
Mathematically sound techniques are
used to view a knowledge-based system
(KBS) as a set of processes executing in
parallel and being enabled in response
to specific rules being fired. The set of
processes can be manipulated, exam-
ined, analyzed, and used in a simulation.
The tool that embodies this technology
may warn developers of errors in their
rules, but may also highlight rules (or
sets of rules) in the system that are un-
derspecified (or overspecified) and
need to be corrected for the KBS to op-
erate as intended.

The rules embodied in a KBS specify
the allowed situations, events, and/or re-
sults of the system they describe. In that
sense, they provide a very abstract speci-
fication of a system. The system is imple-
mented through the combination of the
system specification together with an ap-
propriate inference engine, independ-
ent of the algorithm used in that infer-
ence engine. Viewing the rule base as a
major component of the specification,
and choosing an appropriate specifica-
tion notation to represent it, reveals how
additional power can be derived from an
approach to the knowledge-base system

that involves analysis, simulation, and
verification.

However, in a complex rule base that
may have taken years, if not decades, to
build, expecting users to have in-depth
understanding of the rules that make up
the system is not practical. This innovative
approach requires no special knowledge
of the rules, and allows a general ap-
proach where standardized analysis, verifi-
cation, simulation, and model checking
techniques can be applied to the KBS.

The rules of the system are likely
written in a particular syntax, the possi-
bilities for which include a language or
grammar used by a particular inference
engine, logic rules (written in Prolog
or another logic programming or de-
clarative programming language),
propositional or predicate calculus,
Horn clauses, or some form of struc-
tured English. A translator is required
to translate these into the grammar of
a tool that is used (and for which there
is a prototype) to convert to a formal
language that is process-based: that is,
that recognizes that processes (or units
of computation) are key components
of a system.

All systems, regardless of how trivial,
involve at least two processes, one being
the environment in which the system is
executing. Processes being enabled are
analogous to rules firing; “deadlock” is
equivalent to contradictions or internal
inconsistencies existing in the rule
base; “livelock” is equivalent to having
rules that are unspecified; “top” is
equivalent to overspecification; and
“bottom” is equivalent to rules being
underspecified. The system having
been translated to the appropriate for-
mal language, tools that already exist
for that language may be applied to the
analysis of the system. For example, if
CSP were used as the formal language,
the laws of CSP could be used to prove
the absence, or otherwise, of contradic-
tions, to pinpoint unimplemented
rules, or to transform rules into a more
efficient form. Then other available
tools could be used for simulation and
model checking.

This work was performed by Mike Hinchey,
James Rash, John Erickson, and Denis Gra-
canin of Goddard Space Flight Center and Chris
Rouff of SAIC. Further information is con-
tained in a TSP (see page 1). GSC-14942-1

Analysis, Simulation, and Verification of Knowledge-Based,
Rule-Based, and Expert Systems
This method allows valid updates to be made quickly, efficiently, and without corruption of the
existing rule base.
Goddard Space Flight Center, Greenbelt, Maryland

Information Sciences

An emerging methodology of organ-
izing systems-engineering plans is based
on a concept of core and off-core
processes or activities. This concept has
emerged as a result of recognition of a
risk in the traditional representation of
systems-engineering plans by a Vee
model alone, according to which a
large system is decomposed into levels
of smaller subsystems, then integrated
through levels of increasing scope until

the full system is constructed. Actual
systems-engineering activity is more
complicated, raising the possibility that
the staff will become confused in the
absence of plans which explain the na-
ture and ordering of work beyond the
traditional Vee model.

Core activities are those that produce
a top-down decomposition and bottoms-
up integration of a system in order of in-
creasing time. Examples of core activi-

ties are definition of requirements, de-
sign, acquisition, and integration. Be-
cause of ordering according to time,
these activities are often readily under-
stood and depicted by use of such ele-
mentary graphical aids such as timelines
and Gantt charts.

Off-core activities are other systems-
engineering activities that add desirable
qualities to a system solution, but are not
directly involved in decomposition and

Core and Off-Core Processes in Systems Engineering
This methodology can reduce the difficulty of coordinating multiple
systems-engineering activities.
NASA’s Jet Propulsion Laboratory, Pasadena, California

NASA Tech Briefs, October 2010 31

https://ntrs.nasa.gov/search.jsp?R=20100036568 2019-08-30T12:11:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10556355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

