:

Mean – 1.1E-02 (1:89)

Median – 1.1E-02 (1:93)

5th percentile – 7.9E-03 (1:130)

95th percentile – 1.6E-02 (1:63)

• This is a decrease from SPRA Iteration 3.1 which had a mean estimate of 1:85 

• Considering the improvements that have been made, these results are consistent with an 
empirical calculation of 2 failures in 131 missions which gives a 1 in 66 probability of LOCV
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Rank %age of 
Total

Cumulative 
Total

Point Estimate 
Probability

(1:n)
Failure Scenario Description

1 29.4 29.4
3.3E-03
(1:300)

Micrometeoroid and Orbital Debris 
(MMOD) strikes Orbiter on orbit leading 
to LOCV on orbit or entry

2 13.4 42.8
1.5E-03
(1:670)

Space Shuttle Main Engine (SSME)-
induced SSME catastrophic failure

3 9.5 52.3
1.1E-03
(1:940)

Ascent debris strikes Orbiter Thermal 
Protection System (TPS) leading to LOCV 
on orbit or entry

4 7.3 59.6
8.2E-04
(1:1200)

Crew error during entry

5 5.8 65.4
6.5E-04
(1:1500)

Reusable Solid Rocket Motor (RSRM)-
induced RSRM catastrophic failure

6 2.0 67.4
2.3E-04
(1:4400)

Orbiter flight software error results in 
catastrophic failure during ascent
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Rank %age of 
Total

Cumulative 
Total

Point Estimate 
Probability

(1:n)
Failure Scenario Description

7 1.6 69.0
1.8E-04
(1:5600)

Ammonia Boiler System (ABS) isolation 
valve leaks on Orbit overcooling the H20 
loops and crew is unable to prevent rupture 
of the interchanger resulting in  Loss of All 
Cooling

8 1.5 70.5
1.7E-04
(1:5900)

Solid Rocket Booster (SRB) APU shaft seal 
fracture

9 1.2 71.7
1.3E-04
(1:7600)

Flow Control Valve (FCV) poppet failure 
causes rupture in the GH2 re-
pressurization line

10 1.2 72.9
1.3E-04
(1:7700)

Collision of the Orbiter with the 
International Space Station (ISS) during 
rendezvous and docking
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ELEMENT OR MAJOR AREA*

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

MMOD

Orbiter Hardware / 
Software

SSME

Human Error

Ascent Debris

SRB

RSRM

External Tank

1:300

1:350

1:610

1:770

1:930

1:1500

1:1500

1:5000

* Some overlap in risk exists.  For example, a cut set containing both a mechanical failure and a human error that 
result in failure to lower the landing gear is counted in both the Orbiter hardware contributor and the human error 
contributor.

Micrometeoroid 
And Orbital Debris

Space Shuttle Main 
Engines (SSME)

Solid Rocket Booster 
(SRB)

Reusable Solid 
Rocket Motor (RSRM)
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1.E-04 1.E-03 1.E-02

Ascent

Orbit

Entry

1.E-04 1.E-03 1.E-02

Ascent

Orbit

Entry

ESTIMATED PHASE CONTRIBUTIONS TO WHEN LOCV IS INITIATED

ESTIMATED PHASE CONTRIBUTIONS TO WHEN LOCV IS REALIZED

Phase 5th Mean 95th
Ascent 1:350 1:200 1:110
Orbit 1:340 1:210 1:130
Entry 1:1100 1:700 1:460

Phase 5th Mean 95th
Ascent 1:480 1:260 1:150
Orbit 1:1100 1:570 1:320
Entry 1:280 1:180 1:110
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• Intact abort due to Benign Engine Shutdown or Stuck Throttle represent 
<1% of the overall risk. 
− The probability of a Benign Engine Shutdown is ~ 1:320
− Return to Launch Site (RTLS) abort represents the largest fraction of the abort risk 

(57%) mainly due to the higher likelihood of having an engine out early

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Overall Abort

Return To Launch 
Site
Transoceanic 
Abort Landing
Abort To Orbit

Press To Main 
Engine Cut-off

PROBABILITY

1:15000

1:26000

1:65000

1:140000

1:150000
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• Iteration 3.2 of the SPRA lends itself to any number of sensitivities being 
performed; however, given its current applications, the following sensitivities 
studies were considered to be the most informative:
− No late inspection

• In this sensitivity the basic event capturing the probability of detecting damage during late inspection is set 
to 1.0 and the false positive TPS damage during late inspection and late inspection induced TPS damage 
are set to zero.

− No crew rescue
• In this sensitivity crew rescue is set to 1.0 and the risk from false positive TPS damage is zeroed out 

because since there is no critical damage the vehicle returns safely
− No TPS repair

• In this sensitivity the all TPS damages are considered irreparable and crew rescue is chosen as the 
mitigation for detected critical damage
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• Establish project management and funding through the same path
• If you don’t, your team will have different bosses thus you will not have a 

team

• Establish a single overall PRA technical authority
• Don’t call desired methods as guidelines, if you want the team to follow 

them…

• Document, document, document (capture the basis of the PRA) 
provide tracability (the rabbit trail) of assumptions to results, if you 
wait to document after presenting the results you will be 
embarrassed as a minimum.  

• Get buy in from domain experts early (i.e. before going to present 
to management)

LESSONS LEARNED
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• Start the independent peer review up front with them reviewing the 
plan, then coming back later to ensure that the plan was followed 
correctly (also make sure you are ready for the peer review).  The 
peer review should cover both the scope/content of the PRA as 
well as the PRA methodology used.

• Configuration control should be initiated when the PRA is initiated.

• Begin with the end in mind.  Sounds simple.  Now try 
implementing it.  
• Get the Hazard analysis, FMEA, and PRA teams working together versus 

answering the same questions with different approaches and minimum to 
no communication and/or integration.

• Mission phases definition is very important as the number of potential 
phases increases the complexity of the model orders of magnitude.  For 
example, abort modeling from ascent to on-orbit initiated.  

LESSONS LEARNED (Cont’d)
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• The Shuttle is a very reliable vehicle in comparison with other launch systems.  
Much of the risk posed by Shuttle operations is related to fundamental 
aspects of the spacecraft design and the environments in which it operates.  It 
is unlikely that significant design improvements can be implemented to 
address these risks prior to the end of the Shuttle program.

• The model will continue to be used to identify possible emerging risk drivers 
and allow management to make risk-informed decisions on future missions.  
Potential uses of the SPRA in the future include:
− Calculate risk impact of various mission contingencies (e.g. late inspection, crew 

rescue, etc.)

− Assessing the risk impact of various trade studies (e.g. flow control valves)

− Support risk analysis on mission specific events, such as in flight anomalies.

− Serve as a guiding star and data source for future NASA programs
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Rank %age of 
Total

Cumulativ
e Total % Probability Description Phase Initiated Phase Realized

1 29.4 29.4 3.3E-03
(1 in 300)

Micrometeoroid and Orbital Debris (MMOD) strikes Orbiter on orbit 
leading to LOCV on orbit or entry Orbit Orbit, Entry

2 13.4 42.8 1.5E-03
(1 in 670)

Space Shuttle Main Engine (SSME)-induced SSME catastrophic 
failure Ascent Ascent

3 9.5 52.3 1.1E-03
(1 in 940)

Ascent debris strikes Orbiter Thermal Protection System (TPS) 
leading to LOCV on orbit or entry Ascent Orbit, Entry

4 7.3 59.6 8.2E-04
(1 in 1200) Crew error during entry Entry Entry

5 5.8 65.4 6.5E-04
(1 in 1500)

Reusable Solid Rocket Motor (RSRM)-induced RSRM catastrophic 
failure Ascent Ascent

6 2.0 67.4 2.3E-04
(1 in 4400)

Orbiter flight software error results in catastrophic failure during 
ascent Ascent Ascent

7 1.6 69.0 1.8E-04
(1 in 5600)

Ammonia Boiler System (ABS) isolation valve leaks on Orbit 
overcooling the H20 loops and crew is unable to prevent rupture of 
the interchanger resulting in  Loss of All Cooling

Orbit Orbit

8 1.5 70.5 1.7E-04
(1 in 5900) Solid Rocket Booster (SRB) APU shaft seal fracture Ascent Ascent

9 1.2 71.7 1.3E-04
(1 in 7600)

Flow Control Valve (FCV) poppet failure causes rupture in the GH2 
re-pressurization line Ascent Ascent

10 1.2 72.9 1.3E-04
(1 in 7700)

Collision of the Orbiter with the International Space Station (ISS) 
during rendezvous and docking Orbit Orbit

11 1.1 74.0 1.3E-04
(1 in 7900) Auxiliary Power Unit (APU) external leak on entry Entry Entry

12 1.0 75.0 1.2E-04
(1 in 8600) SRB booster separation motor debris strikes Orbiter windows Ascent Ascent

COMPLETE LIST OF SPRA ITERATION 3.2 
CONTRIBUTIONS BY SCENARIO
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Rank %age of 
Total

Cumulative 
Total % Probability Description Phase Initiated Phase Realized

13 1.0 76.0 1.1E-04
(1 in 8900) Reaction Control System (RCS) thrusters burnthrough on orbit Orbit Orbit

14 1.0 77.0 1.1E-04
(1 in 9300) RCS Fuel System external leakage on orbit reacts with O2 on entry Orbit Entry

15 1.0 77.9 1.1E-04
(1 in 9300)

Orbital Maneuvering System (OMS) Fuel System external leakage 
on orbit reacts with O2 on entry Orbit Entry

16 0.9 78.9 1.0E-04
(1 in 9500)

Orbiter inspections (Flight Day 2 and late) produce false positive 
indications of damage, resulting in a failed crew rescue attempt Orbit Orbit

17 0.9 79.8 1.0E-04
(1 in 9700) Power Reactant Storage and Distribution (PRSD) tank rupture Orbit Orbit

18 0.9 80.7 1.0E-04
(1 in 9800)

External Tank (ET) separation pyro-bolt or frangible nut fail to 
separate (Including Pyrotechnic Intiator Controller (PIC)/NASA 
Standard Initiator (NSI))

Ascent Entry

19 0.9 81.6 9.6E-05
(1 in 10,000) Functional failure booster separation motor during SRB separation Ascent Ascent

20 0.9 82.4 9.6E-05
(1 in 10,000) SRB separation pyro-bolts fail to separate (includes PIC/NSI) Ascent Ascent

21 0.8 83.3 9.4E-05
(1 in 11,000)

Common cause failure of the Electrical Power System (EPS) on 
orbit Orbit Orbit

22 0.8 84.1 9.3E-05
(1 in 11,000)

Flight control surface (elevons, rudder, body flap) actuators 
fail/jam during entry Entry Entry

23 0.8 84.9 9.2E-05
(1 in 11,000) ET leaks result in fire/explosion Ascent Ascent

24 0.8 85.7 9.1E-05
(1 in 11,000) Common cause failure of the APU System on entry Entry Entry

25 0.8 87.0 9.0E-05
(1 in 11,000)

Frangible nuts on SRB holdown bolts fail during launch (includes 
PIC/NSI) Ascent Ascent

COMPLETE LIST OF SPRA ITERATION 3.2 
CONTRIBUTIONS BY SCENARIO (2)
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Rank %age of 
Total

Cumulative 
Total % Probability Description Phase Initiated Phase Realized

26 0.7 87.8 8.4E-05
(1 in 12,000)

Control or mechanical failure causes Main 
Propulsion System (MPS) prevalves to fail to close Ascent Ascent

27 0.7 88.5 7.5E-05
(1 in 13,000)

Fuel supply failure to the OMS during orbit and crew 
rescue fails Orbit Orbit

28 0.7 89.1 7.5E-05
(1 in 13,000) MPS failures lead to helium overpressure on ascent Ascent Ascent

29 0.7 89.8 7.5E-05
(1 in 13,000)

MPS component failures cause a catastrophic 
overpressure condition in the aft compartment 
during entry

Entry Entry

30 0.5 90.3 6.0E-05
(1 in 17,000) RCS thruster fail leak or off on orbit Orbit Orbit

31 0.5 86.2 5.7E-05
(1 in 18,000)

Orbiter flight software error results in catastrophic 
failure during entry Entry Entry

32 0.5 90.8 5.7E-05
(1 in 18,000)

Flow Control Valve (FCV) poppet failure causes 
excessive GH2 ullage pressure resulting in LH2 
venting

Ascent Ascent

33 0.5 91.3 5.5E-05
(1 in 18,000) SSME-induced benign shutdown of the SSME Ascent Ascent

34 0.4 91.8 4.9E-05
(1 in 20,000) Debonding of TPS during ascent Ascent Orbit, Entry

35 0.4 92.2 4.6E-05
(1 in 22,000) APU external leak on ascent Ascent Ascent

36 0.3 92.5 3.9E-05
(1 in 26,000) Loss of SRB TPS Ascent Ascent

37 0.3 92.9 3.8E-05
(1 in 26,000) Structural failure of the ET during ascent. Ascent Ascent

38 0.3 93.2 3.8E-05
(1 in 27,000)

Loss of ET anti-vortex capability leads to SSME 
catastrophic overspeed Ascent Ascent

39 0.3 93.5 3.4E-05
(1 in 29,000) Orbiter structural failures Ascent Ascent

COMPLETE LIST OF SPRA ITERATION 3.2 
CONTRIBUTIONS BY SCENARIO (3)
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Rank %age of 
Total

Cumulative 
Total % Probability Description Phase Initiated Phase Realized

40 0.3 93.8 3.3E-05
(1 in 30,000)

Fuel cell leak and a subsequent failure of the crew to 
respond appropriately causes a catastrophic failure Orbit Orbit

41 0.3 94.1 3.2E-05
(1 in 31,000)

Water Coolant Loop component failure results in a 
cooling failure on orbit Orbit Orbit

42 0.3 94.4 3.1E-05
(1 in 32,000)

Orbit inspections (Flight Day 2 and late) result in 
damage to the TPS Orbit Orbit

43 0.3 94.6 2.9E-05
(1 in 34,000)

ET failure causes a fuel feed anomaly, resulting in 
SSME shutdown due to insufficient net positive 
suction pressure

Ascent Ascent

44 0.3 94.9 2.9E-05
(1 in 34,000) Landing Deceleration System (LDS) brake failures Entry Entry

45 0.2 95.1 2.7E-05
(1 in 38.000)

Common cause failure of the Data Processing System 
(DPS) on orbit Orbit Orbit

46 0.2 95.4 2.5E-05
(1 in 40,000)

Mechanisms failure and subsequent failure of a crew 
rescue attempt Ascent, Orbit Orbit

47 0.2 95.6 2.3E-05
(1 in 44,000)

Flight Software error result in catastrophic failure 
during orbit Orbit Orbit

48 0.2 95.7 2.1E-05
(1 in 48,000)

Flight control surface (elevons, rudder, body flap) 
actuators fail/jam during ascent Ascent Ascent

49 0.2 95.9 2.1E-05
(1 in 49,000)

Loss of Active Thermal Control System (ATCS) 
cooling due to ammonia (NH3) tank rupture on orbit Orbit Orbit

50 0.2 96.1 2.0E-05
(1 in 51,000)

Pyrotechnic Initiator Controller (PIC) failure during 
SRB ignition Ascent Ascent

51 0.2 96.3 1.9E-05
(1 in 51,000)

MPS GO2 or GH2 disconnect valves fail closed, 
causing SSME shutdown due to insufficient net 
positive suction pressure

Ascent Ascent
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Rank %age of 
Total

Cumulative 
Total % Probability Description Phase Initiated Phase Realized

52 0.2 96.4 1.9E-05
(1 in 51,000)

Cabin depressurization due to leaks beyond the make-up capability of 
the Pressure Control System (e.g., penetration leaks) or pressure 
control system fails

Orbit Orbit, Entry

53 0.2 96.6 1.9E-05
(1 in 52,000) Active Vent Door (AVD) failure on entry Entry Entry

54 0.2 96.8 1.8E-05
(1 in 54,000) MPS disconnect valves fail in the closed position during ascent Ascent Ascent

55 0.2 96.9 1.7E-05
(1 in 59,000) Flight Control System (FCS) switching valve fails during entry Entry Entry

56 0.2 97.1 1.7E-05
(1 in 59,000) Catastrophic fire/explosion due to MPS interface leakages Ascent Ascent

57 0.1 97.2 1.6E-05
(1 in 61,000)

Common cause failure of two APUs, Hydraulic Systems, or WSBs result 
in a failure to land the Orbiter with a single APU in high cross winds Ascent, Entry Entry

58 0.1 97.4 1.4E-05
(1 in 73,000)

LDS, APU, hydraulic, or WSB component failure results in a failure to 
properly deploy or a structural failure of the landing gear Entry Entry

59 0.1 97.5 1.3E-05
(1 in 74,000)

Environmental Control and Life Support System (ECLSS) O2 
oversupply on orbit leads to fire Orbit Orbit

60 0.1 97.6 1.3E-05
(1 in 74,000)

Common cause failure of the Orbiter APU/Hydraulics/Water Spray 
Boiler (WSB) System components during ascent Ascent Ascent

61 0.1 97.7 1.3E-05
(1 in 76,000) FCS gear box loses output or jams Entry Entry

62 0.1 97.8 1.3E-05
(1 in 77,000)

OMS failure and insufficient RCS propellant (+X jets unavailable) result 
in deorbit failure Orbit Orbit
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Rank %age of 
Total

Cumulative 
Total % Probability Description Phase Initiated Phase Realized

63 0.1 97.9 1.3E-05
(1 in 80,000) Electrical failure during orbit Orbit Orbit, Entry

64 0.1 98.0 1.2E-05
(1 in 81,000)

APU heater fails on and human error failure results in 
catastrophic failure on orbit Orbit Orbit

65 0.1 98.2 1.2E-05
(1 in 83,000)

Loss of OMS due to improper targeting of OMS burn (human 
error) Orbit Orbit

66 0.1 98.2 1.0E-05
(1 in 96,000)

Common cause failure of Guidance Navigation and Control 
(GN&C) (failure of crew rescue for failures occurring on orbit)

Ascent, Orbit, 
Entry

Ascent, Orbit, 
Entry

67 0.1 98.3 9.9E-06
(1 in 100,000)

Cabin Fan System failure combined with a human error during 
landing brought about by high heat or humidity Orbit Entry

68 0.1 98.4 8.3E-06
(1 in 120,000)

Independent failure of two APUs, Hydraulic Systems, or WSBs 
result in a failure to land the Orbiter in high cross winds Ascent, Entry Entry

69 0.1 98.5 8.1E-06
(1 in 120,000)

MPS liquid H2 feedline flowliner crack leads to fire/explosion 
due to feedline contamination Ascent Ascent

70 0.1 98.5 7.3E-06
(1 in 140,000) FCS switching valve fails during ascent Ascent Ascent

71 0.1 98.6 6.6E-06
(1 in 150,000) Landing Deceleration System (LDS) tire ruptures Entry Entry

72 0.1 98.7 6.6E-06
(1 in 150,000)

Flash Evaporator System freeze up and failure to recover leads 
to LOCV during entry Orbit, Entry Entry

73 0.1 98.7 6.6E-06
(1 in 150,000) Rudder speed brake jams during entry Entry Entry

74 0.1 98.8 6.6E-06
(1 in 150,000)

Fire/explosion resulting from the auto-decomposition of 
hydrazine due to a leak in the SRB APU fuel pump Ascent Ascent
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75 0.1 98.8 6.1E-06
(1 in 160,000)

Trapped fuel due to FRCS failure prior to de-orbit 
preparation combined with failure of recovery 
measures results in CG imbalance

Orbit Entry

76 0.1 98.9 5.9E-06
(1 in 170,000)

Common cause failure of all N2 relief valves to close 
on Ascent combined with failure of crew rescue Ascent Orbit

77 0.1 98.9 5.7E-06
(1 in 170,000) Fire/explosion caused by MPS contamination Ascent Ascent

78 0.1 99.0 5.7E-06
(1 in 180,000)

Icicle formed at the water dump breaks off and 
damages the Orbiter Orbit Entry

79 0.1 99.0 5.6E-06
(1 in 180,000)

Drag chute door opens prematurely leading to 
LOCV Ascent, Entry Ascent, Entry
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Fault Tree (FT) System ModelingEvent Tree (ET) Modeling

IE B C D E
End

State

1: OK

2:  LOM

3: LOC

4: LOC

5: LOC

6: LOC

A

Initiating Events Identification

Not A

Link to another fault tree

Basic Event
Logic Gate

End State: ES2

End State: LOC

End State: LOM

Defining the PRA Study Scope and Objectives

Mapping of ET-defined Scenarios to Causal Events

 Internal initiating events
 External initiating events
 Hardware failure
 Human error
 Software error
 Common cause failure
 Environmental conditions
 Other

one or more
of these

elementary
events

One of these events

AND

Event Sequence Diagram  (Inductive Logic)

IE
End State: OK

End State: LOM

End State: ES2

End State: LOC

A B

C D E
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Probabilistic Treatment of Basic Events

The uncertainty in occurrence frequency of an event
is characterized by a probability distribution

Examples (from left to right):
Probability that the hardware x fails when needed
Probability that the crew fail to perform a task
Probability that there would be a windy condition at the time of landing

Communicating & Documenting
Risk Results and Insights to Decision-maker

 Displaying the results in tabular and graphical forms
 Ranking of risk scenarios
 Ranking of individual events (e.g., hardware failure,

human errors, etc.)
 Insights into how various systems interact
 Tabulation of all the assumptions
 Identification of key parameters that greatly influence

the results
 Presenting results of sensitivity studies
 Proposing candidate mitigation strategies

Technical Review of Results and Interpretation

Model Integration and Quantification of Risk Scenarios

Integration and quantification of
logic structures (ETs and FTs)
and propagation of epistemic
uncertainties to obtain

 minimal cut sets (risk
scenarios in terms of basic
events)

 likelihood of risk scenarios



uncertainty in the
likelihood estimates

0.01 0.02 0.03 0.04 0.05
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End State: LOM

End State: LOCDomain Experts ensure that system failure logic 
is correctly captured in model and appropriate data 
is used in data analysis

Model Logic and Data Analysis Review


