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Abstract: NASA and ESA have outlined visions for solar system exploration that will include a
series of lunar robotic precursor missions to prepare for, and support a human return to the
Moon, and future human exploration of Mars and other destinations. One of the guiding
principles for exploration is to pursue compelling scientific questions about the origin and
evolution of life. The search for life on objects such as Mars will require that all spacecraft and
instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific
integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination.
Under the Committee on Space Research's (COSPAR's) current planetary protection policy for
the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet
a planetary protection category for human missions. Future in situ investigations of a variety of
locations on the Moon by highly sensitive instruments designed to search for biologically
derived organic compounds would help assess the contamination of the Moon by lunar
spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return
missions and help define planetary protection requirements for future Mars bound spacecraft
carrying life detection experiments. In addition, studies of the impact of terrestrial
contamination of the lunar surface by the Apollo astronauts could provide valuable data to help
refine future Mars surface exploration plans for a human mission to Mars.
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The Committee on Space Research (COSPAR) of the International Council for Science

(ICSU) was established in 1958 to promote international level scientific research in space. One

of the continuing tasks of COSPAR has been to address planetary protection issues related to the

Moon, Mars, and other planetary bodies. The current COSPAR planetary protection policy

states that space exploration should be conducted so as to avoid forward biological

contamination of planetary bodies by outbound spacecraft that could jeopardize the search for

extraterrestrial life (DeVincenzi and Stabekis, 1983; Rummel et al., 2002). The current

planetary protection policy for the Moon related to forward contamination is not at all stringent

(Category 1) since the probability that terrestrial life can grow in the harsh environment on the

lunar surface is very low. Even survival on the lunar surface is difficult to imagine with the

Moon's nearly nonexistent atmosphere, intense ultraviolet (UV), galactic and solar cosmic

radiation, lack of liquid water, and large temperature extremes. However, experiments carried

out on NASA's Long Duration Exposure Facility (LDEF) have shown that even after 6 years in

space, a large fraction of spore forming bacteria will survive if they are not directly exposed to

solar UV radiation (Horneck et al., 1994). These results certainly suggest that bacteria can be

delivered to the surface of the Moon by robotic spacecraft. Although bacterial growth on the

Moon remains unlikely, survival of terrestrial bacteria on non-UV exposed regions, such as the

interiors of lunar spacecraft, the permanently shadowed south polar region of the Moon, or below

the surface cannot be ruled out. Analysis of selected components returned from the unmanned

Surveyor III probe, including the television camera that spent over two years on the lunar surface

found viable Streptococcus mitis bacteria from a sample of foam collected inside the camera

housing (Mitchell and Ellis, 1972). However, all of the other camera components did not contain

bacteria (Knittel et al. 1971), and it has been suggested that contamination of the foam occurred

during analysis in the Lunar Receiving Laboratory (Rummel, 2004). Future microbiological

investigations of the Apollo site materials that have been exposed to the lunar environment for

over 30 years could help resolve the Surveyor III issue.

It also should be emphasized that even if bacteria delivered by lunar spacecraft are

inactivated or sterilized on the Moon, due to the harsh surface conditions, organic compounds

from dead cells will remain and could leave a terrestrial fingerprint in lunar samples returned to

Earth. A typical terrestrial microorganism such as an E. coli cell has a dry weight of 10-13 grams

and is comprised of protein amino acids (57%), nucleic acids (24%), lipids (9%) and other
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material (Neidhardt et al. 1990). Therefore, in addition to dry heat sterilization needed to kill

most bacterial cells on spacecraft surfaces, cleaning with a variety of organic solvents and

degassing is required to minimize the organic load of the spacecraft and sample collection

hardward. Most Apollo spacecraft hardware surfaces were cleaned to organic contamination

levels of 10-100 nglcm2 , and the lunar soil sampling equipment and storage boxes were precision

cleaned at the White Sands Test Facility in New Mexico to a level of 1 nglcm 2 for polished

planar surfaces (Johnston et al. 1975). Estimates of the total organic contamination to lunar

samples from the Apollo 11 and 12 missions based on spacecraft cleanliness was in the 0.1 to

100 part per billion (ppb) range (Flory and Simoneit, 1972). Based on the Apollo spacecraft

bioburden and the survival of terrestrial microorganisms on the lunar surface, it was estimated

that only 10
"4

 to 10
"5
 viable microorganisms per square meter of lunar surface were present at the

time the Apollo samples were collected (Dillon et al. 1973). Apollo soil samples returned to the

Earth were immediately analyzed for bacterial and organic contaminants in the Lunar Receiving

Laboratory. Although no viable organisms were detected in the Apollo 11 and 12 samples

(Oyama 1970; Holland and Simmons, 1973), varying levels of organic contamination in the

returned samples were reported. Burlingame (1970) reported an organic contamination level of

5 ppb for some Apollo 11 samples, while others reported no organic contamination above the 1

ppb level (Mitchell et al. 1971;). Porphyrine-like pigments were also found in some Apollo

samples at the trace ng to pg level by Hodgson and coworkers (1971). Terrestrial amino acid

contaminants were also observed at concentrations of up to 70 ppb (Hare et al., 1970; Gehrke,

1975; Harada et al., 1971; Brinton and Bada, 1996). However, since these lunar samples were

not analyzed for traces of organic compounds on the surface of the Moon, it remains unclear how

much if any of the amino acid contamination in the lunar soils occurred during collection.

In addition to concerns about surface organic contamination of the lunar collection tools

and regolith samples themselves both during collection and after return to Earth, a variety of

other potential sources of contamination during the Apollo missions were noted by Simoneit and

Flory (1970) including, (1) dimethyl hydrazine and nitrogen tetroxide exhaust products from the

lunar descent engine and reaction control system engines; (2) lunar module outgassing; (3)

astronaut spacesuit leakage and venting of life support back pack; (4) particulate material from

spacesuit or other sources during EVA; and (5) venting of lunar module fule and oxidizer tanks,

cabin, and waste systems. Measurements of hydrogen and oxygen isotopes of water extracted
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from lunar soils revealed that the water was primarily of terrestrial origin, probably from the

Apollo spacecraft and astronauts (Epstein and Taylor, 1972). During Apollo 17 in situ

measurements on the lunar surface by the Lunar Atmospheric Composition Experiment (LACE)

provided evidence for traces of methane, ammonia, and carbon dioxide in the lunar atmosphere

(Hoffman and Hodges, 1975). Although these volatiles may be indigenous to the Moon resulting

from chemical reactions between solar implanted ions or exchange with the lunar polar cold

traps, contamination by the Apollo spacecraft or the astronauts themselves cannot be ruled out as

a possible source. At present it is not known whether or not past human or spacecraft

contamination of the Moon is detectable in localized regions, or limited to the Apollo landing

sites, themselves. Future in situ evolved gas measurements of the lunar regolith (ten Kate et al.

2010) at previous Apollo landing sites as well as "pristine" polar sites are needed to help

constrain the origin of lunar volatiles and to understand the extent and persistence of volatile

contamination during Apollo.

Although the lunar surface environment may represent a worst-case scenario for the

survival of microorganisms and even terrestrial organic matter, lunar exploration provides a

unique opportunity to use the Moon as a test-bed for future Mars exploration, where the search

for evidence of life has become a primary objective. NASA is planning to a series of robotic

orbiters and landers to the Moon, Mars, and small bodies such as asteroids to prepare for future

manned missions to these destinations. ESA, as part of its Aurora exploration program, is also

planning a similar set of robotic precursor missions in a similar timeframe. For these missions,

in situ measurements that target key organic biomarkers and other volatiles in lunar soil samples

as well as on spacecraft surfaces could be carried out using highly sensitive instruments on

landers and rovers. These "ground truth" experiments on the Moon also would be particularly

useful for assessing the degree of organic contamination in lunar soil samples prior to their return

to Earth, as well as the stability of organic compounds in sun-exposed and shadowed regions on

the surface of the Moon. Furthermore, in situ experiments carried out at previous lunar landing

sites such as Apollo could provide important information regarding the extent that previous

extravehicular activities by the Apollo astronauts contaminated the Moon during lunar surface

operations.

The use of sensitive robotic experiments to detect contamination that may still be present

Orly-over 40 years after humans first explored the surface of the Moon may be critical to help
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establish a contamination baseline, but there are broader contamination challenges regarding a

more sustained human presence on both the Moon and Mars. Such considerations should be kept

in mind as we prepare for sustained human exploration (McKay and Davis, 1989; Lupisella,

1999). Human exploration could, in fact, confound the search for life on Mars, since the

presence of humans will dramatically increase the amount of terrestrial organic material,

potentially making the detection of indigenous organic matter exceedingly difficult, if not

impossible. Future robotic and human missions to the Moon could provide a unique opportunity

to carry out ground-truth experiments using in situ life detection instruments to help understand

the extent of forward contamination by robotic spacecraft and human presence over a limited

range of conditions and time. Ultimately, these experiments will help guide future planetary

protection requirements and implementation procedures for robotic and human missions to Mars.
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