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Executive Summary

Lockheed Martin Aeronautics Company (LM Aero), working in conjunction with seven industry and
academia sub-contracting teammates, executed an 18 month program responsive to the NASA sponsored
“N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the
2030 to 2035 Period” contract. The key technical objective of this effort was to generate promising
supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies
required to make those concepts a reality. The N+3 program is aligned with NASA’s Supersonic Project
and is focused on providing alternative system-level solutions capable of overcoming the efficiency,
environmental, and performance barriers to practical supersonic flight.

In addition to FAA regulations, the Next Generation (NextGen) Air Traffic System (ATS) congestion
levels are a concern as they are expected to increase by a factor of 1.5 to 2.5 in the 2025 timeframe.
Understanding how supersonic aircraft affect future congestion levels requires a system of systems
analysis that integrates vehicle design, operating environment, and economic interaction into a single
process. LM Aero worked with a sister company, Transportation Security and Solutions (TSS), and
Purdue University to assess the value that a supersonic transport concept vehicle brings to the NextGen
ATS. A fast time modeling and simulation study done by TSS revealed that commercial supersonic
vehicles will not impact future airport capacity. However, supersonic air vehicles in the 2030 timeframe
will exert additional demand for airport operations. Purdue University simulated numerous future Civil
Air Transport System scenarios, allocating N+3 vehicles to maximize system-wide productivity while
also computing fleet-wide emissions and direct operating costs. These results showed that the total value
of time saved by passengers on N+3 supersonic transports will likely exceed the added operating costs
incurred by the aircraft. These system-level scenarios showed that supersonic transport is a viable solution
for increased productivity and promotes the renewed viability of supersonic travel.

Our extensive team designed a preferred supersonic configuration and developed plans for maturing
the identified, enabling technologies required to meet the N+3 performance and environmental goals.
Working in conjunction with GE Global Research Center (GRC), John Hansman from MIT, Helen Reed
and Bill Saric from Texas A&M, Wyle Laboratories, Purdue, and Penn State—an initial low-boom,
supersonic configuration was used to assess potential airframe and propulsion technologies that were
projected to meet or exceed the future supersonic boom, noise, emissions, cruise speed, range, payload,
and fuel efficiency goals. Multi-Disciplinary Analysis and Optimization (MDAQ) showed it was possible
to achieve the N+3 boom goal with an “inverted-V”, engine-under wing configuration. Further sizing and
quantified analysis proved that using revolutionary technologies enabled this configuration to achieve the
range, payload, and cruise speed goals.

Based on LM provided requirements and targets, GE developed an Variable Cycle Engine (VCE)
propulsion system and a conventional Mixed Flow Turbo Fan (MFTF) propulsion system expected to
meet or exceed the environmental goals set by NASA, as well as an MFTF optimized solely for cruise
efficiency. These propulsion systems take advantage of an Advanced Thermal Management System
(ATMS) to extend the overall pressure ratio (OPR) of the engine and increase thermal efficiency. A low
noise, high performance exhaust system takes advantage of the innovative jet noise reduction features that
work synergistically with the VCE features to reduce the exhaust jet noise. Augmented transonic thrust
allows the propulsion system to be favorably sized with potential take-off noise abatement. Analysis
shows that this propulsion system, along with integrated technology sets, meets the N+3 airport noise,
emissions, and fuel efficiency goals.

Our integrated airframe and propulsion system, along with identified/enabling technologies, is
projected to meet or exceed all N+3 targets. Results of the environmental and performance characteristics
of our advanced vehicle concept are summarized in Table 1.

Through a collaboration effort, LM Aero and GE GRC identified N+1, N+2, and N+3 technologies
critical to meet or surpass the N+3 goals. N+1 and N+2 shaping technologies were considered to be
“endemic” or inherent to the baseline design. These configuration technologies were not included in the
final technology roadmap, but other N+2 technologies were included to provide a comprehensive
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technology list. As a result, technology roadmaps were created for all prioritized, airframe technologies to
demonstrate the maturation efforts required to raise each technology to a Technology Readiness Level 6

(TRL 6).

TABLE 1.—LM’S PREFERRED CONCEPT WITH TECHNOLOGY INPUTS MEETS OR SURPASSES ALL N+3 GOALS

NASA N+3 Efficient Multi-Mach Aircraft N+3 Goal Status
(Beyond 2030)
Environmental Goals
Sonic Boom 65 to 70 PLdB low boom flight 70 to 76 PLdB
75 to 80 PLdB unrestricted flight KEY GOAL
18.4
. . 20 to 30 EPNdB .
Airport Noise (cumulative below stage 3) (322 jet only)
KEY GOAL
. . <5 EINOx
Cruise Emissions (g/kg fuel) Plus particular and water vapor mitigation > EINOx
Performance Goals
. Mach 1.3 to 2.0 low boom flight
Cruise Speed Mach 1.3 to 2.0 unrestricted Mach 1.6
Range 4000 to 5500 nmi 4850 nmi
Payload 100 to 200 pax 100 pax
3.64
Fuel Efficiency ( ax%fnﬁ’/li'_sfuel) (pax-nmi/lb-fuel)
P KEY GOAL

Recommended future work includes Phase 2 testing and Phase 3 maturation efforts to provide a
technology set necessary to realize a vision vehicle serviceable in the 2030-2035 timeframe.

Current N+2 efforts allow us to reasonably assume that N+2 technologies will be developed during
those N+2 program efforts, and the developed technologies will be available for application on the N+3
vehicle. Concentration on N+3 technologies provides a clear roadmap to achieving and surpassing the
stated N+3 goals while providing an exciting solution to supersonic travel. Figure 1 highlights the
comprehensive technology set for both airframe and propulsion systems.

Future work recommendations for airframe technologies include:

o Low cost, high impact tools and methodologies such as Low Boom Shaping Fidelity and CFD-
based MDAO to address boom mitigation

o Distributed roughness with plasma augmentation to ensure laminar flow at supersonic conditions

e Adaptive geometry technologies including lift distribution control and inlet flow control
technologies to address the N+3 fuel efficiency goals

Future work recommendations for propulsion technologies include:

e Continued development of VCE technologies

e Development of the Transonic Thrust Augmentation device—critical technology to meeting N+3
goals

e Alternate combustor/combustion concepts need to be explored, as these propulsion systems are
developed to take advantage of the full thermal capability of the system. The currently funded
NASA Supersonics Low Emissions combustor program will provide key validation data for high
temperature NOx levels, and the maturation of some enabling technologies

e Predictive and design tool development in many areas need to be continued to be developed
including;:
— Aero-acoustics for both fan and jet noise
— Combustion and emissions
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Phase 3
(TRL 4-6)

Phase 2
(TRL2-3)

Vision Vehicle

2014 2016 2018 2020... 2024 ... 2028...

Distributed
Roughness

Enabling Technologies Identified during Phase 1 (2010)

Airframe Technology Priority

1. Tools/Meth — Boom Shaping Pre-planning

Awareness

Boom Shaping ‘ ‘ CFD-based MDAO ‘

2. Tools/Meth — CFD-based MDAO
3. Laminar Flow + Dist. Rougness Integrated
4.  Pilot Sit. Awareness — Low Boom Structural

Violation Cueing Analysis
5.  Pilot Sit. Awareness — Pre-planning

Awareness Jet Exhaust Adaptive Geom: Lift
6. Tools/Meth. —Integ. Struct. Analysis ‘ Manipulation _LowBoom ‘ Dist. Control
7. Adaptive Geom — Lift Dist. Control Violation Cueing
8. Plasma - Jet Exhaust Manipulation
9. Adaptive Geom - Inlet Flow Control Adaptive Geom:

Inlet Flow
Control

Potential N+3

Potential

Exhaust System

Exhaust, Adv

Propulsion Technology Priority Low Noise, High ;
3 Supersonic
Adaptive Cycle
1. Low Noise/High Performance Pe'g:}:;ﬁ?ce En;i)ne R Demo

Exhaust, Adv
Thermal Mgmt,

2. Adaptive Cycle Engine Thermal Mgmt, S
3. Thermal Management System (TMS) Transonic Transonic
Thrust Aug, Low Thrust Aug, Low
4. Advanced Low NOx Combustor - Aug, i fectens
a Emissions
5. Constant Volume Combustion (CVC) - Combustor

Low Noise/
Distortion
Fan/Inlet

Low Noise
Operations

Transonic thrust
augmentation

Figure 1.—Technology roadmap for N+3 enabling technologies.
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1.0 Introduction
1.1  Subject of the Report

Research in the area of Advanced Supersonic Transport (AST) has been a focus area for NASA since
1960s, driven by maintaining U.S. leadership in the area of commercial transport. According to a 1980
Open Travel Alliance (OTA) report (Ref. 1) on the impact of advanced air transport technology, the
business case in favor of ASTs results from improved aircraft productivity (measured in seat miles
generated per unit time) and its capability to transport twice the number of passengers on long distance
flight. Higher cost of operations, concerns over environmental impact due to noise and emissions, and
restrictions to fly supersonic on land due to sonic boom are some of the technological issues that need to
be addressed for production and deployment of ASTs. NASA’s research efforts for the advancement of
AST are dedicated to address these technical challenges and the AST technology is being matured under
N+1, N+2 and N+3 projects. The goal of the N+3 project is to explore a conceptual design for multi-
Mach aircraft in 2030 timeframe that has low sonic boom, is environmentally acceptable, fuel efficient,
and able to fly at supersonic speed above land. Other, integrated design concerns include:

e Sonic Boom Reduction

e Cruise Efficiency

e Acro-Propulso-Servo-Elasticity

o Airport Noise

o Light Weight Structure for Airframe/Propulsion Systems
o High Altitude Emissions

A complimentary area for NASA research is the Next Generation Air Transportation System
(NextGen) (Joint Planning and Development Office, 2009 (Ref. 2)). The U.S. Air Traffic Management
(ATM) system is today operating at the edge of its capabilities, handling the real-time planning and
coordination of over 50,000 flights per day. Although air traffic has seen a decline in the recent year due
to severe economic downturn, the recent numbers suggest that traffic is currently stabilizing (Official
Airline Guide, 2009 (Ref. 3)) however, per market forecasts by MITRE (Ref. 4) and Boeing (Ref. 5)
(2009) a strong growth in air traffic is expected in both short and long term. Additionally, Boeing’s long
term market forecast cites that the air transportation industry is resilient and has survived many economic
downturns in the past. It has grown at 5 percent annually and by year 2029 the number of airplanes flying
in the National Air Space will be more than double. To address this concern, the Federal Aviation
Administration (FAA) along with NASA and other government and industry partners are charting the
NextGen.

One of the strategic objectives outlined in the NextGen plan is to have a system scalable enough to
respond quickly and efficiently to increase in demand and is flexible enough to incorporate new types of
airframe for example, Unmanned Aircraft System (UAS), Very Light Jets (VLJs), Large Civil Tiltrotor
(LCTR), ASTs, and others. Since supersonic transports provide a step increase in passenger mobility by
speed of travel, their incorporation within the NextGen ATS could potentially provide alternative methods
of operation, subsonic to supersonic transition regulations, and unforeseen hazards. NASA is focused on
providing vehicle designs and identifying enabling technologies that can meet the nation’s need for
effective, efficient and safe air travel.

Overall, the supersonics project is designed to develop knowledge, capabilities, and identify
innovative solutions for supersonic air vehicles. Sonic boom, environmental concerns, and NextGen ATS
integration are major concerns for commercial supersonic travel. Revolutionary solutions are required to
generate viable, supersonic solutions.
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1.2 Purpose

The purpose of this final report (PMF-01403) is to respond to the NASA sponsored program “N+3
NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to
2035 Period.” The N+3 program is focused on generating promising supersonic concepts for the 2030 to
2035 timeframe and to develop plans for maturing the technologies required to make those concepts a
reality. An additional system-level focus includes understanding how a supersonic civil transport would
integrate and operate within the 2025 NextGen ATS.

This program is committed to overcoming significant performance (cruise speed, range, payload and
fuel efficiency) and environmental (sonic boom, airport noise, and cruise emission) challenges. The
NASA stated N+3 goals are illustrated in Table 2.

TABLE 2.—N+3 ENVIRONMENTAL AND PERFORMANCE GOALS

N+1 N+1 N+1
Supersonic Business Small Supersonic Efficient MultiMach
Class Aircraft Airliner Aircraft
(2015) (2020) (beyond 2030)
Environmental goals
Sonic boom 65 to 70 PLdB 65 to 70 PLdB 65 to 70 PLdB
low boom flight

75 to 80 PLdB
unrestricted flight

Airport noise 10 EPNdB 10 to 20 EPNdB 20 to 30 EPNdB

(cum blow Stage 3)

Cruise emissions Equivalent to <10 <5 and particulate and water

(cruise NOx g/kg of fuel) current subsonic vapor mitigation

Performance goals

Cruise speed Mach 1.6 to 1.8 Mach 1.6 to 1.8 Mach 1.3 t0 2.0
low boom flight
Mach 1.3 t0 2.0

unrestricted flight

Range 4000 4000 4000 to 5500

(nmi)

Payload 6 to 20 35t0 70 100 to 200

(passengers)

Fuel efficiency 1.0 3.0 3.5t04.5

(passenger-miles per 1b of fuel)

Meeting or surpassing these goals stimulates innovation and advances the pursuit of revolutionary
conceptual designs. System-level multi-disciplinary analysis and optimization (MDAO) and out of the
box thinking allows for revolutionary technology identification. This fosters an environment of
innovation and generates excitement for future supersonic travel.

Overall, the N+3 effort is driven by the need for alternative solutions capable of overcoming the
efficiency, environmental, and performance barriers to practical supersonic flight. Results from these
studies aid in upcoming research efforts and provides a roadmap for future supersonic funding.

13 Scope

LM Aeronautics conducted research, testing, trade studies and sensitivity analysis in support of the
NASA’s N+3 Supersonic Vehicle effort. A combination of advanced design and an integrated system
analysis was taken to define a conceptual vehicle capable of meeting the environmental and performance
goals. Viable technology development paths were produced by the design, engineering, and test
capabilities of our team. In addition, core technology trades were performed to provide estimates of the
advanced vehicle concept’s noise, emissions and performance characteristics. LM was also responsible
for the coordination and management of all subcontractors and resulting work. LM is committed to
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helping NASA successfully achieve their goals of first understanding what is necessary in 2030 to 2035,
generating a suite of enabling concepts and technologies to meet those needs, and socializing that vision
with the broadest possible audience.

2.0 Work Breakdown Structure (WBS)

LM Aeronautics was responsible for the overall design, development, and technology identification
necessary to realize a visionary vehicle capable of achieving the supersonic N+3 environmental and
performance goals. A combination of advanced design and an integrated system approach was required to
define an advanced concept vehicle serviceable in the 2030 to 2035 timeframe (Task 3.1). Design of the
vehicle included configuration layout, design, analysis, and definition to produce a concept tightly
integrated with airframe and propulsion technologies. Using a system-level design space, LM Aeronautics
was also tasked to perform various trade and sensitivity studies to understand how a future Next
Generation (NextGen) scenario with supersonic transports drove design requirements (range, noise,
emissions, boom, fuel, and mobility). The interplay of design constraints was modeled and analyzed in
physics based multi-disciplinary analysis and optimization (MDAOQO) process using Rapid Conceptual
Design (RCD). Task 3.2 included RCD model development, integration with technology inputs,
quantified analysis, and technology benefit/impact assessments. After multiple design iterations and
system-level analysis of the preferred configuration, LM Aeronautics was responsible for developing a
technology roadmap of enabling technologies for the N+3 vehicle. This roadmap includes a list of key
technologies, definition of roles and quantification of impacts on the concept vehicle, traceability to N+3
goals, baseline TRLs, proposed TRL maturations schemes for future N+3 phases, and prioritization.
Overall, LM Aeronautics was ultimately responsible to optimize complex multi-variable combinations of
airframe and propulsion technologies while iterating, maturing, identifying, and ultimately down-
selecting critical technologies required to realize an N+3 vehicle. Figure 2 illustrates the overall WBS of
the tasks and duties required for the program.

(. ==
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Concept 3.1.1 Concept 312 313 Final
. e i Configuration Configuration
Vehicle i & Analysis — RCD Definition
Definition ) 0 . e
9 ) )
£ ® =
( | 3 g || %
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Figure 2.—LM WBS for N+3 Phase 1 program.
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Our efforts focused on four major tasks: Advanced Concept Vehicle Definition (Task 3.1), Design
Space Trade Studies (Task 3.2), Technology Roadmap Development (Task 3.3), and ATS System-of-
Systems Analysis (Task 3.6). LM was also responsible for the management and coordination of seven
subcontractors to provide subject-matter data and expertise to the program. Collaboration included
teaming with GE Global Research Center (GRC) with GE Aviation for advanced propulsion concepts as
well as fuel efficiency and emissions, Penn State for jet noise reduction, Purdue for system of system
analysis, MIT for green initiatives, Wyle labs for real-world loudness effects and boom guidance, LM
Transportation and Security Solutions for air traffic analysis, and Helen Reed and Bill Saric for laminar
flow analysis. All required tasks include subsequent subtasks that align with the main task. The WBS
encompasses all work necessary to oversee and direct the execution of the N+3 Phase 1 Program.

3.0 Tasks and Trade Studies—Airframe Systems
3.1  Advanced Vehicle Concept (WBS 3.1)

3.1.1 Concept Layout and Design (WBS 3.1.1)
3111 Description

Before laying out a configuration, we looked at the N+3 goals and addressed design methods and
strategies necessary to meet those challenges. Based on our past history designing and analyzing
supersonic configurations, we first focused our energy on the sonic boom requirement. The N+3 sonic
boom goal of 65 to 70 PLdB is significantly lower than the state of the art 107 PLdB of the (408,000 Ib,
100 passenger) Concorde with a shock strength of 2 psf, or the 102 PLdB of the (12,000 1b—33 times
lighter than Concorde) F-5 with a shock strength of 1.3 psf. Meeting the sonic boom goal requires a
minimum shock (ramp signature) shock strength of 0.12 to 0.17 psf. One way of meeting this goal is
increasing the fuselage length used by SEEB to calculate the minimum shock signature, as shown in
Figure 3. In order to reduce the length required, it is anticipated that the perceived level of noise on the
ground can be reduced through shock blending, as shown in Figure 4, and through taking into account
real world absorption and turbulence. Results from Wyle’s analysis on Effects of Atmospheric
Propagation on Low-Boom Shaped Signatures can be seen in Section 3.2.5.

500

N MTOW 450,000 Ib
450 ~_
400 <
350

4=
? 300 I Typical Non-
3 - I— | 0" Boom
ﬁ fgg 450,000 Ib
100 SST Optimum
50 Length
060 6% Yb 7% 86 8% 90

PLdB

Figure 3.—Relation between vehicle length and perceived level of noise (PLdB).
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The other noise challenge was meeting the airport noise goal of 20 to 30 EPNdB cumulative below
FAR36 Stage 3 limits. Current subsonic airplanes, like the Boeing 777-200 with GE 90-85B and the
Airbus A380 with RR Trent 970, already meet this goal at 23 EPNdB and 26 EPNdB cum below Stage 3
respectively. However, it is more of a challenge for supersonic aircraft. Using the Concorde as a state-of-
the-art (SOA) comparison, its supersonic transport status is 45 EPNdB cumulative above Stage 3. Our
strategy for meeting the noise goal was to first require GE to meet sideline —3 EPNdB at 90 percent power
also known as PLR (programmed lapse rate), use the GE VCE, and optimize takeoff procedures. Second,
reduce approach noise with a low-noise fan design, inlet liners and inlet flow choking. Third, investigate
other promising advanced technologies.

Signature Variations for Loudness vs. Shock Separation
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Figure 4.—Effect of shock separation on loudness.
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b fraction
Empty Weight 148,000 0.492 Reference Mission
Payload Weight 22,440 0.075 l%oo%aﬁ .
N A mi range
Fuel Weight 130,200f  0.433]  pach 1.6, 50,000 ft altitude
Max Take-Off Weight 300,600
pax-Nmi/lbfuel
Efficiency 3.07|

Figure 5.—lInitial sizing for reference mission.

As part of the iterative design process, we looked at a number of different vehicle concepts that would
integrate features necessary to achieve the N+3 mission requirements and performance goals. Desirable
configuration features included items that would provide low boom, low drag, low weight, and good
aeroelasticity performance for cruise and off-cruise conditions. Drawing on previous Quiet Supersonic
Transport (QSST) experience, our process started with applying the desirable configuration features to a
modified inverted-V, “QSST-like” concept. The four-engine inverted V-tail concept was proposed to
better capture advantages of the inverted tail concept—particularly greater wing bending moment relief.

Preliminary vehicle sizing with QSST and historical data established the weight breakdown necessary
to determine engine thrust, wing sizing, and fuselage length for boom. A slight improvement was
assumed, giving an L/D of 10 and an SFC of 0.95 1b fuel/lb thrust/hr. These assumptions were applied to
the reference mission of 100 passengers, 4000 nmi range, and Mach 1.6 cruise. This resulted in a Max
Take-off Gross Weight (MTOW) of just over 300,000 Ib, with an efficiency of 3.07 pax-nmi/lb fuel, as
shown in Figure 5. However, this did not meet the requirement of efficiency between 3.5 to 4.5 pax-
nmi/lb fuel. It was calculated that the efficiency could be raised to 3.97 pax-nmi/lb fuel if the L/D
increased to 11, the SFC improved to 0.90 Ib fuel/lb thrust/hr, and empty weight reduced by 5 percent.
This quantified the N+3 vehicle improvement values to achieve NASA’s desired performance goals.
These values were status indicators as opposed to targets. N+3 technologies were sought to maximize
performance as much as possible and potentially go beyond these goals.

3.1.1.2 Results

The initial configuration was sized with an assumed MTOW approximately equal to 300,000 1b,
resulting in a wing area approximately equal to 3,000 ft*, and a take-off thrust approximately equal to
100,000 1b The benefits of this low-boom configuration include stretched boom signature due the inverted
V-tail and nose droop, favorable aerodynamic interference and compression lift for aft-under-wing
mounted engines, efficient propulsion integration due to the planform trailing edge sweep and airfoil
reflex, aerodynamic efficiency for wing planform design, reduced wing gull roll penalties due to wing tip
and inverted V-tail anhedral, and structural flexibility suppression due to inverted V-tail wing bracing.
Once designed, these specific elements were considered endemic to the configuration and always a part of
the initial configuration technology set. The design was used as the “yardstick” to compare other potential
configurations. Figure 6 highlights the overall initial configuration definition and design features that
were modeled within CATIA V5.

Once the initial concept was defined, an initial inner mold-line (IML) cabin volume constraint was
determined to insert passengers within the loft. The initial configuration held 101 passengers including
future projected economy seat sizing comfort improvements relative to the Concorde and other regional
jets plus the provision for 10 percent first class seats. The cabin layout included one galley, two
lavatories, one supplemental space, and three emergency constraints. The boom constraints on the
fuselage outer mold line (OML) forced cabin camber and cross section pinching on each end. This
limitation required one first class seat to be removed from the forward section of the cabin, and a
unification of the next set of seats. Nine rows in the aft section of the cabin changed from four across to
three across while the cabin was lengthened. Cambered cabin slopes less than 5 percent have to be
reconciled in a future design phase. Figure 7 demonstrates a realistic cabin layout that establishes fuselage
IML constraints for the initial configuration.
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Figure 6.—lInitial configuration definition.
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Figure 8.—Alternative configuration concepts chosen for further analysis.

3.1.2 Alternative Configurations (WBS 3.1.1)

3.121 Description

The N+3 concept vehicle definition also included exploration of alternative concepts, both
conventional and unconventional, to investigate all potential configuration solutions. Figure 8 highlights
the various configurations that were studied starting with the family of inverted-v tail configurations and
branching off to an oblique wing, a twin-fuselage concept, and a variety of brainstorming concepts.

31211 “Blue Sky” Configurations

After the initial ideas listed above were considered, further brainstorming sessions, called “blue sky,”
were conducted with leading experts from outside the program, to identify more revolutionary concepts.
However, no further configurations were discovered that could reasonably outperform those concepts
already being considered.

3.1.2.1.2 Engines-Over-Wing Configuration

The engine-over-wing configuration was considered to address potential
structural benefits (shorter landing gear) and noise level reductions possible
with engine placements above the wing. When the engines are placed over the
wing, engine spillage shocks are blocked from the ground by the wing.
However, this results in higher pressure on the upper surface of the wing
predicted to reduce L/D by 2 points.

In order to assess the need for noise reduction with the engines over wing configuration, it needed to be
determined how low the noise could be for the engine under wing configuration. This was done through a
wing configuration study to address propulsion/airframe integration (PAI) issues of a low-boom design.
Figure 9 exhibits the trailing edge design study used for favorable interference drag. The wing trailing
edge was swept to capture maximum nacelle shock compression lift and airfoil reflex for shock (and drag)
cancellation. The nacelle shock was substantially countered; it met a 65 to 70 PLdB equivalent area target
as easily as above the wing engine placements. The high pressure caused by the nacelle shock on the
lower surface of the wing resulted in higher efficiency (lower angle-of-attack) through an increased L/D.
Since it was possible to meet the sonic boom requirement with the higher efficiency of the engines-under-
wing concept, further development of the engines-over-wing configuration was discontinued.
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Figure 9.—Wing trailing edge swept to maximize compression lift and shock (and drag) cancellation from airfoil reflex.

31213 T-Tail Configuration

The T-tail configuration was considered in order to raise the aft lift and stretch
the boom signature. The configuration reduces interference drag and eliminates
the inverted-V structure. A set of coarse geometry trades was performed to reduce
the T-tail’s sonic boom level while minimizing adverse impacts to drag. These
trades followed the same approach used on the inverted V-tail, which is described
in Section 3.2.1. Results for both configurations are provided in Table 4 in that
section. This configuration was not considered further, however, because it also entailed an increase in
wing weight (because the T-tail does not help support the wing as the inverted V-tail does), possible
flutter issues, and a larger fin.

31214 Oblique Wing Configuration

Oblique wings have been studied since the 1970s and have been proven to
provide good aerodynamic performance at supersonic and subsonic speeds. The
variable sweep allows better aecrodynamic optimization at a variety of Mach
numbers. If the takeoff constraint is driving the wing size, this would allow for a
smaller wing with good low-speed, transonic, and supersonic performance. The
smaller wing would require less thrust, possibly requiring fewer engines.

However, an oblique wing design complicates the boom design and introduces a weight penalty with the
wing pivot mechanism. Analysis of the area distributions was performed to determine whether the
complications to the boom design could be overcome.

Figure 10 shows area distributions at Mach 1 for the components and area distributions for the
combined vehicle at Mach 1.6 for roll angles from 0° to 180°. The Mach 1 area distribution shows one of
the benefits of the oblique wing, in that the area of the wing is spread over a greater length of the vehicle
than a traditional wing, which can help reduce wave drag. The Mach 1.6 area distributions show that there
are some smile angles that are better than others. For a smile angle that causes the Mach angle to align
more closely with the wing, the wing appears quickly in the area distribution, increasing that angle’s
contribution to wave drag.

Figure 11 shows the lift distributions for different angles. At 49°, which is opposite the angle of the
wing, the lift distribution is spread out over a greater length of the vehicle at about 1250 1b/ft. For the
opposite —49° angle, the lift is concentrated over a much shorter length, at almost 3000 1b/ft. This results
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Figure 10.—Component and Mach 1.6 area distributions for roll angles 0° to 180°.
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Figure 11.—Lift distributions at different angles.

in an asymmetric sonic boom signature, where the vehicle is quieter on one side and louder on the other.
In Figure 12, the equivalent area distribution is shown compared to the baseline configuration. On the left
plot, the undertrack distribution for the oblique wing is better than for the baseline, since it does not have
the overshoot. The right plot shows the equivalent area distributions off to the sides compared to the
baseline. At +49°, this again shows that the oblique wing has a better distribution than baseline, but on the
other side at —49°, the area distribution is significantly worse.

The oblique wing configuration allows for improved signature in some areas at the expense of others.
The efficiency can be higher at off-design Mach numbers through rotations; however, since the vehicle
spends the majority of the time at the design cruise Mach number, this has a limited benefit. Unsweeping
the wing makes it easier to meet takeoff requirements. However, takeoff is not predominantly limiting the
baseline design, so this benefit is likely to be attenuated using the engine cycle matched to the baseline. In
addition, the weight penalty of the rotation mechanism counters the off-design benefits. In conclusion, the
supersonic transport mission spends more than 85 percent around the cruise condition, so cruise
efficiency while maintaining a low sonic boom disturbance is the predominant characteristic for the best
supersonic transport design. While the boom constrained cruise efficiency analysis is incomplete, it does
show both advantages and disadvantages. At this point, the asymmetry inherent to this design makes it
more challenging and resource intensive without a clear benefit indicated to justify the extra work. The
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Figure 12.—Equivalent area distribution undertrack (left), and side (right) for oblique wing and baseline configuration.

show oblique wing appears to be a viable design alternative at this depth of analysis; however, it was not
chosen as a baseline design.

31215 Twin Fuselage Configuration

The twin fuselage configuration is another proposed N+3 configuration but
presented fuel efficiency and boom design complications. The benefit of the twin
fuselage configuration is the favorable interference between the fuselages that
reduce drag. The fuselage weight is also split on the wing, reducing bending
moment and wing structural weight. With the separation distance between the two
fuselages, the far-field method would not accurately predict wave drag. Using an
appropriate near-field method, the twin fuselage’s favorable interference at
optimal separation was small (less than 2 percent drag reduction) while the minimum practical cabin
cross-section created a large fineness ratio penalty for the 100 to 200 passenger size. The twin fuselages’
increased surface area skin friction and increased cross-section wave drag overwhelmed the possible wing
structural benefit, prompting the elimination of this configuration.

3.1.2.1.6 Mother/Daughter Configuration

The mother/daughter concept involves two vehicles: a “daughter” optimized for cruise (high wing
loading, thrust sized for cruise) and not subject to any takeoff field constraints, and a “mother” optimized
for takeoff and landing performance (low wing loading, thrust sized for takeoff) without prioritizing
cruise efficiency. Operations would involve the two vehicles taking off in tandem, relying partly on the
mother’s thrust for takeoff and climb. The pair then separates upon attaining cruise altitude, at which
point the daughter cruises efficiently and the mother returns to its home airport, most likely to serve
several daughters and perhaps returning unmanned. The daughter could similarly rendezvous with another
mother at its destination airport if additional power is needed for landing. Comparison of the baseline
configuration and a daughter (nontakeoff constrained) version of it, developed for this purpose, showed
that takeoff was not a strongly limiting constraint. In other words, the takeoff and cruise thrust
requirements of the baseline were closely balanced. Entirely new airframe and engine designs that did not
already mitigate takeoff requirements would be required to understand the full benefits of no takeoff
requirements. Since the mother/daughter configurations would require different propulsion systems,
aerodynamics, etc., a judgment was made that the added complexity of a second vehicle did not warrant
further investigation.

3.1.2.2 Results

Analysis and consideration of each alternative configuration resulted in each one’s elimination.
Table 3 summarizes the pros and cons of each alternative configuration as it was compared and analyzed
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in regards to the initial configuration design. Within the family of configurations, the T-tail configuration
was eliminated due to a lack of substantial benefits, and the engine over wing design was eliminated due
to a two point reduction in L/D. The oblique wing configuration promised high aerodynamic
performance, but the design was ultimately eliminated due to the weight penalty of the rotation
mechanism and the sonic boom design difficulties. The twin fuselage configuration provided potential
weight savings, but these benefits were not enough to outweigh the boom design complications to achieve
the N+3 sonic boom goal. And finally, the mother/daughter configuration was eliminated due to
complexity. As a result, the “as-drawn” initial configuration was used to perform additional sizing and
mission analysis and lofted in CATIA V5 as the final configuration as seen in Section 3.3.

TABLE 3.—PROS AND CONS OF EACH ALTERNATIVE CONFIGURATION
AS COMPARED TO THE INITIAL CONFIGURATION

Configurations Pros _____|Cons

T-Tail *Eliminate inverted v structure s ing welght
*Raise &ft lift and stretch boom *Flutter
signature sLarger fin
*Less interference drag

EngnesOverW}

*Eliminate nacelle shock
contribution to boom

*Shield inlet fan noise with wing
*Lower inverted V-tail angle, less
concern for transonic choking

*Propulsion efficiency
*Mo campression lift

Chligque Wing I

*Smaller wing, good |ow-speed
performance

*Less thrust, can mave ta twin
*Better transonic perf ormance
{lower fineness ratio)
*Efficient multi-mach capahility

*iwing pivat weight and
reliability

*Propulsion integration
*Landing gear integration
*Complicates boom design
[lift starts earlier)

Twin Fuselage ;

*Drag henefits (|ower overall
fineness ratio, Busemann hiplane
interference)

*Less wing structure reguired to
hold engines (no cantilevers)

*Only works for larger

num bers of passengers (50
pax per fuselage inefficient)
*Low-hoom configuration
requires as much length as
nossible, twin fuse spreads
wolume out laterally

IWlot her/Daughter
Mother/

Daughter

*Removes takeoff requirements for
cruise vehicle

*Requires two separate
wehicles be designed, huilt,
and operated

3.2  Design Space Trade Studies With RCD (WBS 3.2)
3.21 RCD Low Boom Design Approach (WBS 3.2.1)

The first set of trade studies defined the inverted V-tail in terms of its longitudinal location, span,
area, dihedral and leading edge sweep angles, and thickness-to-chord (t/c) ratio. An analogous set of
trades was performed to define the geometry of the T-tail configuration as mentioned in Section 3.1.2.
The approach was to identify the configuration that minimized drag, then adjust each geometry parameter
individually to reduce sonic boom. By focusing on both drag and sonic boom, these trades constituted the
first step in reducing the sonic boom associated with the inverted V-tail and T-tail configurations.

This initial set of trades transitioned the inverted V-tail configuration from a purely minimum-drag design
to one with reduced sonic boom. It defined the planform and provided the starting point for the subsequent
shape optimization process, which further reduced boom through finer adjustments in the shape of the lifting
surfaces and ultimately enabled the inverted V-tail configuration to meet the N+3 noise goal.
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3.2.2 RCD Model Development (WBS 3.2.1)
3221 Aero/Boom Shape Optimization
32211 Description

Rapid Conceptual Design (RCD) was used to modify the lift distribution of the as-drawn
configuration such that its boom signature conformed to the prescribed target. This model included
induced and wave drag, ground signature, and equivalent area analyses to enable shaping to account for
both drag and boom. This shape optimization was performed with the planform fixed in accordance with
the results of the tail-location trade described above. Its goal was to ensure that the configuration could be
shaped to meet the N+3 sonic boom goal of 70 PLdB.

3.2.2.1.2 Results

The resulting improvement in the as-drawn configuration’s sonic boom signature is illustrated in
Figure 13. The left-hand plot corresponds to the sonic boom signature of the configuration prior to
optimization (which resulted from coarse geometry trades performed previously). It was characterized by
the large, 1.38-psf shock (increase in overpressure) occurring at 200 msec. The sonic boom signature
corresponding to the resultant configuration, in which the maximum shock strength has been reduced to
0.29 psf, is shown in the right-hand plot in Figure 13.

The consequence of this improvement in sonic boom signature was a reduction in L/D from 10.1 to
8.0 (at beginning of cruise). This decline incurred because the initial shape did not meet the constraints
required for sonic boom. The aero/boom shape optimization process yielded the five Pareto points in
Figure 14, which represent the trade space between sonic boom and L/D.

2 Initial Signature: 2 Optimized Signature:
| max shock = 1.38 psf I max shock = 0.29 psf
1 L/D=10.1 1 L/D=8.0
| 1 N | 1 '\l\ .f\I\
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Figure 13.—Undertracking ground signatures, before and after aero/boom shape optimization.
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Figure 14.—Shock strength versus L/D tradeoff points.
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This aero/boom shape optimization yielded two important results regarding the ability of the N+3
vehicle to meet its goals. First, it verified that the aircraft’s lifting surfaces can be shaped to meet the
70-PLdB boom target. Second, it quantified the aerodynamic cost of doing so in terms of L/D. The latter
result, shown to be a 21 percent reduction (from 10.1 to 8.0), can be offset by aerodynamic technologies
such as Natural Laminar Flow (NLF) (to be described in Section 3.2.4.2) to enable a low-boom
configuration to continue to meet N+3 range goals of over 4000 nmi.

3.2.2.2 Sizing and Mission Performance

LM’s Rapid Conceptual Design (RCD) process was also used to size the as-drawn configuration to
achieve maximum range subject to fuel volume and takeoff performance constraints. The integrated,
multidisciplinary sizing model included multiple acrodynamic components (profile, induced, and wave
drag), a parametric weights buildup, and mission performance and balanced field length (BFL) analyses.
In addition to sizing, it facilitated assessments of N+3 technology benefits at the system (vehicle) level.

The sizing mission for the N+3 vehicle is illustrated in Figure 15 and consisted of the following
segments:

Cruise Mission Range
below 5000 ft on approach/landing)

Warm-up and takeoff—3 min at idle + 1 min at max power

Subsonic climb to 10,000 ft at 250 kn calibrated air speed (KCAS) (with afterburning)
Level acceleration at 10,000 ft: Mach 0.45 to Mach 0.66 (365 kn equivalent air speed (KEAS)) (with afterburning)
Subsonic climb and acceleration (maximum Mach 0.9) to 24,700 ft (with afterburning)
Level transonic acceleration to 450 KEAS (constant q=685 psf) (with afterburning)
Supersonic climb and acceleration at 450 KEAS until Mach 1.6 (with afterburning)
Cruise at Mach 1.6

Level deceleration to Mach 0.9

Descend at 4000 ft/min to 5,000 ft (constant 250 KEAS from 10,000 to 5,000 ft)

10. 5 min loiter awaiting clearance (no distance credit)

11. Descend to land (no distance credit)

12. Climb to 5000 ft (250 KCAS) after wave-off (no distance credit)

13. 5 min Loiter awaiting clearance (no distance credit)

14. Subsonic climb to 35,000 ft diversion altitude (250 KCAS to 10,000 ft, then 250 KEAS)
15. Diversion at best cruise mach

16. Descend at 4000 ft/min to 5,000 ft (250 KEAS above 10,000 ft, then 250 KCAS)

17. Descend to land (no distance credit)

18. Land with fuel reserves to loiter 30 min at 5,000 ft

CoNooprwWNE

Figure 15.—N+3 sizing mission.
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Figure 16.—N+3 Sizing space and results.

At a gross takeoff weight (GTOW) of 285,000 1b, the sized N+3 configuration achieved a range of
4640 nmi using conventional fuel tanks (i.e., without expanding fuel capacity through Biologically
Inspired Morphing Structure or other technologies). Its thrust-to-weight ratio (T/W) and wing loading
(W/S) were 0.34 and 92 psf, respectively. This range lies well within the N+3 goal bounds of 4000 to
5500 nmi. The two-dimensional sizing design space (T/W, W/S) is shown graphically in Figure 16, on
which the orange and yellow circles correspond to the as-drawn and sized configurations, respectively. As
indicated on the graph, the sized configuration is fuel volume constrained; its internal fuel volume, when
full, corresponds to exactly 285,000 1b. GTOW. Configurations in the shaded blue area of the graph have
insufficient fuel volume to take off at this weight. Configurations in the red shaded area of the graph in
Figure 24 had balanced field lengths (BFL) exceeding 11,000 ft; the sized configuration’s BFL was
9,770 ft. Its all-engines-operating (AEO) and FAR 25 takeoff field lengths were 9040 and 10,400 ft,
respectively. Therefore, while sizing based on FAR25 field length would reduce margin relative to the
11,000 ft limit, doing so would yield the same (sized) configuration in terms of T/W and W/S. Table 4
details the sized configuration’s mission performance according to individual segments.

TABLE 4.—SIZED N+3 CONFIGURATION MISSION PERFORMANCE

Phase Initial alt Initial Initial wt. | Phase dist | Phase time | Phase fuel | Avg. L/D | Avg. SFC
(ft) Mach (Ib) (nmi) (min) (Ib) [(Ib/hr)/1b]

1. Warm-up and takeoff 0 0 285,000 | - | - 851 | - | -
2. Climb to 10,000 0 0.381 284,149 8 2 2,913 10.6 1.08
3. Level accel 10,000 0.453 281,236 4 1 951 10.5 1.12
4. Climb and accel 10,000 0.665 280,285 24 3 3,892 10.5 1.20
5. Transonic accel 24,700 0.900 276,393 10 1 1,239 10.3 1.26
6. Supersonic accel 24,700 1.11 275,154 40 3 4,083 11.5 1.28
7. Supersonic cruise 40,500 1.60 271,116 4,447 293 104,127 8.71 0.881
8. Level decel 53,600 1.60 166,989 40 3 147 9.24 0.105
9. Descend and decel 53,600 0.900 166,842 77 12 921 10.8 1.72
10. 5-min loiter 5,000 0.343 165,921 |  ------- 5 902 10.9 0.707
11. Descend to land 5,000 0.342 165,019 | - 4 440 11.2 1.21
12. to 18. Diversion and reserves 0 | - 164,579 200 68 12,849 | - | e
Mission totals 4,850 395 133,270
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The sensitivity of the sized N+3 vehicle’s range to changes in maximum takeoff weight (MTOW) is
illustrated in Figure 17. The blue line on the figure illustrates the nearly linear relationship between
MTOW and range. Each 1000 Ib. of additional weight yields approximately 11.2 nmi of added range; this
translates to 89.3 1b per mile. The red line and right-hand axis on Figure 17 denote passenger-miles flown
per Ib. fuel on each mission, an efficiency metric which decreases with additional weight. The
configuration was re-sized in accordance with the fuel volume and takeoff field constraints to produce the
results in Figure 17. Extrapolating the red (efficiency) line on the plot suggests that ranges up to
5000 nmi, which would correspond to a MTOW of approximately 320,000 b, are possible while meeting
or exceeding N+3’s minimum efficiency goal of 3.5 pax*nmi per Ib. fuel.

Reducing the maximum allowable takeoff field, which was originally 11,000 ft during sizing, has no
impact until the requirement falls below the sized configuration’s takeoff field length of 9.970 ft. As the
field performance gets more restrictive, it requires increasing the thrust-to-weight ratio and decreasing
wing loading, as shown in Figure 18. Both of these lead to inefficient cruise, decreasing the achievable

mission range as illustrated in Figure 19. This analysis was performed with a constant MTOW of
285,000 Ib.
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Finally, the sensitivities of the sized N+3 configuration’s range to changes in empty weight and
specific fuel consumption (SFC) were evaluated by perturbing each of those quantities by 5 percent and
resizing the vehicle to the same constraints. The results of this study are summarized in Figure 20. A
5 percent increase or decrease in SFC resulted in a range of 4370 or 4940 nmi, respectively. The resultant
range due to a 5 percent increase or decrease in empty weight was 4440 or 4880 nmi, respectively. The
corresponding, local sensitivities are thus —57 nmi per percent increase in SFC, and —44 nmi per percent
increase in empty weight.

3.2.3 RCD Model Integration with Technology Inputs (WBS 3.2.2)
3.23.1 Description

The same N+3 vehicle model used for sizing also incorporated analysis components specific to some
of the technologies that will enhance the vehicle’s performance. Namely, GE’s VCE and the aerodynamic
benefits of NLF were represented in the sizing RCD model itself.
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Figure 21.—NLF schematic.

RCD integration of the FLF4-L1 engine was achieved by including a cycle deck provided by GE
directly in the mission performance component of the model. Also, takeoff thrust was evaluated based on
that deck and accounted for in the takeoff field performance analysis within the sizing model. The effects
of NLF were captured using a friction drag analysis that supported both laminar and turbulent flow
assumptions on all surfaces, top and bottom. Transition points, illustrated schematically in Figure 21,
were varied parametrically and the aircraft’s friction drag based on appropriately weighted sums of
laminar and turbulent skin friction coefficients.

3.23.2 Results
Results of this task are described in the following Section 3.2.4.

3.24 Technology Benefit/Impact Assessment (WBS 3.2.4)
3.24.1 GE VCE
32411 Description

Performances of both the initial and sized configurations were evaluated using GE’s VCE, which
helps the N+3 vehicle meet its goals in two ways. First, it is lighter than a similarly-powered turbofan.
This reduces the aircraft’s empty weight fraction, thereby permitting an equal increase in fuel fraction and
longer range, compared to a vehicle designed for a conventional engine.

32412 Results

GE’s VCE impact on range performance was investigated by sizing an alternate configuration, based
on a GE turbofan engine, to the same fuel volume and takeoff constraints. A comparison of the sized N+3
configuration, with its VCE, and the turbofan-based alternate is summarized in Table 5.

TABLE 5.—VCE VERSUS TURBOFAN SIZED CONFIGURATION PERFORMANCE

VCE Alternate Turbofan
Range 4640 nmi 4400 nmi
T/W (total thrust) 0.34 (98,000 Ib) 0.38 (108,000 1b)
W/S (wing area) 92 (3090 ft%) 94 (3040 ft°)
Empty weight 129,600 1b 131,500 1b
Mean cruise SFC (cruise fuel) 2.32% more than AT 2.27% less than VCE
BFL 9,770 ft 8,720 ft
Time to M0.9 / M1.6 (with AB) 5.8 min / 10.1 min 4.9 min / 8.1 min

As shown in the table, the VCE yields greater range compared to the turbofan, 4640 nmi versus 4400,
primarily due to the increased weight of the turbofan. Even though the VCE does cruise at a slightly higher
SFC, fixing the GTOW (285,000 Ib) resulted in more fuel available for the corresponding configuration. In re-
sizing for the turbofan, the consequent weight gain was partially offset by shrinking the wing slightly (W/S
increased from 92 to 94 psf), which also improves cruise efficiency slightly. However, further increases in
W/S result in a net loss of range due to reduced fuel volume. The turbofan's power does reduce time to Mach
0.9 and 1.6 by 1 and 2 min, respectively, and reduce BFL by approximately 1000 ft, but the VCE more
effectively helps the N+3 vehicle meet its range performance goal.
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Figure 23.—Thrust augmentation (TA) impact on sizing mission time and range.

Mission performance was evaluated using the thrust augmentation technology during the climb and
acceleration segments of the sizing mission (Figure 15, segments 2 to 6). Comparing this performance
with that attained using max dry power showed that thrust augmentation reduced the time from takeoff to
beginning of cruise by over 50 percent. As shown in Figure 25, thrust augmentation enables the N+3
vehicle to reach Mach 1.6 10.1 min after takeoff. Doing so via the same climb profile would take
22.6 min using max dry power. Similarly, the aircraft reaches Mach 0.9 (the beginning of its transonic
acceleration phase) in 5.8 min using the thrust augmentation and 11.2 min without them.

The impact of employing thrust augmentation during climb and acceleration on overall range and
mission fuel is illustrated in Figure 23. An analogous mission flown entirely on max dry power takes 16
min longer (340 versus 324 min.) and reaches 172 miles farther (4812 versus 4640 nmi) than the sizing
mission as flown (i.e., with thrust augmentation). The 3.7 percent increase in range is attributable to fuel
savings achieved by limiting operations to max dry power.

In terms of operational flexibility, the more important benefit of thrust augmentation technology is
that it allows the level transonic acceleration to be moved above commercial jet traffic if necessary. This
is exhibited in Figure 24, which shows the time necessary to reach altitudes up to 40,000 ft by following
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the sizing mission profile to 10,000 ft and climbing at Mach 0.9 thereafter. As indicated by the green line
on the graph, the N+3 vehicle with thrust augmentation activated reaches 40,000 ft in only 22 min.
Conversely, absent the thrust augmentation, the vehicle is effectively forced to cruise-climb starting from
near 32,000 ft. A direct consequence of this is that, as the transonic acceleration is delayed to 32,000 ft or
higher, the climb phase accounts for a substantially larger fraction of mission time and available fuel, as
illustrated in Figure 25. The plot on that figure depicts the total fuel consumption, from takeoff through
subsonic climb, as a function of the altitude at which acceleration takes place. As the time and fuel spent
during the subsonic climb grow to dominate the mission, the ultimate effect is to compromise total
mission range. This undesirable result is shown on the plot of mission range versus transonic acceleration
altitude in Figure 26.

These results demonstrate that, if supersonic flight were sometimes restricted by ATC (air traffic
control) limitations until above most subsonic traffic, thrust augmentation is necessary to do so without
compromising the N+3 vehicle’s speed and range. This is particularly important in light of the airport and
airspace analysis performed by LM Transportation and Security Solutions (to be described in Section
3.4.2), which showed that the greatest potential for conflicts between N+3 vehicles and existing subsonic
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traffic exists during transonic acceleration and supersonic climb. The VCE can minimize this risk by
moving these segments above existing traffic while still enabling the N+3 vehicle to meet its range goal.

3.24.2 NLF
3.24.21 Description

Experimentation by Bill Saric and Helen Reed from Texas A&M showed that the use of Distributed
Roughness Elements (DREs) can delay flow transition to produce significant regions of swept wing
laminar flow. The impact of this technology and unswept NLF on the sized N+3 configuration was
investigated by parametrically varying the transition point, in terms of percent of chord, in analyzing the
aircraft’s friction drag. For each aircraft component (wing, fuselage, etc.), skin friction coefficients were
computed for both laminar and turbulent flow. Each component’s total skin friction and drag coefficients
were calculated using a sum weighted according to the assumed transition point.

3.24.2.2 Results

The effects of laminar flow on the N+3 vehicle’s friction drag coefficient and total drag polars is
visible in Figure 27 and Figure 28, respectively. Both were evaluated at a cruise condition of Mach 1.6
and 50,000 ft altitude. Of particular interest was the improvement in lift-to-drag ratio (L/D) attained
through NLF. Without this technology, the N+3’s cruise CL at 50,000 ft during its sizing mission is
0.145. As highlighted on Figure 28(b), inducing laminar flow over 40 percent of chord length leads to an
L/D increase of 2, which would offset the drop in lift-to-drag ratio (L/D) observed as a result of shaping
for sonic boom (described previously in Section 3.2.2.1). Therefore, this technology is critical in ensuring
that a vehicle shaped to comply with the N+3 noise goal of 70 PLdB can also achieve the sized
configuration’s range of over 4600 nmi.

The performance benefits of friction drag reduction achieved through NLF are summarized in Figure
29 and Figure 30. The first figure is a graph of mission range and passenger efficiency, again defined as
passenger-miles per lb. Fuel, as a function of the flow transition point with GTOW fixed at 285,000 1b
The solid blue line shows the increase in mission range if the sized configuration’s T/W and W/S are
maintained at 0.34 and 0.92, respectively, while the dotted blue line depicts the additional range benefit
that would result from re-sizing the configuration to the same constraints. In the latter case, the range
benefit of additional fuel volume outweighs the detriment of more wetted area, which is lessened by
maintaining laminar flow. This is evidenced by the slightly increased wing size (reduced W/S). Finally,
the solid and dashed red lines show the increase in passenger efficiency, again corresponding to
maintaining and resizing T/W and W/S, respectively.
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NLF also has the effect of reducing the fuel, and consequently the gross takeoff weight, of a fixed-
length mission, as shown in Figure 30. The dark and light blue lines on the plot correspond to the sized
configuration’s GTOW and fuel weight, respectively, for its 4640-nmi mission. The red line depicts the
consequent increase in efficiency, which is attributable entirely to the decrease in fuel required.
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3.25 Quantified Analysis (WBS 3.2.3)

3.251 Description

The sonic boom ground signatures of the N+3 aircraft were originally computed by modeling shock
waves as either thin shocks or as simple “1/P Taylor structure” shocks. In an additional study by Wyle
Laboratories and Penn State University, the boom signatures were completed by calculation of actual
shock structures accounting for molecular relaxation effects, and the variations associated with
atmospheric turbulence. The effect of lateral offset of the boom, i.¢., propagation off track as well as
under track, was examined. The key result of this analysis was perceived loudness, PLdB, of the booms
accounting for those real world effects.

Three near-field signatures provided by LM to Wyle and PSU and served as the starting point for this
analysis. Specifically, they were target (desired) signatures derived from SEEB corresponding to loudness
levels of 80, 75, and 70 PLdB in accordance with N+3 goals. The first two were undertrack signatures
while the last one was derived off-track at 40° azimuth. Figure 31 shows those signatures, normalized as
F-functions. The shorter names noted in the figure captions (“denoted Sigl,” etc.) are to refer to these
signatures in this report. Flight conditions for all three are Mach 1.6 at 48,000 ft in the standard
atmosphere (Ref. 6).

NASA/CR—2010-216796 23



el | .

. Vil
g N |'|,', |'|I||'|'.'I,l 1

? 1 l|r|”||JII|IIIIIIIII|I F _

s ||',||'||'| }

Ea Wi 1
I-.:]- -
=30 L

-.E 4 _u,.-:ilcr\c H |

a. LMBin_N3sigl.txt, denoted Sigl

F-funetion, sigmatume ]

Fgi | o i k

i } A -m‘."v'"‘f“'ﬁ“F }

- A

g A — —

§ -ab L\"\"'.‘"I"I _
-l i
o . . .

I

b. LMEBin N3sig? txt, denoted Sig2

F-furetioe, siguatume 3

Fefunatdon, sger|fees
-
|

- BN ] ) Lo 154 ] N JIEE |
Time, SE0ORCS

c. LMEm_MN3sig3.txt, denoted Sig3

Figure 31.—F-functions for three configurations.

Figure 32 and Figure 33 show nominal ground booms. These were computed using PCBoom3, 4 for
those flight conditions. Figure 32 shows booms with thin shocks, while Figure 33 incorporates 1/P Taylor
shock structures. Both include a ground reflection factor of 1.9. Note that the individual shocks in the F-
functions are still distinct: they have not coalesced. Thickening (Figure 33) smoothes them so that the
ground booms have the appearance of ramp signatures. The Perceived Loudness levels should be
regarded as qualitative, since the frequency content of a Taylor shock is not the same as that of a
relaxation shock.
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Three propagation effects were considered and are addressed in Sections 3.2.5.2, 3.2.5.2.2 and
3.2.5.2.3:

e Shock structures due to molecular relaxation atmospheric absorption
e The effects of turbulence
e The effects of off-track propagation.

3.25.2 Results—Effects of Molecular Relaxation
3.25.2.1 Effects of Molecular Relaxation

Loudness of sonic booms (Ref. 7) is determined primarily by the structure of the shock waves, which
contain the high frequency audible components. The structure is governed by a balance between nonlinear
steepening and molecular absorption, quantified by the Burgers equation (Ref. 8). PCBoom6 (Ref. 9)
contains a Burgers solver, which uses a mixed time and frequency domain algorithm similar to that
devised by Anderson (Ref. 10). Molecular absorption is defined by the current ANSI/ASA standard
(Ref. 11).

The three signatures have been processed by PCBoom6's Burgers solver to obtain ground signatures
for two humidity conditions: 50 percent, representing a typical low-absorption condition that occurs most
of the time, and 5 percent, representing dry, high-humidity conditions. The analysis procedure is to first
compute the thin-shock solution at 47,000 ft (1000 ft below the flight altitude), then begin the Burgers
calculation. The reason for beginning the calculation a short distance away from the flight path is to avoid
anomalies associated with the Anderson-like algorithm in regions of very high wave pressure.

Figure 34 and Figure 35 illustrate the booms for the 50 and 5 percent humidity cases. Note that their
appearance is similar to the Taylor-thickened booms: the same shape as the thin shock solutions (Figure
33) but with the shocks smoothed. Table 6 summarizes the loudness of the three booms and three types of
thickening. Booms under dry (high absorption) conditions are considerably less loud, by about 8 dB for
these examples, than under moist (low absorption) conditions. The nominal 1/P Taylor structure booms
fall about midway between the extremes.

TABLE 6.—_SUMMARY OF LOUDNESS, PLdB

Shock Type Sigl Sig2 Sig3
Taylor 89.4 82.9 76.3
50% RH 94.1 87.6 82.7
5% RH 85.8 79.7 74.6
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3.25.2.2 Effects of Atmospheric Turbulence

Atmospheric turbulence is known to distort sonic booms. Figure 36 is a classic NASA measurement
result, showing booms measured under calm and turbulent conditions (Ref. 12). There is a
considerable body of literature and analysis on the specific effects of turbulence on booms. Early
predictive models tend to be statistical in nature, which makes it difficult to the estimate of the effects on
loudness.

Empirical filters have, however, recently been developed for the effect of individual realizations of
turbulence (Refs. 13 to 15), the loudness of which can be computed. Ten such filters have been applied to
each of the relaxation-thickened booms in Figure 37 and Figure 38. Figure 37 shows two of these
applications, a “peaking” and a "rounding" instance applied to Sig 1, 50 percent humidity. The original
boom, from Figure 37(a), is drawn in blue and the turbulent-distorted boom is drawn in black.

Table 7 shows the Perceived Loudness for all six ground signatures (Sigl, Sig2 and Sig3, each at
50 percent and 5 percent relative humidity) and the ten realizations. The minimum, maximum,
average and standard deviation (sigma) are shown for the ten turbulence realizations. Note that
the average of each of the turbulent-distorted booms is always less than that of the corresponding
nondistorted boom. The range of loudness from minimum to maximum for each boom is up to 10 dB. It
should be noted that the turbulence filters are based on flight test data that, in general, had less distortion
than seen in other tests such as that shown in Figure 36. While it is expected that the average loudness of
booms would follow the trend of small reduction (or possibly no reduction), variations of individual
booms may be greater than computed here.
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Figure 36.—Distortion of sonic booms by turbulence.
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TABLE 7.—LOUDNESS FOR ALL GROUND SIGNATURES, VARIOUS TURBULENCE REALIZATIONS

Signature and relative humidity
Turbulence Sigl, 50% Sigl, 5% Sig2, 50% Sig2, 5% Sig3, 50% Sig3, 5%
None 94.10 85.81 87.56 79.72 82.70 74.64
1 92.28 85.50 85.77 79.58 81.13 73.37
2 87.16 81.01 80.99 75.60 74.85 6791
3 95.01 88.50 89.19 82.90 84.76 77.62
4 87.79 79.83 81.43 74.19 76.78 68.26
5 92.40 83.43 84.80 76.65 81.04 72.62
6 92.99 86.00 85.20 78.99 81.87 74.48
7 94.17 86.46 86.60 79.95 83.33 75.55
8 94.43 86.34 86.36 79.61 83.49 75.71
9 94.55 86.99 87.11 80.25 83.88 7591
10 93.73 85.71 85.80 78.88 82.79 74.96
Minimum 87.16 81.01 80.99 74.19 74.85 67.91
Maximum 95.01 88.50 89.19 82.90 84.76 77.62
Average 92.40 84.95 85.29 78.61 81.33 73.60
Sigma 2.65 2.59 2.36 241 3.03 3.07
3.25.23 Off-Track Booms

Off-track boom propagation was predicted by using the under-track F-functions at lateral azimuths, in
10° increments, out to lateral cutoff of 49.8°. Physically, roll angles off-track generally have a substantial
reduction in impulse due to lift reducing with the cosine of the roll angle degrees from under-track.
Therefore actual off-track sonic boom generally decreases in impulse; however, shaped booms (non N-
wave) can decrease or increase in loudness depending on how well their shaping is maintained at other
roll angles (a very configuration-specific dependency). The following indicates just one difficulty of
maintaining good off-track shaping: an F-function that works under-track may work (Sig3) or may not
work off-track (Sigl and Sig2). Figure 41 shows the ground signatures for Sigl 50 percent humidity. The
peak overpressure and perceived loudness of each boom is presented in Table 8. Note that the peak
pressure progressively decreases across the carpet (due to the longer propagation distance), as expected,
but that loudness increases. The reason for this is apparent from the signatures in Figure 38: the off-track
positions, with their longer propagation distances, are beyond the design point for the under-track ground
signature. The individual steps, which did not coalesce under track, progressively coalesce off-track. At
the carpet edge most of the steps at the bow of Sigl and all of the steps at the tail have coalesced into
single shocks. The same coalescence occurs for Sig2, with peak pressure and perceived loudness shown
in Table 9. On the other hand, Sig3 was intentionally designed with a lower slope in its ramp because it
was shaped for the roll angle furthest off-track, which also results in good shaping at lower coalescence
everywhere else. Table 10 shows the peak pressure and perceived loudness of Sig3 across the track. Both
decrease toward the carpet edge. Note that this is a coalescence issue, independent of the humidity and
shock structure.

The off-track calculation is approximate because a single under-track F-function was used at all
azimuths, while a physical configuration’s F-function changes off-track both from the cosine drop-off in
overall lift and from asymmetric changes in the distribution of lift and volume at each roll angle. It is
important that optimal designs be developed off-track as well as under-track.

TABLE 8§.—BOOM MAGNITUDE ACROSS CARPET, Sigl 50 PERCENT HUMIDITY

) Pmax Loudness
©) (pst) (PLdB)
0 1.56 94.10

10 1.54 95.16
20 1.50 95.63
30 1.43 96.84
40 1.31 98.51
49.8 1.03 99.48
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TABLE 9.—BOOM MAGNITUDE ACROSS CARPET, Sig2 50 PERCENT HUMIDITY

) Pmax Loudness
©) (psf) (PLdB)
0 1.53 85.91

10 1.52 85.89
20 1.48 85.69
30 1.41 86.68
40 1.29 90.44
49.8 1.02 96.03

TABLE 10.—BOOM MAGNITUDE ACROSS CARPET, Sig3 50 PERCENT HUMIDITY

) Pmax Loudness
©) (psf) (PLdB)
0 0.97 82.70

10 0.96 81.11
20 0.93 80.25
30 0.88 78.65
40 0.81 76.79
49.8 0.64 76.50

3.25.3 Conclusions

Ground booms accounting for molecular relaxation shock structure, at 50 and 5 percent relative
humidity, have been computed for three nearfield signatures. Thin shock and 1/P Taylor shock signatures
were also presented for comparison. Loudness results are presented and discussed. Humidity has a clear
effect on the loudness of booms. Under dry conditions (5 percent RH) the sample booms are about 8§ dB
less loud than under moist/typical (50 percent RH) conditions. Loudness of the nominal 1/P Taylor shock
booms is about midway between moist and dry relaxation shock booms.

The effect of turbulence was evaluated by applying filters to the under-track booms for ten
realizations of turbulence. This turbulence set yielded a slight decrease in average loudness, but with
individual variations of up to plus or minus 5 dB. The sample turbulence set is modest in amplitude, and
real-world turbulent variations may be bigger. The turbulence model used (Ref. 13 to 15) should be
expanded to cover a wider range of atmospheric conditions.

Off-track propagation was examined, assuming the under-track F-functions applied at all azimuths.
For booms Sigl and Sig2 the longer propagation distances off-track resulted in partial coalescence of
shocks, losing the shaping effect and yielding higher perceived loudness than under track.

Coalescence did not occur for the lower amplitude Sig3, so its loudness did decrease off-track across

the carpet. These off-track trends used to same F-function for all roll angles, but a real configuration’s F-
function changes considerably since lift drops off with cosine of roll angle and the distribution of volume
and lift changes at every roll angle. Still, it illustrates that low boom shaping must be developed off-track
as well as under-track. Finally with regard to low boom, variations in humidity, and mild turbulence were
investigated. Variations of +2 PLdb (turbulence peak) to —15 PLdB (turbulence and humidity rounding)
were seen relative to 50 percent humidity Burgers analysis. Strong turbulence has changed N-wave
average loudness as much as —6 PLdB along with greater scatter in loudness. While humidity variations
are on average close to the 50 percent humidity level, there are other uncertainties (atmospheric winds,
greater rounding/over-prediction of N-waves, ground reflection arrival time rounding) that seem to all
push in the quieter direction. Since this result comes to us at the end of the program, hereafter we will
carry a —4 to —16 PLdB uncertainty in “real” loudness relative to molecular relaxation loudness
calculations (or more approximately +2 to —11 PLdB uncertainty from 1/dp Taylor loudness).
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3.3 Final Configuration Definition (WBS 3.1.3)

331 Loft
3311 Description

Sizing and mission performance from Section 3.2.2.2 drove the final configuration loft. The drooped
nose in the initial configuration reduced the vehicle length, but this was not enough to overcome the
added complexity of the shape. A straighter nose may cause difficulties with pilot visibility, but this will
be solved with the use of Synthetic Vision as the design moves closer to reality. As a result, the final
configuration is shown with a reduction in the drooped nose.

3.3.1.2 Results

The RCD process was also used to size the final configuration to meet the mission, as detailed in
Section 3.2.2.2. The final configuration was sized to have a gross takeoff weight was 285,000 Ib, with a
thrust to weight ratio of 0.34 and a wing loading of 92 psf. The final configuration with all included
changes is shown in Figure 39.

The final wing, canard and tails were optimized to reduce the sonic boom with minimal aerodynamic
efficiency reduction. The Rapid Conceptual Design (RCD) model and results for this boom optimization
are detailed in Section 3.2.2.1. This optimization resulted in a reduction of the 1.38 psf max shock to
0.29 psf, and a reduction in L/D from 10.1 to 8.0.
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Figure 39.—Final configuration three-view.
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3.3.2 Fuel Arrangement
3321 Description

Initially, the fuel arrangement was performed by only placing fuel within the final configuration’s
wings. However, this fuel placement was ultimately inadequate and fuel had to be placed in the forward
fuselage and V-tail. The internal fuel assessment was performed in CATIA V5.

3.3.2.2 Results

The fuel volume was found by examining space for fuel tanks in the vehicle, as shown in Figure 40.
The fuel tanks included a small tank in the fuselage to allow for some trimming of the CG through fuel
placement. The total fuel available is 133,900 Ib.

3.3.3  Aerodynamics
3331 Description

Cruise drag of the sized N+3 configuration was consisted of 3 induced, profile, and wave drag. These
items are plotted in Figure 41. The profile drag does not include shaping for low boom.

3.3.3.2 Results

The total drag polar at Mach 1.6 and 50,000 ft altitude, a flight condition near mid-cruise, is shown in
Figure 42(a). Figure 42(b) depicts a breakdown of profile drag by component (total profile drag at this
condition is CDO = 0.0843). Again, these results do not reflect shaping for low boom, as it is anticipated
that the N+3 technologies described in Sections 9.0 and 10.0 will offset the aecrodynamic penalties from
doing so. Finally, the takeoff drag polars in and out of ground effect (IGE, OGE) are shown in Figure 43.

Aft Fuselage

. . 0
e Long fuselage for low boom provides fuel volume forward of cabin, helps 4,595 gal; 31,240 Ib; 23%

achieve greater range
e Fuellocated for limited CG travel

Inboard Wing
Fore Fuselage 8,292 gal; 56,380 Ib; 42%
3,065 gal; 20,840 |b; 16%

Outboard Wing
Total Fuel = 19,700 gal (133,900 Ib) 979 gal; 6,660 Ib; 5%

Inverted V
2,765 gal; 18,810 Ib; 14%

Figure 40.—Fuel packaging for final configuration.
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Figure 41.—N+3 cruise drag components.
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Figure 42.—Aerodynamic performance at Mach 1.6, 50,000 ft.
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Structure 75,275 Operating ltems Weight 10,212
Wing 23944 Std. Oper. terns (Crew+Gear) 3 B63
Fuselage 20,733 Dutfitting Allowance 5000
Canard 1,24B Unusable Fuel and Cil 1,549
Inverted % Tail 5599
Yertical Fin 2,110 Payload 21,500
Macelles 10,403 Passengers 17 000
Landing Gear 11,235 Baggage 4,500
Propulsion 22,050 Fuel 133,928
Engines 19 482 Inbioard YWing Tank 5h 382
Accessories 412 Duthoard Wing Tank B B56
Fuel System 2,156 Inverted % Tail Tanks 18,803
Fare Fuselage Tank 20,838

Systems 15,264 Aft Fuselage Tank 31,243
Flight Cantrals 3,375
APU a7y Manufacturer's Empty Weight | 119,344
Instruments 266 Operating Empty Weight 129,556 45.5%]
Electrical/Avionics 4 483 Zero Fuel Weight 151,056
Hydraulics 3,189 Fuel Weight 133,928 47.0%
Furn./Equip.Handling 585 Payload Weight 21,500 7.5%
Environmental Control 2 486 Takeoff Gross Weight 284,984
6% Empty Weight Margin 6755

Figure 44 —Sized N+3 configuration weights statement.

3.34 Weights
3.34.1 Description

Weights of the sized N+3 configuration were based on LM Aero parametrics.

3.3.4.2 Results

A summary weights statement of the sized N+3 configuration appears in Figure 44.
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3.4  System of System Analysis (WBS 3.6)
3.4.1 Purdue

Following N+3 configuration sizing, LM provided aircraft performance data to Purdue University,
which performed a system-of-systems analysis of the vehicle’s effects on a future civil air transport
system (ATS). The goals of this study were to quantify the SSTs’ contributions to and impacts on the
ATS as a whole.

3411 Description

Purdue’s system-of-systems study predicted the effects of adding SST’s to an all-subsonic fleet,
beginning in 2030 and occurring at a constant annual rate through 2050. The baseline fleet, to which
SST’s were added, consisted of six subsonic aircraft, each in service in 2005 and representing a unique
capacity class, ranging from 20 seats (Embraer ERJ145) to over 300 (Boeing 777-200ER).The model
ATS included those routes in the WWLMINET Network (Ref. 16) that either originated or terminated in
the U.S., thereby including 180 airports. Passenger demand was modeled by increasing 2005 levels by a
fixed annual percentage. Different demand scenarios were created by varying the yearly rates of STT
addition to the fleet (either 25 or 50) and passenger demand growth (from 1 to 5 percent in 1 percent
increments).

For each future scenario, defined by specific levels of passenger demand and SST availability, Purdue
investigated two allocations of aircraft: one maximized ATS productivity (passenger * knots), the other
block-hours saved by SST passengers. The latter was calculated by comparing the SST’s block time on
each route it flew to that of a subsonic aircraft. Fleet-wide carbon dioxide (CO,) and nitrous oxide (NOx)
emissions were computed to gauge SSTs’ environmental impacts on the ATS. Finally, fleet direct
operating costs (DOC) were calculated based on estimates of each aircraft’s DOC.

34.1.2 Results

Initial studies established the trade space between SST performance benefits and environmental
impact, such as that illustrated in Figure 45. This graph shows the maximum productivity achievable as
an allowable limit of CO, is increased; they are shown in billions of passenger*knots and billions of Ib,
respectively. The values listed correspond to year 2050 in a scenario in which aircraft were allocated to
maximize productivity based on 3 percent annual passenger demand growth SST’s added at 50 per year
starting in 2025.

Subsequent studies investigated the increase in fleet DOC attributable to the SST’s as well as the
routes to which they were assigned and the number of passengers on them. Figure 46 illustrates this DOC
difference for a scenario based on 3 percent annual passenger demand growth. The left-hand graph
(Figure 46(a)) is a plot of DOC versus year for fleets in which SST’s are added at 25 and 50 per year
starting in 2025; DOC growth of an all-subsonic fleet is also included for comparison. The increase in
DOC attributable to the SST’s was calculated as the difference between the DOC of a fleet including
them to that of the baseline (all-subsonic) fleet. Figure 46(b) shows this DOC increase versus year from
2025 to 2050. The nonsmooth nature of the DOC increase is due to their being allocated in different
numbers and to different routes as they comprise more of the ATS fleet.

Figure 46 depicts DOC in millions of 2005 dollars and includes estimates of crew, landing and
navigation fees, maintenance, depreciation, interest, and insurance costs based on a 1995 NASA report
(Ref. 17). Given the sensitivity of DOC to the underlying assumptions and the volatility of individual
costs (esp. fuel), further research is necessary to refine these cost estimates and gauge them against the
value of passengers’ time saved by using SST’s.

Figure 47 contains information about the use of SST’s in the air traffic system. The left-hand plot,
Figure 47(a), shows the number of routes to which SST’s were allocated and the number of passengers on
them for the same scenario (3 percent annual passenger demand growth). The left-hand axis corresponds
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to the former, while the right-hand axis corresponds to the latter and was based on an assumption of 90
passengers per flight.

Finally, Figure 47(b) shows the average range of SST routes within the ATS. While the routes and
ranges varied as demand grew and more aircraft were added to the system. The average range was
consistently between 3,000 and 5,000 nmi. This indicates that aircraft meeting the N+3 range goal of
4,000 nmi will likely be well-suited for incorporation into the civil air transport system.
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Figure 45.—ATS productivity versus carbon dioxide.
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Figure 47.—SST trips, passengers, and range within ATC.

3.4.2 Transportation and Security Solutions

The impact of N+3 Supersonic Transports (SST’s) on airport terminal and en-route environments was
investigated by LM Transportation and Security Solutions (LM TSS). This study assessed SSTs’ impact
on airport and airspace capacity requirements, their interaction with subsonic traffic during arrival,
departure, and subsonic climb and descent phases, and consequent increases in air traffic complexity and
controller workload.

3421 Description

LM TSS’s studies were based on the RAMS Plus air traffic modeling and simulation environment,
which simulates traffic from a macro-to-micro level (gate-to-gate movements) based on the flights,
sectors, airports, airspace and air traffic, controllers, procedures that define an ATC environment. This
tool enabled an assessment of 4—D trajectory based operations in a future ATC environment in which
controllers maintained required separation standards. The study was conducted as follows:

1. Potential routes for N+3 SST operation were identified.

2. Target SST Introduction date and anticipated supersonic operations were based on traffic

forecasts

Modeled en-route air traffic, airport and terminal area operations.

4. Analyzed demand, conflict, workload and complexity assessment metrics using the RAMS Plus
simulation tool.

5. Assessed new processes and aircraft types in the future National Air Transportation System
(NAS).

98]

34211 SST Climb Profiles

The N+3’s climb profile is defined by segments 2 to 6 of the sizing mission described in Section
3.2.2.2. They are expected to climb in a similar manner to standard aircraft (Boeing 777, Airbus 340 etc)
during the initial climb out from the runway to around 10,000 ft. On reaching 10,000 ft the aircraft will
level off and undergo a first acceleration leg lasting around 80 sec during which the aircraft will
accelerate from around 290 to 450 kn.

Following the initial acceleration phase, the aircraft will resume its climb and continue to accelerate
through the lower/middle airspace to reach 535 kn at around 24,000 ft. There it will level off a second
time and enter the second acceleration phase which lasts approximately 125 sec, during which the aircraft
will accelerate up to 719 kn (Mach 1.09). Thereafter the aircraft will climb rapidly towards its expected
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cruise altitude of 61,000 ft, accelerating during the entire climb portion to reach its top speed of 917 kn
(Mach 1.6).

A comparative analysis was done to ensure that the N+3 profile generated by RAMS Plus is
consistent with the one developed by LM-Aero. Figure 48 and Figure 49 show that the two profiles are
closely calibrated. Also for the purposes of comparison a representative climb profile for subsonic
transport (A320) is depicted. As can be seen in Figure 51, from the performance standpoint the trajectory
of N+3 intersects with conventional aircraft as N+3 climbs to supersonic speed and final cruise altitude.
This could potentially create additional conflict as the flight overtakes the slower, conventional aircraft at
higher flight levels.

Figure 51 indicates that RAMS Plus profile is closely calibrated with conceptual vehicle designed by
LM Aero. It also shows comparison between N+3 and subsonic climb profiles.

3.4.2.1.2 Supersonic Descent Profiles

The N+3’s descent phase corresponds to segments 9 to 11 of the sizing mission (Section 3.2.2.2). LM
SST’s analysis was based on a constant rate of 3500 ft/min from the end of cruise (this rate was
subsequently adjusted to 4000 ft/min to maximize mission range). The aircraft decelerates rapidly during
the initial descent between the Cruise level and the entry to the transitional (middle) airspace around
36,000 ft, decreasing from supersonic cruise at 719 to 470 kn around 36,000 ft. Below that level, the AST
will decelerate at a rate similar to that of conventional aircraft.

Comparative analysis ensured that the N+3 profile generated by RAMS Plus was consistent with the
sizing mission; Figure 50 and Figure 51 show they are closely calibrated. A representative descent profile
for subsonic transport (A320) is also depicted for comparison.

Figure 50 indicates that RAMS Plus profile is closely calibrated with N+3’s mission profile. It also
shows comparison between N+3 and subsonic descent profiles.
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Figure 48.—N+3 climb profile.
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Figure 49.—N+3 mission profile (climb phase).
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Figure 50.—N+3 descent profile.
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Figure 51.—N+3 mission profile (descent phase).

3.4.2.2 Potential SST Routes

With expected technology improvements in the environmental and fuel efficiency of the N+3 SST, it
is anticipated that the aircraft is not constrained to fly only oceanic routes and can fly supersonic over
land. This makes the aircraft ideally suited for economically viable domestic routes and major
international routes. Additionally, the multi-mach N+3 aircraft will be capable of flying at speeds of up to
2 Mach, will have a maximum range of 6000 nmi, and can carry up to 200 passengers.

Research from the 1980 U.S. OTA report on the Impact of Advanced Air Transport Technology,
Chapter 3 (Variables Affecting a Supersonic Transport Market) (Ref. 1) suggests that “an aircraft’s
product is passenger (/ cargo) miles”. On this basis N+3 can improve productivity using faster aircraft
with the same number of ‘seats’ but with significantly shorter flying time thus achieving higher passenger
miles per hour than a conventional operation. Additional factors also come into play, particularly relating
to economic or social factors for key city-pairs or flight operations. For the purpose of this study it was
decided to constrain the route allocation based on the aircraft productivity measure of passenger miles per
hour, without distinguishing different passenger value.

In order to evaluate the value of operations, a passenger factor was produced comparing the passenger
loads for two N+3 operations (a return trip) against a one-way conventional operation to produce a
passenger productivity factor. In addition to the time for a return trip, a sufficient turn-around window of
40 min was included in the calculation for the N+3.

The passenger factor for any city pair could be calculated as follows:

e PaxFactor = [[2* SS_time] + 40-min] * SS_Pax_load / [Conventional Time] *
Conventional Pax_load

e PaxFactor = Passenger factor

e SS time = Time taken by supersonic transport between city pair

e SS Pax_load = Supersonic passenger load

o Conventional time = Time taken by conventional aircraft between city pair

e Conventional Pax load = Conventional passenger load

e 40 min = Supersonic turnaround time
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Figure 52.—Potential N+3 route network.

As shown in Figure 52, the city-pairs (domestic and international) with the best passenger factor were
selected based upon the results of the calculations. Once the city pairs were identified, arrival and
departure times were adjusted to allocate suitable supersonic arrival and departure banks based on local
departure and arrival times. Twenty major U.S. Airports and 11 international destinations were identified
for potential N+3 operations. Not all of the possible origin-destination pairs are viable for N+3 due to
shorter route distance. The productivity of N+3 reduces with the shorter route distance to below
60 percent at 1000 nmi due to time lost on surface, climb and descent (Ref. 1). For example Los Angeles
to Newark and San Francisco to Newark are suitable but operations between Los Angeles and San
Francisco are not. For each viable city-pair, between four and six daily operations are included depending
on the arrival/departure banking calculations (adapted to local times) and N+3 journey time.

3.4.2.3 Modeling Air Traffic Operations

3.4.23.1 Scenario

To generate the scenario, Aircraft Situation Display to Industry (ASDI) data from August 24, 2007,
containing arrivals and departures from top 35 U.S. airports was used as a starting point. ASDI is a subset
of the Enhanced Traffic Management System (ETMS) and contains flight data from all scheduled carrier
and business jets. To create a traffic scenario representative of 2030 traffic levels, additional operations
were added based on the 2 percent annual growth rate predicted in MITRE’s Fleet Forecast. The N+3
operations were included based on the methodology described above. The resulting traffic sample
included 906 N+3 supersonic operations among the 44,000 total flights (subsonic and supersonic,
domestic and international) on a single day considered in the study.

NASA/CR—2010-216796 44



3.4.2.3.2 Airspace and Procedures

The airspace considered for these experiments is based on the 2008 NAS adaptation and contained
960 En Route sectors as can be seen Figure 53. No assumptions about future airspace changes or
modifications are considered in the scope of this study, for example big airspace (Ref. 18) that aim to
consolidate terminal area with en route arrival sectors. In the terminal area we assumed precision RNAV
(P-RNAYV) and RNP procedures will be in use. The N+3 will be capable of executing P-RNAV and will
fly great circle distance between city pairs. Area Navigation (RNAV) is a method of Instrument Flight
Rules (IFR) navigation that allows an aircraft to choose any course within a network of navigation
beacons, rather than navigating directly to and from the beacons. This can conserve flight distance, reduce
congestion, and allow flights into airports without beacons.

It was assumed in the study that NextGen airport management technology will be in place to permit
traffic to achieve the airport demand being forecasted, through a combination of precision navigation,
RNAYV sequencing and merge capabilities, and Time/trajectory Based Flow Management tools. Given
that supersonic traffic performs like conventional traffic in the arrival and departure phases, it was
concluded that no special procedures would be required in the airport and terminal regions.

3.4.2.3.3 Air Traffic Controllers

Each of the En Route control sectors has a single Radar (R-Side) Controller allocated in the
simulation. Planning Controllers or Assistants are not taken into consideration in the studies.
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3.4.2.3.4 Separations

Each ATC Controller in the model is allocated 5 nmi separation requirements and flight level
separation using RVSM separation standards. The RAMS Plus simulation tool provides a fully adaptable
set of ATC rules that can be used to provide separation assurance within any airspace volume, as well as
to manage ATM-based flow/sequence management in airspace and arrival/departure/airport systems.
Controller rules are allocated to each and every control element in the system, and in the airborne phases,
uses projected 4-D airspace tubes to predict when conflicts occur. A forward-chaining production rule
expert system provides the tool with a set of potential resolution actions which have been tuned to
represent generic Air Traffic Controllers. In the event that separation problems are identified in the
simulation involving supersonic and nonsupersonic traffic, the model has been tuned to allow supersonic
aircraft to continue unimpeded to mimic performance based services concept.

3.4.3 Results

Analysis was performed on an air traffic simulation based on 2030 projected traffic levels including
N+3 aircraft. Additional supersonic transports are added through 2050 would be expected to yield
additional arrival and departure operations. The results are described on the basis of phase of flight.

3.4.3.1 Airport and Terminal Area Operations

Despite a slight increase in the number of airport operations due to the introduction of N+3 traffic, we
do not anticipate that they will have any significant impact on the airport capacity as their performance is
very similar to subsonic transport. Research in the design of N+3 conducted by LM Aero suggests that
they will fall into either medium or heavy wake category for runway separation standards. They will not
have to be procedurally separated from other subsonic traffic in the terminal area as it is anticipated that
N+3 will be equipped with precision—RNAYV and capable to execute optimized arrival and departure
procedures in the terminal area. In the arrival phase, N+3 will exploit advanced NextGen sequence and
merge capabilities and perform in the same way as conventional traffic. Similarly, in the initial departure
phase (up to 10000 ft) the N+3 traffic will operate with similar characteristics as conventional aircraft.

Since a subsonic operation might be replaced by 2 or 3 N+3 operations (the journey time is close to
half in many cases) the arrival and departure rates increase slightly over the 24-hr period, particularly
during peak arrival and departure periods.

A sliding view of departure demand is shown in Figure 54 and Figure 55 for selected U.S. airports
where supersonic operation was defined. In both figures, blue bars represent conventional aircraft and
orange represent N+3 operations. For example, the departure rate shown at 10:40 represents the number
of departures for the period from 10:40 to 11:40 Zulu. As can be seen in most cases, the introduction of
N+3 aircraft will require some additional departure capacity at major U.S. airports during the peak hours
of conventional operations. The general trend suggests that most N+3 departures are scheduled for early
morning and will utilize unused airport capacity as during that time the demand for conventional
operations is relatively low. An exception was Honolulu airport (HNL) where introduction of N+3 will
require a higher departure capacity during the peak hours of conventional traffic.

Similar to departure demand, a sliding view of arrival demand is shown in Figure 56 and Figure 57
for selected U.S. airports where supersonic operation was defined. Again, the blue and orange bars in both
figures represent conventional and N+3 aircraft operations, respectively. For example, the arrival rate
shown at 10:40 represents the number of arrivals for the period from 10:40 to 11:40 Zulu. As can be seen
in most cases, the introduction of N+3 aircraft will require minimal additional arrival capacity at major
U.S. airports with exception of HNL where higher arrival capacity might be required.
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Figure 55.—Departure rate for selected U.S. airports. (Blue bars represent conventional aircraft and orange represent

AST operations.)
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Figure 56.—Arrival rate for selected U.S. airports. (Blue bars represent conventional aircraft and orange represent

AST operations.)
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Figure 57.—Arrival rate for selected U.S. airports. (Blue bars represent conventional aircraft and orange represent

AST operations.)

3.4.3.2 Transition Airspace Operations

Departures: The most significant impacts are expected to be observed in the transition airspace—in
particular during four key phases of the supersonic flight profile in the departure phase:

Phase 1: At around 10000 ft the N+3 will level off and undergo the first acceleration phase (from 280
to 400 kn in around 75 sec).

Phase 2: Following the initial acceleration. N+3 will climb to a second transition level around
24000 ft.

Phase 3: At 24000 ft the aircraft undergo their second acceleration phase (from 500 to 750 kn in
around 130 sec).

Phase 4: Steep supersonic climb to the ultra high airspace (typical cruise levels between 58000 and
61000 ft).

Figure 58 shows the route network analysis across different departure phases (identified using
different colors) for N+3 aircraft departing from the NAS-CONUS using 4-D trajectories. The potential
route network was described previously in Section 3.3.2.2 and assumes that great circle routings for N+3
aircraft are enabled by NextGen. Figure 59 shows route network for east coast. This figure suggests that
the route network is well separated across Phases 1, 2 and 3, and departures from one airport do not
interfere with the others. The result is consistent for even busy east coast multiplex airspace (multiple hub
airports in close proximity, for example JFK, EWR, PHL, BOS and IAD).
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Figure 59.—AST route network for the East Coast.
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3.4.3.2.1 Initial Acceleration Around 10,000 ft

Phase 1 acceleration occurs early in the N+3 profile at an altitude of 10,000 ft. As a result, during this
phase the aircraft are in dedicated departure sectors which have managed throughput and present little or
no risk of interaction with other traffic (flights follow one another out of the airport and are managed as a
sequence into higher transition sectors). It is further assumed that in a NextGen environment, departure
management capability such as Departure Flow Manager (DFM), currently in prototype stages, is
available and assists controllers with the management of a variety of departure operations.

Phase 1 supersonic operations in the NAS are restricted to only 21 departure sectors. Figure 60 shows
analysis of N+3 Phase 1 operations and conventional operations for selected departure sectors in New
York, Los Angeles and Fort Worth. The Figure indicates that although some additional sector capacity
will be required to handle N+3 operations, overall operations occur during periods with lower
conventional traffic operations. This is due to slightly earlier departure times for N+3’s to allow for
multiple return operations across a 24-hr period. This suggests that capacity exists in the departure sectors
to allow for the management of Phase 1 operation of N+3’s. As can be seen the number of operations in
these departure sectors are high as is typical of the low airspace and does not pose a significant problem
as all flights are managed in a controlled sequence (unlike upper airspace where traffic can be mixed).

In order to evaluate the potential impact of air traffic complexity and controller workload due to N+3
operations, a RAMS Plus Controller workload model was used. The model is based on a set of generic
ATC tasks generated during the simulation in response to discrete events that occur during the simulation
(e.g. entry to an ATC sector will record a number of ‘real-world” ATC tasks such as coordination, transfer
of control, initial clearances etc.). Additionally task weights can be modified according to dynamic
conditions. For example, a conflict between flights with a slow rate of convergence will require different
workload than one with a high convergence rate. During the simulation, controller tasks of varying
lengths are recorded at different times with metrics produced to evaluate the percentage loading in the
next 60-min period every 15 min during the simulation.

Figure 61 shows mean and maximum air traffic complexity and controller workload for departure
sectors impacted by N+3 operations. As can be seen, differences in air traffic complexity and controller
workloads due to Phase 1 operations are minimal with average controller workload marginally higher
across most sectors and small percentage increases in maximum percent load, which remains below
80 percent.
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Phase 1 operations v hourly flights—ZLACS
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Figure 60.—Phase 1 analysis for selected departure sectors.
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Figure 61.—Phase 1 air traffic complexity and controller workload.
3.4.3.2.2 High-Speed Climb to Supersonic Acceleration Flight Level

Phase 2 of the N+3 operations consists of a high speed climb following the initial acceleration phase
between 10000 and 23000 ft. The climb is contained within the same low level departure sectors as Phase
1 operations. Analysis reveals that for all N+3 departures from U.S. CONUS airports, only a small
percentage of departing traffic traverses more than 1 ATC sector during Phase 1 (acceleration) and Phase
2 (climb)—only 9 sectors more than the original 21 Phase 1 sectors have Phase 2 operations occurring in
them. As shown in Figure 62, Phase 2 operations occur nearer periods of peak traffic load.

As is shown in Figure 63, workload impacts remain low during Phase 2 operations. Similar to Phase
1, workload is generally 3 to 5 percent higher, with some larger increases in peak workload relating to
management of several N+3 departures during the same departure bank. As these aircraft are procedurally
separated and do not intersect with one-another, managing the N+3 traffic during Phase 2 may cause
marginal increase in controller workload. In Phase 2 operations air traffic remains organized as departure
management systems are expected to assist in the sequencing and management of flights as they are
delivered to the departure transition airspace.
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Phase 2 operations v hourly flights—ZLACS

Dnﬂﬂm

100

90
80
70
60
50

40

30
20
10

0

Svice

STce

Sv'Te

ST'TC

S¥:0¢

ST:0C

SvieT

ST'6T

S¥:8T

ST:8T

ST

ST:LT

S¥9T

ST9T

S¥'ST

ST:ST

Syl

STYT

SYET

STET

Svcl

ST:¢T

SPTT

STTT

S¥:0T

Phase 2 operations v hourly flights—ZLALA

ST:8T

| S¥iLT

| STLT

| SvioT

| ST:9T

| SPST

| STST

[ —— T

| ST:¥T

Phase 2 operations v hourly flights—ZNYJF

| SVET

| ST:ET
| sv:2T
| STt
| STT

| ST:TT

DDDDDDDDDD[I-H»}

| sv0T

100

90
80
70
60
50
40
30

20
10
0

Phase 2 operations v hourly flights—ZFWDF

[ sviee

| sT:ze

| sviTe

| ST:T2

| Svi0T

| sT0C

| Svi6T

| ST:6T

| sv8T

| sT8T

100

| sviLT

| ST:LT

| Gv:9T

| ST:9T

| GriST

| STST

| SrivT

| STHT

| steT

| ST:€T

| stieT

| STzt

| SPiTT

| STTT

| 50T

90

80
70
60
50
40
30
20

Figure 62.—Phase 2 analysis for selected departure sectors.
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Figure 63.—Phase 2 air traffic complexity and controller workload.

3.4.3.2.3 Phase 3: Acceleration toward Supersonic at 24000 ft

At 24,000 ft the N+3 aircraft levels off and accelerates from 500 to 750 kn in around 130 sec. This
particular phase occurs in mid level en route sectors and the Phase 3 operations are dispersed across
several NAS sectors. Figure 64 shows analysis of selected sectors in the Boston, Washington DC, New
York and Houston En Route ATC centers. As can be seen in the figure, N+3 operations do not
significantly increase the number of operations in these sectors over conventional operation numbers.

Figure 65 shows air traffic complexity and workload for sectors that are involved in Phase 3
operations. The air traffic complexity and controller workload is considerably higher in these sectors with
N+3 operations compared to the baseline. The increase in workload could be attributed to additional load
involved with managing rapid acceleration of supersonic aircraft.
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Phase 3 operations v hourly flights—ZBW46
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Figure 65.—Phase 3 air traffic complexity and controller workload.

34324 Phase 4: Supersonic Climb to Cruise Flight Level

Following Phase 3 acceleration, the N+3 climbs at supersonic speeds to its cruise altitude. In this
phase, it climbs through other flight levels occupied by conventional traffic flying at significantly lower
speeds. Figure 66 shows controller workload across all sectors in which N+3 supersonic climb occurs. As
can be seen, the workload is considerably higher in the scenario with N+3 operations compared to the
baseline. The results are consistent with research in the area of air traffic complexity (Ref. 19) and
suggest that situations involving overtaking aircraft can cause a greater level of complexity. Sridhar, Seth
and Grabbe (1998) (Ref. 20) suggest that speed differences of greater than 150 kn from average speed of
all aircraft in the sector increases complexity.

Analysis of conflicts between N+3 operations and conventional traffic was conducted during Phase 3
acceleration and Phase 4 supersonic climb phases. Figure 67 shows the number of conflicts identified
during Phase 3 acceleration and Phase 4 supersonic climb using a standard 5 nmi separation. As expected,
a majority of conflict situations involving the N+3 are found in the 34,000 to 39,000 ft. bands (“AST” in
the figure title connotes “Advanced Supersonic Transport,” or the N+3 aircraft). These flight levels are
most commonly used as cruising altitude for conventional aircraft. A comparison with the current number
of subsonic conflicts is suggested as an area for further investigation.

For the 12 hr period being considered in the scope of this initial study, conflict counts are relatively
low, peaking just over 50. The conflict situations are further classified by conflict characteristics,
crossing, in track, or opposite. While this is encouraging, it is felt that further detailed studies of the
interaction between N+3 and conventional traffic in these flight levels would be of great benefit. It is also
important to further evaluate the type and geometry of conflict as these factors have different impact on
complexity and controller workload.
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Figure 66.—Phase 4 air traffic complexity and controller workload.
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3.4.3.3 En Route Operations—Phase 5

N+3’s will use flight levels significantly higher than conventional traffic (over 50,000 ft) as their final
cruise altitude. At these altitudes the traffic density is expected to be relatively low therefore no
significant impact on operations is anticipated. ATC activities during this phase are also expected to be
low. For these reasons a detailed analysis of N+3 operations was not attempted during this study; one is
recommended as future work.

3.4.34 Arrival Operations—Phase 6

In the descent phase, N+3 will descend rapidly from its supersonic cruise, decelerating until reaching
the more conventional flight levels around 36,000 ft with speeds similar to conventional traffic at that
level. Because the N+3 will have to merge with conventional traffic for arrival operations, arrival
(Phase 6) interactions with those flights were considered.

Figure 68 shows the analysis of type of conflict by flight level bands for N+3 operations during arrival
phase (again referring to the vehicle as an “AST”). As it descends into the conventional airspace (>FL
39,000 ft) crossing or opposite conflicts are predominant. Sequence and merging conflicts (InTrack) become
more pronounced as the N+3 descends toward the transition and arrival airspace below 29,000 ft. A
comparison with the current number of subsonic conflicts is again suggested as an area for further
investigation.
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3.4.4 Conclusions

An investigation of how N+3 operations impact the demand for airports and airspace, based on its
performance characteristics, has been conducted. Results suggested that N+3 operations will require some
additional airport capacity during peak hour hours at certain airports; however, most operations are likely
to be scheduled during the periods of nonpeak conventional operations and will therefore utilize the
unused airport capacity. Furthermore, N+3 route networks between various airports are fairly well
separated (assuming they are able to fly great circle routings) even for busy air corridors. During
departure, N+3 Phase 1 operations (climb to 10,000 ft) are contained within 21 National Air Traffic
System (NAS) departure sectors and nine additional sectors for Phase 2 (high speed climb from 10,000 ft
to 23,000 ft) operations. During Phase 1 and 2 of N+3 operations a marginal increase in air traffic
complexity and controller workload is predicted. Phase 3 operations occur in mid-level, en-route sectors
and are more dispersed across the NAS. Although the number of operations in these sectors increased
marginally, air traffic complexity and controller workload was much higher. A significant increase in
controller workload and complexity is anticipated during Phase 4 N+3 operations, which involves
supersonic climb from 24,000 ft to cruising altitude. Analysis of conflict during supersonic climb,

Phase 4, indicates that most conflicts occur between flight levels 34,000 to 39,000 ft; however, the overall
numbers of conflicts were low for the duration of the study.

4.0 Tasks and Trade Studies—Propulsion Systems

Three propulsion system models were delivered to LM as part of this program. The first two were
designed to meet all of the N+3 Supersonic goals, fuel efficiency, airport noise, and emissions. The last
was “optimized” solely for cruise efficiency while ignoring the airport noise and emissions goals.

4.1  Technical Description

411 VCE Propulsion System

The advanced VCE uses advanced technologies aimed at an entry into service (EIS) date of 2035. The
engine architecture includes variable cycle features and advanced thermal management. The high
performance Axi-Plug exhaust includes advanced noise reduction technologies.
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4.1.2 Conventional Mixed Flow Turbofan (MFTF) Propulsion Systems

The variable cycle features were eliminated from the turbofan that met the environmental goals along
with the “Optimized” cruise engine that met or exceeded the performance goals without meeting any of
the environmental goals. However these MFTF engines still had the other advanced technologies and the
high performance Axi-Plug exhaust without the noise reduction technologies.

413 ATMS

The ATMS enables the engine to be designed at a higher OPR for improved thermal efficiency and
enhanced engine life while operating at sustained high core temperature during cruise.

41.4 Advanced Low NOx Combustor

Also, as part of this program, advanced low NOx combustor concepts and technologies were
investigated to determine the ability of the propulsion system to achieve the N+3 cruise emission goal.
The combustor concepts and technologies and the impact on cruise NOx emissions are discussed in
Section 4.7. The impact of the combustor exit temperature (T4) on cruise NOx emissions, engine
performance, and weight is also discussed in Sections 4.4.1.3 and 4.7.

4.2 Exhaust System

The exhaust system is very important for supersonic vehicles since the nozzle performance is critical
to the efficiency of the propulsion system as well as enabling jet noise technologies.

4.2.1 VCE Exhaust

The exhaust system is critical for supersonic vehicles since the nozzle performance strongly impacts
the efficiency of the propulsion system as well as enabling jet noise technologies. The VCE propulsion
system also features an Axi-Plug exhaust system with advanced jet noise reduction features. The exhaust
has variable area capability to ensure high performance throughout the flight envelope. The exhaust
system also provides for a thrust reversing system. Ceramic Matrix Composites (CMC) and other
advanced composite materials are used extensively in the exhaust to minimize cooling requirements and
weight.

4.2.2 Conventional MFTF Exhausts

For the two other turbofan engines designed without VCE features, the cooling scheme and advanced
materials for the exhaust were the same. However, the advanced jet noise reduction technologies are not
used in the exhaust. For the engines without VCE features, the core and bypass streams are
conventionally mixed and then exhaust through an Axi-Plug nozzle, so the convergent section tended to
be longer to provide the additional mixing length required for this higher BPR engine. This extra length is
beneficial for noise as the two streams have more mixing length and plenty of room for acoustic
suppression. The Axi-Plug exhaust also helps with the noise due to the increased radius ratio.

4.2.3 Transonic Thrust Augmentation

The exhaust also has a feature that augments the mixed temperature of the exhaust by a moderate
amount. This system has minimal impact on exhaust performance. Due to the low augmentation
temperature and use of advanced materials, no additional cooling is required when the augmentation is
on.

4.2.4 Exhaust Variable Geometry Features

The exhaust has variable throat and exit area capability to ensure high performance throughout the
flight envelope. The translating cowl also provides for a thrust reversing system.
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4.3  Airframe Requirements

4.3.1 NASA N+3 Goals

For the NASA N+3 Supersonic transport (SST) study, LM used a Mach 1.6 cruising, 100 PAX
vehicle of approximately 300 klb While the propulsion system does not have a strong impact on Sonic
Boom other than minimizing the size of the engine and the overall aircraft, it does strongly impact airport
noise, cruise emissions, and overall mission efficiency.

To best reflect overall mission efficiency, NASA also developed a fuel efficiency Figure of Merit
(FOM) around specific range and passenger load (PAX). The FOM is #PAX * (range / block fuel).
Range/block fuel is specific range or VO / fuel flow. Specific range can also be presented in terms of
V0 *(L/D)/(SFC)/Weight. The engine obviously has a direct impact on SFC, but the size of the engine
can also impact aircraft L/D and weight.

4.3.2 Thrust Requirements

LM provided thrust requirements for their NASA N+3 SST design. For sizing the initial engine,
takeoff and transonic thrust targets were set along with a Mach 1.6 TOC thrust target that would provide a
300 ft/m ROC margin. Since the GE variable cycle propulsion system has additional noise suppression
capability over a regular turbofan, the target Vjet at 10 percent Programmed Lapse Rate PLR was initially
set higher than what would be set for a typical turbofan

4.3.3 Customer Installation Effects

LM requested that propulsion installation effects be included in the installed engine data. To model
these losses LM provided inlet performance updates. LM provided data is used directly in the cycle model
to model the inlet. Along with the inlet recovery table, LM provided inlet critical additive drag (Cdcrit).
The inlet drag is represented in the installed thrust.

The GE variable cycle propulsion system has the Axi-Plug exhaust with excellent nozzle performance
and acoustic suppression capability. Since the nozzle has variable A9 capability, the area ratio can vary
and therefore peak performance can be maintained at most all flight conditions. Tests and CFD analysis
have shown that final exhaust performance is relatively unaffected by the noise reduction features in the
exhaust.

There should be very little throttle dependent drag from the Axi-Plug nozzle, so nozzle drag was left
out of the installed thrust.

For customer offtakes, LM provided the table shown in Figure 69, 1.5 lb/s compressor interstage
bleed, 1.25 Ib/s Fan Stream bleed, and 80 hp taken from the HP shaft. The fuel lower heating value for the
study was assumed to be 18400 Btu/Ib.

Engine bleed and horsepower extractions—Nominal
(Per engine)

Horsepower 80
Engine bleed—Fan 1.25 Ibm/sec
Engine bleed—Intermediate 1.5 Ibm/sec

Figure 69.—LM NASA N+3 bleed and horsepower extraction
requirements
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44  GE VCE Propulsion System

4.4.1 Propulsion System Design
4411 Description

The core is initially sized to keep max cycle average T41 under the T41 limit throughout the flight
envelope. The core pressure ratio (CPR) is set to keep the maximum cycle average T3 under the T3 limits.
Section 4.4.1.3 shows the propulsion system impact of dropping core temperatures and Section 4.7
discusses the impact of core design temperatures on the NOx emissions goal. As will be shown in Section
4.4.1.3 the final design maximum cycle average T41 can be reduced by several hundred degrees to
improve cruise NOx emissions, without having a significant impact on engine performance.

The engine total airflow size is set to yield the Mach 1.6 TOC thrust requirement. The Transonic
Thrust Augmentation device typically provides sufficient margin to meet transonic and takeoff thrust
requirements. At max power, the fan is running at 100 percent corrected speed. The Transonic Thrust
Augmentation device can either be on or off depending on demand. The Axi-Plug exhaust has partially
variable A8 and A9, which can be adjusted to accommodate the modest temperature bump from
augmentation and still maintain near peak efficiency across the operating range.

The initial design space exploration to determine the best FPR and CPR for the N+3 engine started
with an engine from a previous internal study, which could meet noise requirements with no margins.
This engine was updated with an advanced high-pressure ratio core while still limiting max cycle average
T3 to the N+3 timeframe limit.

To design the engine, thrust available was tracked at SLS takeoff, Mach 0.3 SL and 1,000 ft,
transonic, and Mach 1.6 TOC. These were the critical flight conditions discussed in Section 3.2.2.2.
Maximum power with and without the Transonic Thrust Augmentation device is observed at all
conditions other than Mach 1.6. Vjet at 90 percent takeoff power to represent a Programmed Lapse Rate
(PLR) for sideline noise measurement is also tracked to check the engines ability to meet acoustic
requirements.

4412 Results

An initial design trade study was performed to examine the effects of FPR, and dry versus Transonic
Thrust Augmentation device operation on engine size. Engines were designed over a range of FPR’s to
meet thrust requirements with and without the Transonic Thrust Augmentation device. The CPR and core
size were rescaled for each engine targeting the max cycle average T3 and T41. The study showed that
without the Transonic Thrust Augmentation device, the engines were sized at the takeoff or transonic
condition, providing excess thrust at TOC. Conversely, when using the Transonic Thrust Augmentation
device, the engine was always sized at TOC and was smaller.

The results from these preliminary trade studies are shown in Figure 70. The previous GE internal
studies had already shown that the highest FPR engine should be able to meet NASA’s N+3 acoustic
goals. So, any lower FPR engine should also be able to meet the acoustic goals. All engines sized to meet
Takeoff thrust at Mach 0.3 ISA +36 °F with or without the Transonic Thrust Augmentation device. The
Transonic Thrust Augmentation device was always used to meet transonic thrust requirement, particularly
at the lower FPR. Although sensitivities to assess overall mission impact were not available at this point
in the studies, it was felt that the highest FPR engine would be an appropriate propulsion system for this
program; it was the smallest and lightest engine. It did not appear that the SFC penalty for the higher FPR
would have as near an impact as the size impact. Therefore, the higher FPR was chosen for the initial
baseline VCE design. The cycle data is used to design the Flowpath for the engine and the exhaust.
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Figure 70.—Results from preliminary FPR Design Space Exploration Trade Study.

The engine matches the Mach 1.6 thrust requirement exactly. The Transonic Thrust Augmentation
device is required to meet takeoff and transonic thrust requirement. The cycle data for this engine was
used to estimate takeoff noise levels for this baseline configuration. The takeoff noise level prediction for
this baseline configuration is discussed in Section 4.3.2.

An engine datapack with mission and takeoff data was generated covering the envelope LM
requested. Cycle performance data includes: 1.5 1b/s compressor interstage bleed, 1.25 1b/s fan stream
bleed, and 80 hpx (60 kw) extracted from the HPC and GE’s Axi-Plug exhaust system performance with a
variable A8 and A9.

4413 Impact of Core Temperature on Engine Size and Performance

The engine core temperature has a significant impact on performance, weight, life, and NOx
emissions. HPC discharge temperature (T3) and combustor exit temperature (T4) have a strong impact on
combustor emissions, as shown in (Ref. 21). HPT rotor inlet temperature (T41) determines how much
energy per pound of flow is available from the HPT and therefore core size. T3 and T41 set overall
thermal efficiency and therefore strongly impact SFC. T3 has the strongest impact on SFC, typically the
higher the better. There is also an optimum T41, above which T41 has little impact on SFC.

T3, T4, and T41 also set cooling flows for the core components. The ATMS and the advanced CMC
materials system allow the engine to operate at high T3 with less cooling flow impact, but the T41 or T4
still impact required cooling flows. T4 is the gas path temperature for the HPT nozzle inlet and T3 is the
temperature of the cooling air. From these, the required cooling flow for the HPT nozzle is set. The
amount of cooling flow and T3 then set turbine rotor inlet temperature (T41). T41 is a mass average of the
cooling flow for the nozzle at T3 and gas flow through the nozzle at T4. At the extreme, if a material was
available that could survive at T4 temperatures, then no cooling would be required and T4 would be equal
to T41. T3 and T41 also set cooling flows for the HPT and T3 and T49 cooling flows for the LPT. Even
though for an ideal Brayton cycle, higher core temperatures are better for thermal efficiency, the required
cooling flows tend to diminish the benefit. Once the gas path temperature gets below the bulk metal
temperature capability of the material, then the cooling flows will no longer change as T4 and T41 drop.

Figure 71 shows the impact of T4 on the VCE propulsion system concept, adjusting cooling flows
appropriately as temperature drops. As can be seen, the T4 can be initially pulled back minimal impact on
SFC. The T4 impact on propulsion weight tends to be somewhat linear. Although as T4 drops further, the
propulsion penalties start to increase more significantly.
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44.1.4 Impact of Plug Size in Axi-Plug Nozzle

% Change from Base
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LM had expressed some concern about the high nozzle closeout angles (boattail) on the GE Axi-Plug
exhaust. It was noted that increasing the size of the plug could reduce the boattail angles on the exhaust.
Since the Axi-Plug exhaust was leveraged form earlier internal studies, a CFD input file already existed
that could be used to determine the impact of plug size on exhaust performance.

For this quick CFD study two flight conditions were analyzed, takeoff with the Transonic Thrust
Augmentation device on and Mach 1.6 TOC. Two Plug sizes were investigated, the original and
50 percent larger.

Overall the study showed that the larger plug might decrease CFG by a slight amount. Although, it
was felt that reductions in this loss would be possible with more time to optimize the geometry. The study
also showed that the CFG could be improved by a modest amount at takeoff cutback.

4.4.2 Noise Assessment

44.2.1 Description

The noise goals for the supersonic N+3 application are 10 to 20 EPNdB cumulative margin below
Stage 4 (or 20 to 30 EPNdB cumulative margin below Stage 3). LM provided the take-off gross weight
(TOGW) target, number of engines and thrust requirements. GE made assumptions regarding the
remaining information required to perform noise assessments. GE provided three different propulsion
systems, two of which were intended to meet the noise goal and one which was designed solely for cruise
efficiency. Noise assessments were only performed on the two propulsion systems intended to meet the
noise goal. All of the noise assessments performed in this study are preliminary and no margins are
applied. GE provides these as guidance only and implies no guarantees or commitments.

The first propulsion system developed was a VCE that enables the advanced jet noise reduction
features in the exhaust. The exhaust system incorporates a number of proven noise reduction technologies
for supersonic exhaust nozzles and combines them into one innovative exhaust system.
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44272 Results

Jet noise is typically the dominant propulsion system noise component for the take-off monitor
locations and usually the lateral, sideline monitor location will be the most difficult noise level to achieve
so the initial acoustic assessment was limited to this condition. Based on previous internal work with LM
an appropriate fan pressure ratio was chosen that should meet the noise goal. However, the previous
studies did not include any thrust augmentation capabilities so the initial noise study looked at the
propulsion system with and without augmentation during the sideline monitoring location. Figure 72
shows the results of this noise study, the points on this chart are all under the Sideline Stage 3
requirement. The methodology followed to obtain the noise estimates are outlined below:

o Jet noise estimate of the equivalent ideally mixed exhaust
— Assumes appropriate altitude, 1,476 ft sideline
— External velocity appropriate for take-off
e Scaled jet noise levels from experimental database of three configurations for a range of mixed jet
velocities:
— Conic nozzle equivalent ideally mixed exhaust
— Jet Noise Reduction Technology 1
— Jet Noise Reduction Technology 2
o Determine benefit of the Jet Noise Reduction configurations by subtracting from equivalent
ideally mixed exhaust conic nozzle
e Account for number engines
e Account for engine-engine jet noise shielding based on installation
o Compare to the sideline Stage 3 requirement to obtain sideline margin

Final SL Jet Noise vs Power

-+ Without Augmentation
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Figure 72.—Total jet noise level for sideline monitor location for VCE engine
for different power setting with and without augmentation.
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This figure shows the percentage of engine power versus the sideline jet noise estimate for the total
propulsion on the aircraft. An important observation from this is that the augmentation provides a benefit
over the higher range of engine power. This is because the jet noise reduction feature is highly dependent
on the exhaust velocity range. As the velocity increases the benefit of this feature typically improves, such
that although the primary jet noise associated with the higher exhaust velocity may be higher, the
improved performance of the feature may result in a lower final jet noise level. Typically for the same
thrust the augmentation results in a higher temperature and thus higher exhaust velocity. Figure 73
demonstrates this effect; showing scaled experimental data for a conic nozzle, and configurations with the
jet noise reduction features. There is clearly a level of the exhaust velocity where the features show a
benefit once above. This figure shows a typical result of scaling existing scale model data, for one engine
and before any system corrections have been applied.

This study showed sufficient margin for the sideline or lateral monitor location jet noise with
augmentation during take-off. A more detailed noise assessment was conducted for all three of the
monitor locations, sideline, flyover or cutback, and approach. Propulsion noise estimates were made for
the jet noise and the fan inlet radiated noise. The fan exhaust radiated noise was not included due to
uncertainty in its prediction as well as the significant room for acoustic suppression treatment through the
relatively complex exhaust. Airframe noise levels were crudely estimated using an existing preliminary
design tool as no better estimates were provided. The methodology for the jet noise estimate has already
been summarized. The fan inlet radiated noise component was estimated using a GE version of the
Heidmann code that has been validated with a similar fan system under a previous program. This estimate
includes all of the features of the VCE fan module, and a conservative estimate of acoustic suppression
treatment in the inlet. Additional assumptions are listed below:

e Flyover/cutback
— Assumes thrust cutback to an appropriate level
— Assumes cutback altitude
—  Appropriate external velocity
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Based on these noise assessments the VCE propulsion system is expected to meet the program goal.
The take-off profile should be assessed to improve the cutback procedure and a better estimate of the
airframe noise is needed. The airframe noise levels used in the current study contribute 4 to 5 EPNdB to
the cumulative margin.

The fan inlet radiated noise also makes a significant contribution to the cumulative margin. Alternate
propulsion/airframe integrations should be assessed to mitigate this. There are alternate exhaust
configurations that could take advantage of airframe shielding and much more highly integrated
installations.

45  Conventional Mixed Flow Turbofan (MFTF) Propulsion System

4.5.1 Propulsion System Design
45.1.1 Description

LM requested that GE design a moderate BPR Mixed Flow Turbofan (MFTF) without variable cycle
features or the associated special acoustic features in the exhaust that would still meet the NASA N+3
acoustic requirements for the program. The FPR for the MFTF was chosen based on previous internal
studies. While the special acoustic features in the exhaust were no longer available without the variable
cycle features, the Transonic Thrust Augmentation device was still deemed possible although a greater
challenge due to the reduced fan stream temperatures.

45.1.2 Results

The initial configuration chosen was designed with the same core temperatures and technologies as
the VCE baseline. The CPR was increased to make up for the loss of boost to get as much OPR as
possible without adding a booster stage. Both the MFTF and VCE were designed to produce the required
TOC thrust, but the MFTF makes more augmented thrust at takeoff and transonic, because of the greater
thrust lapse.

The airflow capacity of the MFTF engine is 1/3 greater than the VCE engine, so the fan inlet is
greater in diameter, the engine longer, and heavier. The nozzle exhaust duct is quite long to accommodate
the large mixer that would be required for the higher BPR engine. In the end the MFTF engine showed
only a slight improvement in SFC over the VCE concept. LM mission results indicated that the MFTF
lost 240 nmi in range relative to the VCE.

45.2 Noise Assessment

4521 Results

For the conventional MFTF noise assessment jet noise and fan inlet noise estimates were made both
with and without augmentation, the airframe noise components are the same as the VCE engine since the
vehicle weight didn’t change for the noise assessment. The assumptions for the monitor locations were
also consistent. The jet noise assessment was fairly different from the previous assessment for the VCE
propulsion system since the exhaust system was very different. The conventional MFTF uses
conventional mixing of the core and bypass flows before reaching the Axi-Plug nozzle, shown in
Figure 74. The methodology for estimating the jet noise was as follows:

e Jet noise prediction for fully mixed exhaust

o Appropriate penalty since lobed mixers generate high frequency noise and don’t result in fully
mixed flow

e Appropriate noise reduction due to the plug

e Consistent engine and system corrections as VCE assessment

NASA/CR—2010-216796 68



Figure 74.—Conventional MFTF mixed flow and
axisymmetric plug nozzle exhaust.

From this assessment both the cases, with and without augmentation, met the noise goal but the no
augmentation case provided more cumulative margin. This is consistent since there are not technologies
included in this exhaust system which perform significantly better at higher velocities. Therefore the
conventional MFTF propulsion system would not have an acoustic benefit for using the augmentation
during the take-off operations.

4.6  “Optimum” Cruise Conventional MFTF Propulsion System

4.6.1 Propulsion System Design
46.1.1 Description

GE was also requested to design an “Optimum’ cruise engine ignoring all other program goals. The
propulsion system development and refinement sought an N+3 Supersonic design with the highest cruise
efficiency without regard to any noncruise design requirements, specifically, acoustics and emissions.

To design the engine the same advanced technology assumptions with a 2025 TRL-6 Technology
Availability Date were used. The engine architecture has no variable cycle features but does includes
other advanced technology features appropriate for the time period, including the Axi-Plug Exhaust with
Transonic Thrust Augmentation device. The Optimized cruise engine is a conventional MFTF like the
previous one, only with a higher FPR and lower BPR.

46.1.2 Results

For the Optimized cruise engine study, Lockheed sensitivities were provided in the form of range,
drag, and weight sensitivity data in a spreadsheet. These were used to determine the impact on vehicle
range due to variation in diameter, SFC and weight.

Figure 75 shows the results from the cruise engine optimization study. As part of the optimization
process, it was discovered that the Fan inlet diameter could be reduced somewhat, which improved range
by approximately 1 percent for the baseline.

Impact On Range
VCE MFTF

. Moderate high higher

Baseline| " rpp FPR FPR

Inlet Diameter (inches) 0.0 -1.1 -4.6 -7.1

Range increase/decrease due to Diameter (nm) 0.0% 0.7% 3.2% 4.9%

SFC 0.0% -1.2% -0.5% 0.7%

Range increase/decrease due to SFC (nm) 0.0% 1.5% 0.5% -0.8%

Total Quote Weight (Ib) 0.0% 2.7% -6.8% -13.1%

Range increase/decrease due to Weight (nm) 0.0% -0.4% 1.0% 2.0%
Total % Range increase/decrease 0.0% 1.8% 4.7% 6

Largest gain in range

Figure 75.—Impact to range based on LM sensitivities.
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The next step in the study was to define the cruise “optimized” MFTF with approximately the same
mass averaged FPR as the baseline VCE, resulting in a moderate FPR MFTF. Since the previous
conventional MFTF study showed a decrease in range performance with lower FPR, it was decided to
investigate turbofans with higher FPR’s. The high FPR MFTF showed a significant gain in range over the
moderate FPR MFTF. Next a higher FPR MFTF was designed and the sensitivities still showed an
increase in range, although the increase was much less, indicating that the trade for size for SFC was
leveling off. The higher FPR MFTF was chosen for the “Optimized” cruise engine to deliver to LM.

The max inlet airflow capability for the higher FPR MFTF is much less than the VCE baseline,
because it makes the same thrust at a higher FPR. All engines were designed to make the same TOC
thrust, but the ”optimized” MFTF makes less augmented thrust at takeoff and transonic, because of the
smaller thrust lapse. With transonic augmentation, this engine is almost perfectly balanced at takeoff and
TOC. The fan diameter is much smaller and the weight comes out lower than VCE baseline, but is not
expected to meet the N+3 acoustic and emissions goals.

4.7 Emissions status

Cruise NOx emissions were estimated using an analytical method developed by GE Aviation. This
method simulates the combustion process in the Twin Annular Premixed Swirler (TAPS) combustor
(Figure 76) used in the propulsion system under study. It should be noted that this methodology was
previously also used for estimating EINOx for the N+1 supersonic combustor program. It uses Chemkin
to calculate a laminar lean premixed opposed flow flame to represent the well-mixed portion of the
combustion, and a rich premixed opposed flow flame to represent the diffusion flame from the pilot. Jet-A
was the fuel, and the chemical kinetic mechanism was obtained from GE Aviation. Figure 77 shows the
flow configuration.

Cyclonic
mixers

Air - Premixing flame

o zone
- Fuel injection |
Pilot flame zone

Figure 76.—GE Twin Annular Premixed Swirler (TAPS) combustor.
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Pa ,TS, ¢=0 [Air]

\ { “Premixed flame

P39 T3! ¢:
(Premixed Fuel/Air)

Figure 77.—Opposed flow flame
calculated using Chemkin with
Jet-A.

Some assumptions have been made to estimate GE62 NOx levels for the N+3 time frame. Starting
with assumptions being used in an ongoing Low Emissions Combustor Program for Supersonic Aircraft
additional assumptions are made in terms of cooling flow, residence time, and pilot level for the N+3
timeframe. Using these levels and adjusting the T4 level down based on the discussion in Section 4.4.1.3
the emissions goal of 5 EINOx is projected to be met.

4.8  Efficiency (FOM) status

Based on the propulsion system cycle data GE provided to Lockheed-Martin and the results of
Lockheed-Martin’s sizing studies the final version of the GE propulsion system resulted in an FOM
exceeding the N+3 goal.

4.9  Technology Trades and Studies

49.1 Low-Emissions Combustor
4911 Description

Meeting the N+3 emission goal of cruise EINOx = 5 g/kg fuel using a TAPS-type combustor has
been one of the most challenging aspects of the supersonic N+3 program. To achieve the NOx goal, even
more aggressive technology development targeting an N+3 timeframe is necessary in regards to reducing
combustor residence time, cooling flow, pilot, and fuel/air mixing time. Figure 78, Figure 79, and Figure
80 show the variation of EINOx with different levels of mixer air, mixedness and amount of pilot,
respectively, for different values of T4.

35 Perfectly Premixed Study

30 \\
25
é 20 \\ Increasing T4
Z 15 A
10 7\
% Mixer Air

Figure 78.—Effect of amount of mixer air on EINOx with
different values of T4.
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Figure 79.—Variation of EINOx with different levels of
mixedness versus T4.

Perfectly Premixed Study

35

30 -

25 —

20

Decreasin
g pilot air

EINOx

15

10 \ 74
5 NOx Goal /

__—-—;/Y
0o

T4 (F)

Figure 80.—Variation of EINOx with different levels of
pilot air versus T4.

49.1.2 Results

A significant reduction in residence time is beneficial. To enable this, a significantly shortened
combustor will be required. However, a shortened combustor will have high emissions of CO at low
power (e.g. idle) conditions due to incomplete combustion. A shortened combustor may also not have
sufficient volume for reliable operability. Additional technologies will be required to address this
deficiency in operability. Therefore, a variable geometry combustor might be necessary, where the
combustor is relatively long at low power conditions, and is then shortened during cruise.

A significant jump in cooling and material technologies is also required. The liner and dome cooling
flows should be reduced significantly and more air can be directed to the mixer. Significant advances in
material development would be necessary to achieve this.

4.9.2 Intercooler

The principal challenge for an intercooler (IC) is coming up with a lightweight low loss Hx system to
remove heat from the compressor gooseneck (T25). The larger the temperature difference between the hot
stream (T25) and the cooling source, the smaller the Hx required. The larger the Hx system, the greater
the size, weight, and associated pressure losses.
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Figure 81.—Two notional types of heat exchangers.

4921 Description

This study explored entitlement for the IC in the GE baseline VCE. Most of the complexities of the
Hx system were ignored to see if the system would work with no losses and provide sufficient benefit to
be worth a more detailed investigation. The analysis accounted for the amount of heat that needed to be
transferred to obtain a certain drop in T25 and then the amount of Hx surface area required to achieve this
heat transfer.

Typically, the purpose of an intercooler is to take heat out of the air entering the compressor (T25) to
reduce core temperatures T3, T4, and T41. Once T3 is reduced the CPR can be increased driving T3 back
up to further improve thermal efficiency. Also, with an intercooler, core size could be dropped increasing
BPR and driving T4 and T41 back up, again improving thermal efficiency. For these supersonic N+3
studies, one of the most difficult environmental goals to achieve is the cruise NOx emissions goal. T4 and
somewhat T3 have a strong impact on NOx emissions. For this analysis, the IC was used only to reduce
T25 dropping core inlet temperature to reduce NOx cruise emissions, while maintaining thermal
efficiency.

To perform this study, the VCE was designed with IC at the inlet to the core. It was assumed all
gooseneck air passes through the notional heat exchanger to maximize the amount of heat that can be
transferred and the drop in T25.

In the study two types of Hx were investigated, a surface cooler and tube style Hx as shown in
Figure 81. The surface cooler is the lightest heat exchanger with the minimum amount of losses, but
overall it requires more room to get the same amount of Hx surface area as the tubed. The tube style Hx
has more losses, because they actually obstruct the flow going through the array of tubes and the flow
going though the tubes have losses due to the passage through the small tubes. The tubes can however get
more Hx exchanger area into a smaller space.

4922 Results

The cycle analysis showed that to achieve about a reasonable drop in T4 requires about a small F drop
in T25. From an ideal analysis the GE baseline could achieve a small drop in T25, but the calculation for
Hx surface area showed that the required size was prohibitive.

Another alternative to the air-to-air Hx is to use the fuel as a heat sink. This would require an Air/Fuel
Heat Exchanger or Air/Oil/Fuel Exchanger. A simple calculation of the thermal load from the gooseneck
air to get the small F T25 drop showed that simplistically the fuel temperature would have to increase a
significant amount to take all the heat due to the small quantity of fuel relative to gooseneck air.
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Realistically this would not work as the fuel temperature increased the delta T would drop reducing the
heat transfer and eventually the fuel temperature would reach T25.

The final conclusion was that using the IC to reduce T25 was not practical, the Hx would not fit in the
engine. As was shown in the T4 core sizing trade study, the loss in performance for a reasonable drop in
T4 was only a slight increase in SFC and small increase in weight. If the losses in the IC Hx system were
fully accounted for there would likely be a much greater impact on SFC and the weight of the required Hx
would be prohibitive.

49.3 Interturbine Combustor

Another attempt at reducing T4 for NOx cruise emissions was to introduce some burning between the
HPT and LPT. A simple analysis performed by adding a small burner between the two turbines showed
that T4 could be reduced. However burning in this lower pressure zone is much less efficient. The SFC
penalty was significant. Again as in the intercooler nozzle, even this larger reduction in T4 could be
obtained by simply designing the core to the same lower T4 with a smaller system impact.

4.9.4 Constant Volume Combustor (CVC)

CVC technology is being investigated to improve the efficiency of gas turbine engines. These
configurations rely on pressure-rise constant volume combustion rather than constant-pressure
deflagration currently used in today’s gas turbine engines. Notional thermodynamic CVC cycles show
increased thermodynamic efficiency greater than Humphrey (constant volume) and Brayton (constant
pressure) cycles as a result of the pressure-rise associated with constant volume combustion.

494.1 CVC Modeling Approach

The following section describes the modeling approach of the CVC module within the engine. In the
architecture considered, the regular deflagration-based (Brayton cycle) combustor is replaced with a CVC
in the hot-gas path, Figure 82. The CVC would accept compressor-discharge air, detonate, and then
exhaust into the high-pressure turbine through a nozzle. Such an architecture would potentially allow de-
staging the compressor (since some of the pressure-rise is achieved by the combustor), but would likely
require a very different turbine design. Furthermore, the design of this transition piece, and in particular
the area ratio, is very important in optimizing the performance of the engine.

The CVC was modeled in NPSS by modifying the standard deflagration burner module in the engine
model to include constant-volume combustion pressure-rise multiplier, Figure 82. The CVC pressure-rise
map was generated separately using a quasi-1-D gas-dynamic code and inserted into NPSS as a lookup
table in the functional form PR = function (T3, T41). Previous trade studies showed that the pressure-rise
from a CVC (once the geometry was defined, including the area ratio) was primarily a function of these
two parameters. The baseline VCE engine was used as a starting point for the present study.

The performance of a CVC is strongly a function of the physical geometry of the combustor. For this
reason, it is important to understand the assumptions used in generating the pressure-rise map. The
assumptions in generating are as follows:

CVC with 4:1 area ratio nozzle.

Gaseous C,H, fuel with reduced mechanism two-step chemistry.

Includes steady-flow pressure losses.

Adiabatic walls.

“Rubber” inlet geometry so that each point is optimized for “on-design” operation.
Same compressor/HPT maps as simple cycle.

AUl e
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Pressure-Rise Map Generated by
Time-Resolved Quasi-1D Code

PR

T4/T3
* Following approach by Paxson (NASA Glemn)

Figure 82.—Schematic diagram showing
implementation of PDE in NPSS model.

4.9.4.2 CVC Trade Study Results

The main impact of the CVC is to enable a higher OPR engine using a simpler, lower CPR
compressor. The study was performed with and without the Transonic Thrust Augmentation device. The
engine was sized using the same temperature limits as the VCE and thrust-matched at the cruise thrust
requirement. Thrust matching at cruise resulted in excess thrust at take-off. Furthermore, the thrust benefit
of the CVC was an adder on top of the Transonic Thrust Augmentation device in the baseline engine. The
specific fuel consumption benefit is approximately 3.2 percent for the CVC across the flight envelope,
and is also an adder to the Transonic Thrust Augmentation device. One of the main observations with
constant volume combustion is that the pressure-rise achieved is a strong inverse function of the initial
temperature (or compressor discharge temperature). In particular, as the compressor pressure ratio
increases (and T3 increases as well), the benefit of the pressure-rise combustion is reduced

An additional case was considered where the compressor was intercooled, so that the engine could
benefit from the increased P;, but the CVC could maximize its pressure-rise due to a lower intercooled Ts.
This has a slight benefit over the CVC alone. The addition of the intercooler provides an additional SFC
benefit, with a total benefit of 4.7 percent over the baseline VCE engine. The benefit of intercooling (with
CVCQ) is seen to be reduced at lower OPR.

At this early stage, the CVC technology seems promising in that it can offer up to 5 percent
improvement in SFC above and beyond the advanced N+3 baseline VCE engine. The TRL level of CVC
technology, however, is relatively low and further development work is required to be considered for
implementation.

4943 Future Work

The present trade study represents a preliminary assessment of incorporating CVC technology into an
advanced N+3 supersonic engine architecture. CVC technology is still in early stages of development,
and many of the methods and design tools require further work. Future assessments should include the
following improvements:

1. Refined CVC pressure-rise map with Jet-A fuel properties.

2. Further trade studies on the impact of CVC geometry on pressure-rise and an optimization of the
geometry within the engine architecture. In particular, nozzle area ratio is known to have a big
impact.
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Improved turbine maps specific to CVC flows (when available).

Further parametric variations of T3, T41 and turbine efficiency.

Perform preliminary weight estimates and trade studies to understand impact of weight to SFC.
Impact of CVC operation at part-power conditions.

oL AW

5.0 Technology Roadmap Development—Airframe (WBS 3.3)

The overall strategy to develop technology roadmaps began with technology identification. Each
technology was assessed for viability, applicability, and duplication. The down selected technologies
were then analyzed and ranked in terms of benefit, probability of success, and total program development
costs. This resulted in a prioritized list of enabling technologies. A description and risk assessment,
including a TRL maturation plan, is included for each prioritized technology in Section 9.0 New
Technology.

5.1  Technology Identification (WBS 3.3.1)

The process used by LM, to identify enabling technologies for the N+3 vehicle, combined resources
and research activities to define and develop a comprehensive technology list. The LM technology
identification process is highlighted in Figure 83.

The process initiated with research on LM heritage, on-going NASA, and on-going LM resources to
identify potential enabling technologies. All used sources for technology identification include:

e Heritage QSST/QSP information—Configuration shaping and inlet technologies

e Subcontractor input—GE GRC, Penn State, Reed/Saric, Purdue University, and J. Hansman from
the program kick-off meeting held on December 12, 2008

NASA information from the 2008 Supersonic Funding Portfolio

Revolutionary Technology Programs (RTP) technology capabilities

Tech Fair—Jet Exhaust Manipulation and Webcore Technologies

Brainstorming sessions—Three sessions conducted during Phase 1

Each resource was thoroughly researched by the N+3 team to identify potential technologies capable
of enabling an N+3 advanced vehicle concept.

LM conducted additional research activities to identify technologies from small businesses and
subject matter experts. On December 8, 2008, LM conducted a Tech Fair to engage small businesses and
the academic community to further identify enabling technologies. LM sent out over 30 solicitations and
ultimately received three participants within the fair. Each participant was required to submit a half hour
presentation that outlined their specific technologies and the research that had been done to date. LM
selected two out of the three technologies presented as potential enabling technologies. Those two
participants include Webcore Technologies, based out of Miamisburg, Ohio and Dr. Mo Samimy from
Ohio State University. Webcore Technologies specializes in innovative materials and composite
manufacturing which aligned with the same 2030 vision required for the N+3 vehicle. Dr. Samimy’s
current research is on the application of plasma in jet engine exhaust to modify flow levels for noise
reduction. Three brainstorming sessions were conducted during the first quarter of the program to
encompass all technology possibilities. These sessions were held with LM subject matter experts and
other LM personnel to provide insight for identifying a comprehensive technology list.

Once all resources and activities were completed, each technology was categorized and captured in a
comprehensive spreadsheet. The four technology categories include:

e Individual bolt-on techs
o Airframe and propulsion configurations
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e Tools and methods
e Materials and generic technologies

Each technology was divided by source, category, benefits, drawbacks, N+3 goals addressed, and
readiness. Figure 84 demonstrates a sample of the technologies compiled.

/ Subcontractor

techs

Input

-GE GRC engine
architectures
-Penn State noise

NASA Input

-N+3 Supersonic
funding portfolio

QSST
Experience

-Boom shaping
-Inlet work

-Configuration

development

—

-Rev. Technologies
-Supersonics/Hypersonics

Research
LM Projects

-Literature

Tech Identification
Task

Resources

-LM Subject matter
experts
-LM projects

—

-Webcore composites

manuf.

Tech Fair

-Ohio State plasma jet
flow mod.

LM Brainstorming\

& Guru sessions

/

3.3.1 Product

o Broad categorized list of N+3-
relevant technologies

Figure 83.—Technology identification process used to construct the technology roadmaps.

Activities

-Bolt-on’s
-Configurations
-Tools/Methods
-Materials/Systems

N+3 Supersonic Technology List

Configuration
Technology Source Category Description Benefits Drawbacks N+3 goals Readiness
addressed
High notch ratio |N+3 proposal Aero Wing with high notch ratio |Low induced and wing wave  |Heavy, low speed higher Efficiency  [ldea. Would need to
planform with (high TE sweep) drag vortex drag and pitch-up develop and test
flow control without attached flow control specific design
Synthetic cockpit LM proposal Avionics Use TV camera system to | Eliminates need for folding None Efficiency Needs development
vision brainstorming give pilot better visibility  [nose or any other design but research activities
session where nose is in way compromises necessary for are on going
the pilot to see the runway
Swing canard (LM configuration |Configuration |Deploy canard only at low |Lower drag, better boom Weight and complexity Efficiency, |Would have to be
brainstorming speeds to control trim and Of retraction boom designed in
session stability
Wing tip tanks  |LM configuration |Configuration | Strategically shaped wing |Structural stability, span load | Weight Efficiency, [TRL-9, airplanes
brainstorming tip tanks alleviation, area ruling boom have employed them
session before
Configuration (LM proposal Configuration | Shape configuration to Constrain sonic boom while  |Efficiency is compromised if it {Boom, Has been done for
shaping brainstorming close fore and aft shock to |maintaining efficiency and trim [has to be balanced against ~ |efficiency ~ |QSST, more research
session acceptable levels using boom requirements to be done
advanced MDO techniques
Variable sweep | N+3 kickoff Configuration | Vary sweep of wing using |Easier to balance low speed  [Large weight penalties in Efficiency, |[TRL-9, done before
outboard wing  [meeting pivots or other mechanical |takeoff requirements with high |pivots and mechanical noise, boom |on F14, F111, and B1
panels brainstorm system speed drag and boom goals,  |systems
less weight than full variable
sweep wings since it's just
outboard panels
Quiet spike N+3 kickoff Configuration |Extending and retracting  |Reduces boom Weight and complexity of Boom, Tested on F-15 for
meeting spike, extends for cruise to retraction mechanism efficiency mechanical reliability
brainstorm increase effective length of
airplane, retracts for better
landing
Knight's lance ~ |N+3 proposal Configuration  |Similar to quiet spike but ~ |Reduces boom Weight, landing slap-down Boom, Idea
nose would be nonretractable considerations efficiency

Figure 84.—Technology catalogue excerpt used to define space of possible technologies, provide input for down
selection, and disseminate ideas.
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5.2  Technology Down Selection (WBS 3.3.2)

Once all proprietary and nonproprietary enabling technologies had been identified, they were then
down selected to provide a focused, manageable list of technologies to analyze for vehicle integration.
The overall process is illustrated in Figure 85.

The LM technology down selection process started with the catalogued N+3 technology set and was
scrubbed with five factors in mind to reduce the overall list. Those factors include:

e Research—subject matter experts, other LM projects, literature
e Weighted Pugh Matrix Analysis

e N+0, 1, 2 technology duplication

e Subsonic/supersonic duplication

e Techs already supported elsewhere

Each technology was initially gauged by N+3 team members and LM subject matter experts to
determine if the technology passed a “sanity” check. Technologies that were not applicable to the N+3
goals, determined to be ineffective through other and heritage LM projects, or duplicated through N+1
efforts were eliminated. Duplicated N+2 technologies were included in the next stages of the down
selection process; however, they were noted as being N+2 technologies and were directly applicable to
the N+3 goals. The remaining technologies were then put into a weighted Pugh Matrix to determine the
overall benefit for an advanced, supersonic vehicle.

The Pugh Matrix analysis weighed different measures of merit such as L/D, empty weight, SFC,
boom, noise, emissions, safety, pax comfort, and cost to determine a net benefit value for each
technology. This net benefit value was ultimately used to determine the overall prioritization set. Within
the Pugh Matrix, numbers of -9, -6, -3, 0, +3, +6, or +9 were assigned to a measure of merit (efficiency,
environment, and practicality) to determine if a technology “helped” or “hurt” and by how much. A value
was not assigned unless the technology had a direct and significant impact on the measure of merit.
Differentiating and assigning a value to a specific measure of merit allowed an explicit analysis of each
technology in regards to vehicle impacts. In addition, it was assumed that the technologies put through the
analysis were “bolted” onto a baseline vehicle. This baseline vehicle was assumed to have been designed
to meet the noise, emissions, and efficiency goals. As a result, configuration technologies were considered
to be endemic or already installed on the baseline vehicle, and technologies would be “bolted-on” or
simply added to the baseline design. The reasoning is that the configuration technologies were judged to
be high-payoff with low impact and necessary to achieve the N+3 goals. Figure 86 illustrates the baseline
configuration with endemic technologies highlighted.

Research Pugh Matrix N+3

Analysis Timeframe
-Literature
-LM subject matter -Avoided N+0,1
experts duplication

-LM projects

Considerations

Endemic Configuration
Technologies

Tech
Downselection
Task

3.3.2 Product I 3.3.2 Product

Pugh Matrix of Down-selected list of
conceptual tech technologies to evaluate

Tools/Methodologies

evaluations analytically

Figure 85.—Technology down selection process that produced
manageable list of technologies to further evaluate and create
roadmaps.
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Configuration Shaping: Vehicle Volume and Lift
Distributions are Optimized to Minimize Fore and Aft Shock
Over Pressure Levels while maintaining Maximum
Aerodynamic Efficiency

Pilot Situational Awareness:
Synthetic Vision

Inverted V-Tail: Provides High Aft

Lift with Wing and Aft Engine Wing Tip Tanks:
Bracing T~ Spanloaded Weight

and Torsion Balance

Anhedral Wing Tip: for

: Bleed-less External Compression Inlet:
Increased Wing Gull

Minimal Airflow Losses, Short and Light
Weight

Knight’s Lance Nose: Non-
Retractable Slender Nose to
Reduce Boom by Lengthening
Vehicle

High Notch Ratio Wing: High
Notch Ratio Wing Lowers Induced
& Wave Drags. Flow Control likely

Required to Keep Upper Surface
Wing Flow Attached

Figure 86.—Configuration technologies assumed to be designed into the advanced vehicle concept.

Other Pugh Matrix ground rules and assumptions include:

e Number defines whether technology “helps” or “hurts” a specific vehicle measure of merit

e Secondary technology effects were ignored unless they were significant

e L/D and SFC refer to long-term cruise values, not short-term low speed

e Emissions includes NOx, CO,, and water contrails

e Noise is community noise on the ground at takeoff and landing, it does not include boom or cabin
noise

e Cabin noise falls under the category of “passenger comfort”

e Some technologies are already considered to be on the baseline (e.g., Inverted V).

e Cost/Complexity refers to how much more or less “complicated” the vehicle becomes as the
result of adding a technology

e Gray areas and exceptions were unavoidable due to the nature of assigning values to each
technology

e The baseline vehicle has been designed to meet the noise, boom and emission constraints as best
as possible

Once the rankings of each technology had been accomplished, a weighted product function

determined the overall net benefit values. Based on these values, we were then able to sort the technology
based on high and low values. Figure 87 highlights the best and worst results from the Pugh Matrix effort.
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Goals
*l BeSt ort 1.0 [ 10 | 10 1.0 1.0 1.0 1.0 1.0

Empty Weight LD SFC Boom Noise | Emissions Safety Pax Comfort | Net Effect

adaptive/inflatable wing
elements 6 3 1 10
distributed roughness 9 9
bleedless external compression
inlet 1 6 7
with SiC fibers in efficient
weaving or braiding process 1 6 7
morphable control surfaces
(seamless
Goals
1.0 1.0 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
structural Empty Weight L/D SFC Boom MNoise Emissions Safety Pax Comfort | NetEffect
pre-mixed
quiet spike -3 -1 3 -1
variable sweep outboard wing
{panels -3 1 1 -1
non-round nozzles (rectangular
or elliptical) -3 -1 1 -3
windowless cabin 6 -9 -3
swing canard -3 1 -1 -3
|plasma virtual length -1 1 -9 3 -6
high aspect ratio nozzle -9 -6 3 -12

Figure 87.—Observations and insights from rankings contributed to prioritization.

Technologies rated the highest included adaptive/inflatable wing elements, distributed roughness, and
the jet noise technology. Adaptive geometry produced a net Pugh Matrix benefit equal to +10. The reason
adaptive geometry scored so high was due to the technologies broad range of potential applications.
Control augmentation, inlet flow control, and adaptive OML were the major applications considered for
adaptive geometry. This was the highest score followed by distributive roughness with a net benefit value
equal to +9. Distributed roughness scored high because it had a positive impact on L/D with no negative
impacts on other measures of merit. Further research and analysis proved that distributed roughness could
provide a 1.0 to 1.5 point increase in L/D with minimal increase in system complexity. The jet noise
technology set scored a net benefit value of +7 because the technologies are instrumental in reducing the
overall noise levels to reach the N+3 goals.

Technologies that were rated the worst include the high aspect ratio nozzle and plasma virtual length.
The high aspect ratio nozzle scores low because it had a small noise benefit but has a high negative
impact on weight and efficiency. The technology’s overall score equaled —12. Plasma virtual length
scored a —6 because of the complexity issues associated with an additional system and its large power
requirements. Most of the vehicle impacts from negatively scored technologies were small and only 7 out
of 51 technologies resulted in values from —3 to —1.

As a result, the following table (Table 11) demonstrates the nonprioritized list of technologies that
were down-selected for further analysis. Each technology was selected based on a judgment call, the Pugh
Matrix, and considerations to ultimately apply these technologies to an N+3 demonstrator.

A technology that did not make the list, but is recommended for further study and analysis is aircraft
take-off assist (Table 12). Take-off Assist, under aircraft operations, uses a subsonic vehicle to assist a
supersonic vehicle during take-off in a similar manner to a glider being towed. The goal is to reduce the
overall noise levels at take-off. Both vehicles would then land by themselves. This type of operation could
also potentially increase efficiencies within the configuration design. This technology scored reasonably
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high (Pugh Matrix value = +5), but the impacts of this system within the future ATS are unclear. The
system requires further research and analysis to understand the full impact.

TABLE 11.—NONPRIORITIZED OF PUGH MATRIX TECHNOLOGIES DOWN SELECTED FOR FURTHER ANALYSIS

Category Technology Source Description Benefits Drawbacks Benefit value
(Pugh matrix
analysis)
Distributed bumps on a/c
. o surfaces. Creates acoustic .
E':l)gmar ]r:;ljtrﬁizzzd Reed/Saric disturbances out of phase with ldﬁz:;o(ilriigsatee ds zl)irllulfea ;:itturmg +9
& cross-flow disturbances and P P P ¥
maintains laminar flow.
. . Complexity of
Inlet flow control | LM RTP Vary 'mlet geometry to choke Re'd uced inlet fan using variable +3
. flow in the inlet at low speeds | noise
Adaptive geometry
geometry o g N+3 Kick-off | Ability to conform portions of | Ability to control lift, | Potential difficulties
Lift distribution - . . .
control brainstorming | configuration/ control lift decreased drag, lower | to create drag at +7
session surfaces noise low speeds
Jet exhaust Tech Fair— Plasma ac'tuabtors on nozz'k: .hp Jet noise reduced about | Power required for
Plasma . . . to play with jet characteristics +3
manipulation Ohio State : 2t03dB plasma
to reduce noise
Low boom Heads up display 1llustrgt1ng Mitigate boorp gnd
. R . LM maneuver and acceleration operate a/c within +9
Pilot violation cueing . . S
L limits for low boom operation | FAA limitations
situational - -
Boom/noise . . Intelligent route Performance and
awareness . Route planning for noise . . .
preplanning LM finding to apply noise | efficiency decrease +9
abatement . .
awareness to specific areas to abate noise/boom
Boom shaping M Shapes lifting surfaces to low Higher fidelity solution Computatlonal 49
boom targets Requirements
Tools/ CFD-based LM/Stanford/ | Shapes lifting surfaces to low Higher fidelity solution Computatlonal +9
Methods MDAO NASA boom targets Requirements
Integrated Integrated analysis that . . .
structural LM accounts for flutter and other ngher ﬁdehty/' Computatlonal +9
. integrated solution Requirements
analysis ASE concerns

TABLE 12—RECOMMENDED ENABLING TECHNOLOGIES FOR FURTHER RESEARCH AND ANALYSIS

Category Technology Source Description Benefits Drawbacks Benefit value
(Pugh matrix
analysis)
A minimalist autonomous takeoff
assistor would tow the supersonic
aircraft by cable through take-off up Potential
Aircraft Take-off tg launch altitude. The sup?rsonic Reduces . operation
operations assist LM alrcraﬁ would hav; its engines at community prpb!ems +5
partial throttle during takeoff to stay | noise on takeoff | within future
within noise limits and to be ATS
controllable. The supersonic aircraft
would land on its’ own.

The technology down selection process produced a manageable list of promising technologies for
further evaluation and identified enabling technologies suitable for the technology roadmaps.
Nonproprietary results from the Pugh Analysis are posted in Appendix B.

5.3

Technology Prioritization (WBS 3.3.4)

Technology prioritization was done by calculating value in terms of the overall benefit of the
technology to the air vehicle, probability of success, and the cost to develop that technology to a TRL 6.
The equation used is highlighted below:

NASA/CR—2010-216796

81




_ Benefit * Probability of Success
Cost to Develop

Rank

The results from the Pugh Matrix analysis were used to determine a benefit value for each

technology, and referenced subject matter experts within LM were used to determine the probability of
success and the overall program costs to mature each technology. Each technology was then prioritized
and put into the following roadmap format, Table 14, to illustrate the enabling airframe and propulsion
technologies required to realize an environmentally friendly vision vehicle.

The down selected technologies have applications to N+2 and N+3 air vehicles. Different

technologies, including low boom violation cueing and preplanning awareness, first have application to

the N+2 vehicle but will also be used on the N+3 vehicle to achieve the N+3 performance and

environmental goals. It was reasonably assumed that these N+2 technologies, highlighted in Table 13,
would be developed during subsonic N+2 programs and would not be a focus for future N+3 technology
development. As a result, these technologies were prioritized and technology roadmaps were developed
for completeness. However, it is assumed that these technologies will be developed in other efforts first
and are not recommended for future N+3 development efforts.
We recommend that future airframe development should concentrate on N+3 specific
tools/methodologies, laminar flow, and adaptive geometry technologies. The order of importance is
outlined in the table and follows the priority ranking provided.

TABLE 13.—PRIORITIZED LIST OF ENABLING TECHNOLOGIES NECESSARY TO
ACHIEVE N+3 PERFORMANCE AND ENVIRONMENTAL GOALS

Priority Category Prioritized, Addressed Vehicle benefit Current Vehicle Availability
no. enabling N+3 N+3 goal TRL application timeframe
technology level (TRL=6)
1 Tools/ Boom shaping | Boom Optimized boom 1-2 N+2 and N+3 ~2015
methods mitigation configuration capable of supersonic
achieving 70 PLdB application
2 Tools/ methods | CFD-based Boom Optimized boom 2-3 N+3 ~2016
MDAO mitigation configuration capable of
achieving 70 PLdB
3 Laminar flow | Distributed Fuel efficiency, |L/D +1 to 1.5, Increased 3 N+2 and N+3 ~2022
roughness with | range efficiency at higher Machs, supersonic
plasma aug. less friction/drag, reduction application
in aircraft wt.
4 Pilot Low boom Boom In-flight boom intelligence, 1-2 [N+2 ~2018
situational violation cueing | mitigation reduced sonic boom,
awareness operation within FAA
limits
5 Pilot Boom/noise Boom Intelligent/Boom 1-2 [N+2 ~2020
situational preplanning mitigation conscience route finding,
awareness awareness operation within FAA
limits
6 Tools/ methods | Integrated Efficiency Optimized empty weight 1-2  |N+3 ~2017
structural design
analysis
7 Adaptive Lift distribution | Efficiency, Adaptive airfoils to 2-3  |N+3 ~2018
geometry control noise optimize range
8 Plasma Jet exhaust Noise Reduced nozzle PLdB 2-3 N+3 ~2016
manipulation noise by 6-8 dB
11 Adaptive Inlet flow Noise, Reduced inlet fan noise 2-3  |N+3 ~2018
geometry control efficiency with improved efficiency
(+10% inc in take-off thrust
and transonic thrust. Plus
10% subsonic SFC
improvement)
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6.0 Technology Roadmap Development—Propulsion
6.1  Technology Identification—Potential Enabling Technologies
6.2 Technology Down Selection/Prioritization

Early in the program a list of propulsion technologies were compiled and prioritized, shown in
Table 14. This prioritization was in terms of engineering judgment as to the benefit to the program, the
chance of the technology succeeding if it was fully developed, and the cost of development of the
technology. This prioritized list was used as the program developed to guide the choice of technologies to
be evaluated in the propulsion system. As the assessments relative to the goals became clearer and as the
configurations LM was focusing on became evident, some of these technologies made more sense and
some were no longer appropriate to include. As discussed in Section 4.1, the advanced VCE, as well as
the conventional MFTF use many advanced technologies aimed at 2025 TRL 6 Technology Availability
Date and EIS date of 2035. The main advanced technology features of the propulsion system broken out
for more detailed evaluation and trade studies are the VCE architecture engine, the ATMS, the Axi-Plug
Low Noise Exhaust, and the Transonic Thrust Augmentation device. There is also an Advanced Low
NOx Combustor concept capable of meeting the N+3 cruise NOx emission goal. There were also some
additional technologies evaluated that were not part of the baseline propulsion system. The additional
technologies aimed at reducing T4 to meet the cruise NOx emissions goal were intercoolers, interturbine
combustion, and to improve SFC, constant volume combustion. These trade studies will be summarized
in the following sections.

TABLE 14—PROPULSION SYSTEM TECHNOLOGY MATRIX

Priority Technology Benefit to Chance of Cost to Ranking
program success develop
1 Exhaust noise reduction technologies 9 9 1 81
1 ATMS 9 9 1 81
1 Transonic thrust augmentation 9 3 1 27
2 Premixed combustion 9 3 1 27
2 Active control combustion 9 3 1 27
1 VCE 9 9 9 9
1 Advanced low NOx combustor 9 3 3 9
1 High OPR gas turbine 9 9 9 9
5 Over-wing mounted engines 3 3 1 9
7 Constant volume combustion 9 3 3 9
13 Cross-shafted auxiliary fans 3 3 3 3
3 Ceramic matrix composite exhaust 3 3 3 3
4 Inter-cooler 3 3 3 3
6 Embedded engines 3 3 3 3
8 Counter-rotating fan 3 3 3 3
10 Indirect Brayton cycle 3 3 3 3
12 Auxiliary turbofans 9 1 9 1
9 = high, 3 = medium, and 1= low

7.0 GOTCHA Analysis (WBS 3.3.3)

Using a NASA tool, each enabling technology was evaluated as to how it addressed an N+3 goal, and
this path was then mapped using GOTCHA charts. Each N+3 goal (sonic boom, airport noise, cruise
emissions, cruise speed, range, payload, and fuel efficiency) was laid out with corresponding technical
challenges and resulting approach to solve those objectives. The results, which prove traceability for each
technology to an N+3 goal, are shown in Figure 88 and Figure 89.
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Figure 89.—GOTCHA successfully traces prioritized technologies to N+3 performance goals.
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8.0 New Technology—Airframe (WBS 3.3.3, 3.3.4)

The following section describes each prioritized technology and establishes which N+3 goal the
technology addresses. Waterfall charts were also generated for each enabling technology to demonstrate
the maturation plans for Phase II and Phase III efforts. All technology plans illustrate the maturation cycle
up to TRL 6 and are grouped according to category. Each technology was assessed by considering the
technology’s current TRL and an understanding of the resources that would likely be needed to raise the
TRL. The results show that all technologies can achieve TRL 6 within the 2030 to 2035 timeframe and
major risk items are identified.

8.1  Tools /Methodologies—Low Boom Shaping Fidelity
8.1.1 Addressed N+3 Goals

o Boom mitigation

8.1.2 Description

Current low sonic boom design and analysis methods have less fidelity (to various degrees) than is
needed to achieve low boom loudness goals with the best acrodynamic performance simultaneously
possible. Where possible, fast low fidelity methods will be replaced or modified with enhanced accuracy
methods including more faithful geometric modeling. Low fidelity methods will work incrementally from
high-fidelity methods in mixed-fidelity and multi-fidelity frameworks. Improved investigation and
optimization schemes will find better solutions and better Prato fronts for trading-off between objectives.
CAD incorporation is desired for parametric geometry modifications that maintain smoother and more
producible shapes, are better for other disciplines, and still achieve near optimum aero/boom
performance. Improvements in CFD analysis accuracy and speed will be implemented through coding
automation, more efficient gridding, improved propulsion boundary conditions, wind tunnel and flight
measurement validations and propagation beyond the near-field. Additional enhancements to propagation
methodology include rounding, turbulence, maneuvering and additional flexibility in inverse
minimization targets.

8.1.3 Roadmap

Figure 90 delineates a broad course of action necessary to mature and develop these boom shaping
enhancements. The main maturation efforts include parallel work with NASA on multiple means and
methods of fidelity improvements for modified-linear tools, multi-fidelity frameworks and CAD
integration, CFD improvements and inverse design targets. Once complete, verification and validation
needs to be performed to ensure usability by personnel within the aerospace industry.

Tools/Methods — Boom Shaping

Phase | Phase Il Phase Il

2010 2012 2016 2018...

Figure 90.—Roadmap for tools/methods—low boom shaping fidelity.
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Tools/Methods — CFD-Based MDAO

Phase | Phase Il Phase Il

2016 2018...

Figure 91.—Roadmap for tools/methods—CFD-based MDAO.

8.2  Tools/Methodologies—CFD-Based Adjoint Shape Optimization

8.2.1 Addressed N+3 Goals

o Efficiency
e Sonic Boom

8.2.2 Description

CFD has been identified as the necessary tool for accurate low sonic boom prediction. The
implementation of an effective adjoint of sonic boom in CFD will greatly improve the effectiveness of
low boom CFD-based design. Achieving low sonic boom with the highest performance efficiency
possible requires final refinement of configurations with CFD-based design. Strong integration with CAD
geometry definition will also be part of the process to insure geometric fidelity and final shapes practical
for all disciplines, like smooth shapes for efficient structure.

8.2.3 Roadmap

The waterfall chart in Figure 91 shows the general outline of CFD-Based sonic boom adjoint MDO
maturation plans from TRL 2-3 to TRL 6. Development of the tool is ideally done in conjunction with
Universities and NASA, and then it must go through the verification and validation process. Total code
development verification matures the technology to TRL 6 in approximately 2016.

8.3 Laminar Flow—Distributed Roughness with Plasma Augmentation

8.3.1 Addressed N+3 Goals

e Drag reduction
e Fuel efficiency

8.3.2 Description

The distributed roughness technology consists of distributed bumps on wing surfaces to create
acoustic disturbances out of phase with cross-flow disturbances to maintain laminar flow on swept
surfaces. This technology anticipates extending the laminar flow to the majority of the vehicle’s surface.
Laminar flow reduces friction drag by 80 percent for the portion of the surface where it can be attained,
greatly increasing fuel efficiency and range.

During the Phase II extension of the Quiet Supersonic Platform program conducted by DARPA, the
Arizona State University research team headed by William Saric and Helen Reed conducted a series of
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tests in the NASA Langley 4 by 4 Unitary plan tunnel (UPWT) culminating during the period of January
to February 2004. The UPWT work was designated as Task 6 of the overall ASU effort. The purpose of
this task was to achieve NLF on a swept wing at Mach 2.17 using spanwise-periodic discrete roughness
elements (now known as DRE)—a technology pioneered by William Saric and used in both high-speed
and low-speed flow. The results at higher unit Reynolds numbers are encouraging and justify a
continuation of this program of using DRE for NLF in supersonic flow sometime in the future.

Further technology development of distributed roughness is currently being conducted with Helen
Reed, Bill Saric, and the Air Force Research Lab (AFRL) using plasma generation and spacing control of
DREs to maximize NLF on the Revolutionary Configuration for Energy Efficiency (RCEE) program. The
plasma can be generated with any desired roughness spacing for optimal effect at all flight conditions.
This technology could also be used to prevent separation with shock/boundary layer interactions to
improve efficiency. In addition to increased control for maximizing NLF, the plasma generator has many
good operational features. It requires little power, has no moving parts, is flush mounted, is compact in
size, and can be varied at high frequency.

8.3.3 Roadmap

Figure 93 highlights the maturation plan for plasma assisted natural laminar flow. Currently, wind
tunnel work on the RCEE program in conjunction with AFRL and Reed/Saric at Texas A&M augments
the overall maturation plan. Three additional maturation tests are required to bring the TRL from 3 to a 6.
The first step is a subsonic flight test at Texas A&M. The second is a transonic flight test using a wing
glove on a business jet. The third test, occurring well into Phase 3, includes a large scale supersonic flight
test to push to TRL 6.

Distributed Roughness (DR) & Flow Transition (FT):
Distributed roughness is Applied to Leading Edges of the
Wing, Tail & Canard surfaces for Increased Lifting Efficiency.
MDAGO Analysis Indicates that L/D will be Increased by 1 to
1.5

Figure 92.—Laminar flow technology benefits applied to advanced vehicle concept.

Laminar Flow — Plasma Augmented Distributed Roughness

Phase | Phase Il Phase Il

TRL | 2008 2010 2012 2014 2016

T

ic Flight Test, Rec~ ing Glove on Business J

]

© ® N o

Figure 93.—Roadmap for laminar flow technology—plasma augmented distributed roughness.
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Pilot Situational Awareness — Low Boom Violation Cueing

Phase | Phase Il Phase Ili

2016 2018...

N R - S — SR—— - R — Incorporate interface with airplane systems -
G IA Verification & Validation

Figure 94.—Roadmap for pilot situation awareness—low boom violation cueing.

8.4  Pilot Situational Awareness—Low Boom Violation Cueing

8.4.1 Addressed N+3 Goals

e Boom Mitigation

8.4.2 Description

Low Boom Violation Cueing is a pilot situational awareness tool that is assumed to be developed first
for the N+2 vehicle. It is included within this list because it has N+3 applicability’s. The tool provides
warnings on a heads-up display about maneuvers, turning rate limits, and accelerations that could trigger
a breakdown of the vehicle’s low boom characteristics. It also provides mach cut-off indication for flying
without boom on the ground to further help minimize boom impact. This will enable lower speed
supersonic flight even before acceptable low boom level regulations are implemented.

8.4.3 Roadmap

Figure 94 shows the general development plan for low boom violation cueing. The first step to mature
the technology includes gathering atmospheric data, taking many ground measurements to quantify
statistical scatter from predictions and adjusting PCBOOM code to calculate focused boom conditions.
Results from that effort will be incorporated with airplane system interfaces. Lastly, verification and
validation matures the code to TRL 6.

8.5  Pilot Situational Awareness—Preplanning Awareness

8.5.1 Addressed N+3 Goals

e Boom Mitigation
e Noise

8.5.2 Description

Preplanning awareness is a route planning and pilot situation awareness tool that is assumed to be
developed for the first low boom vehicle, N+2. It is included within this list because it has N+3
applicability’s. Preplanning awareness provides information about noise levels and flight path data to
reduce boom impact over land. The tool can optimize over land operation and help plan routes to
minimize sonic boom noise annoyance. Later incarnations can also help optimize airport noise abatement
procedures for specific community routing, runways and engine throttling.
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Pilot Situational Awareness — Boom/Noise Pre-planning Awareness
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Figure 95.—Roadmap for pilot situation awareness—preplanning awareness.

8.5.3 Roadmap

Figure 95 highlights the maturation plan necessary for preplanning awareness. The first step is to
develop prediction capabilities. Next, determine pilot interface and system interfacing requirements.
Finally, pilot interfaces with ATC need to be developed, implemented and ultimately verified.

8.6  Tools/Methods—Integrated Structural Analysis

8.6.1 Addressed N+3 Goals
« Efficiency

8.6.2 Description

Low sonic boom design and optimization is initially performed simultaneously with aerodynamic
optimization. Any method that provides the lift needed for boom also provides the drag and moment
needed for aecrodynamic efficiency. While both boom and aecrodynamics are greatly dependant on vehicle
surface geometry, another discipline is also greatly dependant on that geometry—structures. Structural
strength and stiffness are even higher power functions (third and fourth) of thickness than drag (second)
and rolls up into overall efficiency through structural weight. Further, since length and weight are primary
parameters affecting boom, structural optimization is not only of primary importance to surface geometry
design but strongly interacts with boom and aerodynamics. Based on their strong geometry design
dependence, sonic boom, aerodynamics and structures will benefit from and employ the most
sophisticated optimization methodology possible. Based on their strong interactions, further benefit
should be achievable by optimizing all three disciplines in an integrated framework. Additionally, the
particularly slender configurations of low boom designs will often need to employ more sophisticated
structural analyses for flutter suppression, acroelastic control, aero-servo-elasticity (ASE and even APSE,
which adds propulsion interactions in designs without a tail or braced nacelle mount). The best methods
for these sophisticated analyses need to be integrated into the low boom design framework so that all
critical structural limitations are accurately addressed. Past commercial aircraft program trends have
shown that investments in better initial design phases tends to pay-off greatly in reduced rework, lower
overall development cost, lower recurring cost and better aircraft performance.
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Tools/Methods— Integrated Structural Analysis
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Figure 96.—Roadmap for tools/methods—integrated structural analysis.

8.6.3 Roadmap

Figure 96 illustrates a high-level maturation plan for integrated structural analysis. Much of the plan
relies on the integration of structural tools developed outside of this supersonic program. Most structural
tool development will be provided by third party software developers. They may need some guidance to
insure that their tools can be integrated into the low boom design framework. Validation of software
analysis needs to be performed on a representative low boom design. Following development needs to be
requested from the third party software developers for any validation cases with unsatisfactory results.
Additional support may be needed from the third party software vendor to integrate their tools effectively
into the low boom framework.

8.7  Adaptive Geometry—L.ift Distribution Control

8.7.1 Addressed N+3 Goals

« Efficiency
e Noise

8.7.2  Description

Adaptive geometry—Ilift distribution control is performed using shape-memory alloys or piezoelectric
actuators to bend flexible surfaces without gaps. This adaptive geometry can improve control efficiency
and reduce the overall airframe noise. Airfoils could also be optimized for over-water operation for
improved lift distributions to increase range. Future research is needed to develop the methods and
materials.

8.7.3 Roadmap

Figure 97 demonstrates the developments needed to mature lift distribution control. The first step is to
demonstrate autonomous adaptive wing materials including tension/compression structures and tunable
modulus composites. Next, the development of integrated shear stress sensing materials along with a
wind tunnel demo of the 2-D integrated system brings the technology to TRL 4. TRL 6 is achieved with a
3-D system design, fabrication and a demonstration.
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Adaptive Geometry — Lift Distribution Control
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Figure 97.—Roadmap for adaptive geometry—Ilift distribution control.

8.8  Plasma—Jet Exhaust Manipulation

8.8.1 Addressed N+3 Goals

e Noise

8.8.2  Description

Jet Exhaust Manipulation uses high bandwidth and amplitude plasma actuators on the nozzle lip to
adjust flow in such a way to reduce jet noise (and perhaps sonic boom). The technology development is
currently being conducted by Dr. Samimy from Ohio State University. Research is needed to develop the
most effective system: reduce power requirements, determine best amplitude, flow stream depth and
circumferential location, frequency and circumferential modulation, and optimize integration with
acoustic liners. The plasma effectiveness on the exhaust flow and mixing is enhanced by matching the
natural eddy formation frequency. Further enhancement is achieved with circumferential variations and
variation in strength, nozzle position and depth of plasma location. These parameters are just starting to
be investigated on a simple conical jet. Thereafter, development will need to advance to the 3-stream
nozzle flow of proposed VCEs (with perhaps a greater effectiveness potential).

8.8.3 Roadmap

Figure 98 demonstrates jet exhaust manipulation maturation plans continuing the simple nozzle
studies with improved hardware to investigate the full range of effective power, position and frequency.
Parallel efforts will model the flow effects and help to identify the most optimum plasma configuration,
particularly for transition to the proposed multi-stream nozzle flow and integration with acoustic liners.
Testing with the multi-stream nozzle set-up follows with multiple entries and final testing at near flight
exhaust conditions and temperature and Reynolds number.
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Plasma — Jet Exhaust Manipulation
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Figure 98.—Roadmap for plasma—ijet exhaust manipulation.
Adaptive Geometry — Inlet Flow Control
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Figure 99.—Roadmap for adaptive geometry—inlet flow control.

8.9  Adaptive Geometry—Inlet Flow Control (Choking)
8.9.1 Addressed N+3 Goals

e Noise
e Efficiency

89.1.1 Description

Inlet Flow Choking uses variable geometry to choke the inlet at low speed. This technology reduces
and prevents the fan noise from propagating out of the inlet. Development within LM has been conducted,
but the technology has not been demonstrated. Research has also shown 10 to 20 percent increases in
take-off and transonic thrust as well as 10 percent improvements in subsonic SFC. Additional research is
required to mature and verify the technology.

8.9.2 Roadmap

Figure 99 illustrates a high-level maturation plan for the technology. First, a design requirements
study guides the fabrication and testing of a demo. Next, concept refinement is done with additional
design and testing. Ultimately, a full-scale demo brings the TRL to 6 in approximately 2018.
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Figure 100.—Airframe technology roadmap for enabling supersonic technologies.

8.10 Technology Roadmap Overview

Figure 100 highlights the general timeline that each prioritized, enabling technology will reach a
TRL 6. Assuming sufficient funding, all technologies are within an acceptable timeframe to apply to an
N+3 demonstrator.

9.0 New Technology—Propulsion

Based on the initial technologies prioritized in Table 15, the process of designing the variable cycle
propulsion system, and the assessment of how the propulsion system does relative to meeting the
environmental goals, several technologies need to be developed for the proposed propulsion system.
Technology development roadmaps are provided for the VCE, low noise/high performance nozzle,
advanced low NOx combustor, ATMS, Transonic Thrust Augmentation device, and constant volume
combustion. All of these technologies are included in GE’s baseline propulsion system except for the
constant volume combustion system. CVC was included in the roadmaps because the trade study,
although relatively simple, does show significant SFC benefits and the current study didn’t get into the
system weight and installation portion, there is thought to be benefit to continuing to look at this
technology.

9.1 VCE

9.1.1 Goals and Obijectives

1. Develop advanced VCE for supersonic commercial application

2. Develop ATMS

3. The engine will meet the NASA emissions, efficiencies, and noise goals allowing the aircraft to
meet sonic boom goals

4. The engine should be designed to achieve low SFC for supersonic while providing lightweight,
high reliability and long life.
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Figure 101.—Roadmap for VCE propulsion system.

9.1.2 Technical Description

The required elements to mature this propulsion system are outlined in Figure 101; the primary
elements include technology and component maturation, continued advances and developments in
advanced aerodynamics and materials.

An N+3 engine demo program could potentially start around 2019 depending on funding availability.
It is anticipated that many of the required technologies may already be at TRL 6 before that, but some
most likely will not. This N+3 engine demo program would provide the opportunity to mature the
remaining technologies and verify the capability to proceed to the full system development program for
the N+3 Supersonic program. The initial engine demo program is currently unfunded. The demo engine is
the potential test bed for technology maturation to TRL 6. If this demo test bed does not occur then all the
technologies will have to be matured to TRL 6 in the later N+3 engine demo.

9.2 Low Noise/High Performance Nozzle Exhaust

9.2.1 Goals and Obijectives

1. Exhaust system that meets operability, performance, and noise goals, utilizing the cycle based on
the VCE.

2. Exhaust system to meet NASA N+3 Airport Noise Goal—Stage 3—20 to 30 EPNdB

3. High nozzle performance throughout flight envelope.

4. Light weight, high reliability, variable geometry

9.2.2 Technical Description

Propulsion system studies have shown that an advanced VCE with an exhaust system comprised of an
Axi-Plug nozzle with jet noise reduction features can meet the N+3 supersonic airport noise goals. The
basic Axi-Plug nozzle provides high performance with variable geometry. The VCE enables the jet noise
reduction features in the nozzle.

9.2.3 Roadmap

Figure 102 shows the roadmap for the low noise/high performance exhaust system.
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Figure 102.—Low noise/high performance exhaust system roadmap.

The next step in the roadmap is to design, fabricate, and test an exhaust system consisting of the Axi-
Plug nozzle jet noise reduction technologies. This will verify how these technologies work together. After
that an exhaust system could potentially be matured in the potential engine demo or an N+3 engine demo.

9.3 Advanced Low NOx Combustor
9.3.1 Goals and Objectives

1. Develop advanced combustor with enhanced premixing capable of achieving EINOx =5 at
supersonic cruise conditions.

2. Develop advanced materials and cooling technologies to reduce cooling flow requirements.

3. Evaluate and develop advanced piloting systems to approach entitlement emissions, and improve
combustion dynamics/stability.

9.3.2 Technical Description

Various system level approaches need to be examined to achieve the aggressive N+3 emission goal of
EINOx =5 at cruise conditions. If a variant of the single-stage Twin Annular Premixed Swirler (TAPS)
combustor will be used, substantial improvements in mixing effectiveness will be required to create a
lean-burn premixed combustion system capable of achieving these low NOx levels. If a TAPS variant is
not feasible, other advanced mixing concepts such as Lean Direct Injection (LDI) or Accelerating Swirler
Passage (ASP) may be employed to achieve a near-perfectly premixed condition.

Advanced cooling technology must be developed, which will reduce the amount of cooling flow
needed and direct more air to the mixer. New materials such as Ceramic Matrix Composites (CMC) can
be used to construct the combustor to reduce cooling requirements as well.

Advanced piloting systems will be evaluated and developed, which will eliminate the high NOx
production from the traditional pilot diffusion flame, and improve combustion dynamics/stability.

9.3.3 Roadmap

The combustor roadmap is shown in Figure 103. At the start of the supersonic N+3 program, the
combustor was identified as the key enabling technology to achieve the N+3 cruise NOx goal. A NASA-
funded combustor program is already underway aimed at supersonic vehicles and will be able to provide
important information towards achieving this goal. The supersonic N+1 program plans on delivering
hardware by mid-2010.
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Figure 103.—Low emission combustor roadmap.

Based on information obtained from these programs, the supersonic N+3 combustor program should
develop advanced concepts in rapid mixing, reduced residence time, reduced cooling, reduced pilot
contribution, and increased flame stability, by approximately 2022. To be in service by the 2035 timeframe, an
engine demo (TRL—6) would be required by about 2025, followed by a flight test by about 2031.

94  ATMS

9.4.1 Goals and Obijectives

1. Develop ATMS that permits high OPR operation at supersonic cruise conditions
2. Minimal impacts on duct losses or overall engine performance.
3. Light weight, high reliability, long life

9.4.2 Technical Description

The propulsion system gets a significant SFC improvement by running very high OPRs, but in doing
so the T3 gets very high. Analysis has shown the ATMS system to contribute a significant improvement
in SFC.

9.4.3 Roadmap

Figure 104 shows the roadmap for the development and maturation for the ATMS system for the N+3
Supersonics application. The first step is a core engine demonstration. After this a heat exchanger appropriate
for the N+3 supersonic application could be developed in preparation for an engine demonstration.

9.5  Transonic Thrust Augmentation Device

9.5.1 Goals and Objectives

1. Develop advanced augmenter capable of moderate AT augmentation for thrust boost at critical
thrust pinched flight points

2. Minimal impacts on exhaust or overall engine performance.

Requires no flame holders or spray bars

4. Light weight, high reliability, long life

W

NASA/CR—2010-216796 97



thse Phgse Phase Il

2008 2Q10 012 2014 2016 2018 ..

Figure 104.—Cooled cooling air roadmap.

Phase |l Phasell Phase Il

TRL 2008 2010 2012 2014 2016 2018... 2024... 2030
E ———

E_._

G-
2]

e |

] = N+3-Efgine Beme

EAS
i 0 S S IR IS S IV IS U A L _l
EN N3 Fiiht Test] B

Figure 105.—Transonic thrust augmentation device roadmap.

9.5.2 Technical Description

Previous internal work has evolved a Transonic Thrust Augmentation device. This lightweight simple
system is capable of producing a large localized temperature augmentation, which mixes out quickly with
minimal hot streak footprints that increases the overall temperature of the exhaust gases by a moderate
amount while producing almost negligible losses.

9.5.3 Roadmap

Figure 105 shows the roadmap for the Transonic Thrust Augmentation device. The next steps are hot
component then hot sector tests leading to an engine test.

9.6 CVC Roadmap

9.6.1 Goals and Obijectives

1. Develop CVC for VCE to improve SFC.
2. Minimal impact to system.
3. Light weight, high reliability and long life.
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9.6.3

9.6.2 Technical Description

Due to the current low TRL and complexity the initial development of incorporating CVC in a gas

Roadmap

Figure 106 shows the roadmap for the development of CVC.

Technology Roadmap Overview

turbine is expected to occur for a nonaviation application and then leveraged for aviation applications.

Figure 107 highlights the general timeline that each prioritized, enabling technology will reach a

TRL 6. Assuming sufficient funding, all technologies are within an acceptable timeframe to apply to a
N+3 demonstrator.
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10.0 Conclusions
10.1 Tasks and Trade Studies—Airframe
10.1.1 Advanced Concept Vehicle Definition

An initial concept with an inverted V-tail and under the wing engine placements was drawn as a
reference to compare alternative configurations. After exploring the configuration design trade space it
was concluded that the inverted V-tail configuration with under the wing engine placements provided the
best platform to achieve the N+3 goals. Figure 108 highlights the final configuration that was ultimately
sized to have a gross takeoff weight was 285,000 1b, with a thrust to weight ratio of 0.34 and a wing
loading of 92 psf.

The final wing, canard and tails were optimized to reduce the sonic boom with minimal aerodynamic
efficiency reduction. This optimization resulted in a reduction of the 1.38 psf max shock to 0.29 psf, and a
reduction in L/D from 10.1 to 8.0. Distributed roughness and plasma technologies are outlined in the
technology roadmaps as solutions to increase the L/D and achieve the 4000 to 5500 nmi range and 3.5 to
4.5 pax-nmi/lb-fuel fuel efficiency goals.

10.1.2 Rapid Conceptual Design Low-Boom Design Process or Design Space Trade Studies

LM’s Rapid Conceptual Design (RCD) framework was instrumental in demonstrating that a low-
boom aircraft, with adequate technologies, is able to meet the N+3 noise and mission performance goals.
RCD was used to generate the target signature corresponding to an average loudness of 70 PLdB, shape
lifting surfaces to meet that signature, size the N+3 configuration, and investigate the benefits of key
technologies.

Inverted V for

Wing planform designed structural stability

for aerodynamic efficiency
and signature requirements

Forebody volume buildup
per shaped signature

requiremems\ \

Planform TE for
aerodynamically efficient
propulsion integration

228 ft N

Wing dihedral elevates
lift for stretched boom Wing Area — 3’090 sqft

signature
T/O Thrust — 97,000 |b
MTOW — 285,000 Ib

Inverted V elevates lift for
stretched boom signature y
Tip anhedral reducing roll

Aft-under-wing mounted in side-slip, allowing
engines for favorable ¥ 1 greaterinboard dihedral
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— — * g | 37 ft
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Figure 108.—Final configuration three-view.
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Figure 109.—Ground signature before and after aero/boom shape optimization

RCD-based aerodynamic/boom shape optimization was used to shape the surfaces of the wing,
inverted V-tail, and canard to ensure that the aircraft’s ground signature conformed to the established,
70-PLdB target. This markedly improved the aircraft’s ground signature as shown in Figure 109, and was
accomplished by adjusting the camber slope at 20 specific locations to redistribute the configuration’s
equivalent area distribution. Although the boom-optimized shape exhibited a lift-to-drag ratio
approximately 21 percent lower than that of a purely minimum-drag shape, aerodynamic technologies
such as NLF can counteract this effect and enable the N+3 vehicle to maintain mission performance that
complies with its payload, range, speed, and efficiency goals.

RCD was subsequently used to size the configuration for maximum range at 285,000 Ib MTOW. This
resulted in a thrust-to-weight ratio and wing loading of 0.34 and 92 psf, respectively. Sizing was based on
the VCE with thrust augmentation technology, which enabled the aircraft to achieve a balanced field
length of 9970 ft. This engine also enabled the N+3 aircraft to reach 40,000 ft in 22 min, permitting it to
climb above existing subsonic traffic prior to accelerating to Mach 1.6. The sized configuration’s range
was limited by available fuel volume; morphing structure technology could relieve this constraint and
increase range.

10.2 Tasks and Trade Studies—Propulsion

Preliminary designs for a VCE and two nonvariable mixed flow turbofans (MFTF) were developed
using the Numerical Propulsion System Simulation (NPSS) code as part of the NASA N+3 supersonic
program. This program studied advanced airframe and propulsion concepts for a supersonic commercial
passenger airplane in the 2035 timeframe. In particular, the program set challenging noise, emissions, and
efficiency requirements for an environmentally friendly aircraft. The proposed engine concept
incorporated advanced technologies such as ATMS permitting high OPR and thermal efficiency, an Axi-
Plug exhaust with Noise Reduction Technologies, and a Transonic Thrust Augmentation device. The two
MFTF engines did not use the Noise Reduction Technologies in the exhaust. The studies showed that
noise and performance goals could be met by the VCE and the first MFTF within the context of
continuing development of advanced technologies. The emission goal is projected to be met with the VCE
and first MFTF propulsion systems through a combination of a more advanced TAPS type combustor and
a small decrease in the peak temperature in the engine. To take advantage of the full thermal capability of
these propulsion systems would require even more advanced technologies not previously considered, and
alternate combustor or combustion approaches. The final engine was an “Optimized” cruise engine,
which ignored the airport noise and emissions goals and focused solely on fuel efficiency in the smallest
lightest propulsion system.
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GE developed preliminary designs for a VCE and a MFTF propulsion system to meet the thrust
requirements and program metrics, provided by LM. The overall efficiency figure of merit for both is
projected to be better than the goal. Airport noise and assessments were performed for these propulsion
systems and both are projected to meet the goal. The third “Optimized” cruise MFTF engine designed at a
higher FPR provides the best FOM but would not meet the acoustic and emissions goals. An NPSS
customer deck was developed for the VCE Propulsion System.

Cruise emission assessments were performed and the maximum T4 of the engine must be reduced to
meet the cruise NOx goal. This results in a relatively small impact to SFC and propulsion weight for the
VCE propulsion system. Other combustor concepts may be developed to regain the maximum thermal
capability of this VCE in the future. The cruise “optimized” engine was not designed to meet the
emissions goal.

10.3  System of Systems Analysis

The N+3 vehicle’s impact on the civil air transport system (ATS) was analyzed by Purdue University
in terms of productivity (passenger * knots), environmental impacts (carbon dioxide and NOx emissions),
and fleet direct operating costs (DOC). Optimal allocations of N+3 supersonic transports- defined as that
which maximizes either productivity or passenger time saved- were determined for various future
scenarios, which were established by projecting different rates of N+3 availability and passenger demand
growth. Maximum fleet-wide productivity was calculated for different limits on fleet CO2, establishing
the trade space between ATS productivity and emissions in the presence of N+3 SST’s. More
importantly, SST’s were consistently allocated to routes of 3000 to 5000 nmi, which is consistent with the
N+3 range goal of at least 4000 nmi.

The impact of N+3 operations on the demand for airports and airspace, assessed by LM
Transportation and Security Solutions, will require some additional airport capacity during peak hour
operations. However, most operations are likely to be scheduled during the periods of nonpeak
conventional operations and will therefore take advantage of currently unused airport capacity.
Furthermore, N+3 route networks between various airports are fairly well separated (assuming they are
able to fly great circle routings) even for busy air corridors. Departure climbs to 10,000 ft at low speed are
contained within 21 current National Air Traffic System (NAS) departure sectors; higher subsonic climbs
to 23,000 ft involve nine additional, current sectors. A marginal increase in air traffic complexity and
controller workload is predicted during these phases. The most significant increases in air traffic
complexity and controller workload are incurred by the N+3’s transonic acceleration and supersonic
climb, which lead to potential conflicts with existing subsonic traffic. These conflicts are most likely to
occur between 34,000 and 39,000 ft; therefore, they can likely be alleviated by using the VCE to move
transonic acceleration to 40,000 ft.

10.4 Technology Roadmaps—Airframe

Technology prioritization was done by calculating value in terms of the overall benefit of the
technology to the air vehicle, probability of success, and the cost to develop that technology to a TRL 6.
Each technology was then prioritized and put into the following roadmap format, Table 15, to illustrate
the enabling airframe technologies required to realize an environmentally friendly vision vehicle. Risk
analysis and maturation plans demonstrated that each technology addressed an N+3 goal and was capable
of maturation within the 2030 to 2035 timeframe. It was also determined that different technologies were
applicable to N+1 and N+2 air vehicles. These technologies, including low boom violation cueing and
preplanning awareness (highlighted in the table), were added to the final technology list, but it assumed
that they will be developed under other N+2 program efforts.
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TABLE 15.—PRIORITIZED AIRFRAME TECHNOLOGY ROADMAP

Priority Category Prioritized, Addressed Vehicle benefit Current Vehicle Availability
no. enabling N+3 N+3 goal TRL application | timeframe
technology level (TRL = 6)
1 Tools/ Low boom Boom Optimized boom configuration 1-2 [N+2 and N+3 ~2015
methods shaping mitigation capable of achieving 70 PLdB supersonic
application
2 Tools/ CFD-based Boom Optimized boom configuration 2-3  IN+3 ~2016
methods MDAO mitigation capable of achieving 70 PLdB
3 Laminar flow |Distributed Fuel L/D +1 to 1.5, Increased efficiency at 3 N+2 and N+3 ~2022
roughness efficiency, higher Machs, less friction/drag, supersonic
range reduction in aircraft wt. application
4 Pilot Low boom Boom In-flight boom intelligence, reduced 1-2 N+2 ~2018
situational violation cueing |mitigation sonic boom, operation within FAA
awareness limits
5 Pilot Boom/noise Boom Intelligent/Boom conscience route 1-2 N+2 ~2020
situational preplanning mitigation finding, operation within FAA limits
awareness awareness
6 Tools/ Integrated Efficiency Optimized empty weight design 1-2 N+3 ~2017
methods structural
analysis
7 Adaptive Lift distribution |Efficiency, Adaptive airfoils to optimize range 2-3 N+3 ~2018
geometry control noise
8 Plasma Jet Exhaust Noise Reduced nozzle PLdB noise by 6 to 2-3 N+3 ~2016
Manipulation 8 dB
11 Adaptive Inlet flow Noise, Reduced inlet fan noise with 2-3 N+3 ~2018
geometry control efficiency improved efficiency (+10% inc in
take-off thrust and transonic thrust.
Plus 10% subsonic SFC
improvement)

Recommended future technology development efforts for airframe technologies include:

10.5

Concentration on supersonic specific technologies for the N+3 vehicle to ensure serviceability in
the 2030 to 2035 timeframe

— Tools/methods

— Laminar flow

— Adaptive geometry

First, develop low cost, high impact tools and methodologies such as Multi-Fidelity Low Boom
Shaping and CFD-based MDAO to achieve low boom levels with minimum aerodynamic
efficiency impacts and the most overall, multi-disciplinary optimum design.

Second, advance distributed roughness with plasma augmentation to achieve the maximum
laminar flow possible by the N+3 timeframe

Third, promote adaptive geometry technologies and mature adaptive geometry applications to
maximize N+3 fuel efficiency.

Technology Roadmaps—~Propulsion

GE and Lockheed jointly assessed the most beneficial technology elements of the propulsion system.
These are highlighted in Table 16. Technology roadmaps were developed for these items, leading to
appropriate technology readiness level progression for the N+3 timeframe.

A list of key items for future work is listed below:

Currently funded DOD programs are continuing the development of many of the VCE
technologies.
The Transonic Thrust Augmentation device is a critical technology to continue developing.
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e The currently funded NASA Supersonics Low Emissions combustor program will provide key
validation data for high temperature NOx levels, and the maturation of some enabling
technologies. Alternate combustor/combustion concepts need to be explored, as these propulsion
systems are developed to take advantage of the full thermal capability of the system.

e Predictive and design tool development in many areas need to be continued to be developed.
Aero-acoustics, both fan and jet noise tools are not at a stage to provide direct quantitative design
inputs. Combustion and Emissions is another area where continued tool development is critical

TABLE 16.—PRIORITIZED PROPULSION TECHNOLOGY ROADMAP

Priority | Prioritized, enabling | Addressed N+3 goal Vehicle benefit Current | Vehicle Availability
no. N+3 technology TRL | application | timeframe
level (TRL=6)
1 Low noise/high Airpprt noise, fuel Meet noise and efficiency goal 3 N+3 ~2015
performance nozzle efficiency
2 |vCE Airpf)rt noise, fuel Smaller, lighter propulsion system that 3 N+3 ~2016
efficiency, sonic meets airport noise goals
boom
3 |ATMS Fuel efficiency, sonic Higher temperature capability, higher 3 N+3 ~2022
boom OPR for smaller, lighter, more efficient
propulsion system
4 Transonic thrust Airpprt noise, fuel Smaller, lighter engine, potential airport 2 N+3 ~2018
augmentation device  |efficiency, sonic noise benefit
boom
5 |Advanced low NOx Cruise emissions Meet cruise emissions 3 N+3 ~2020
combustor
6 |cve Fuel efficiency Fuel efficiency 2 N+3 ~2017

10.6

Meeting NASA N+3 Goals

Our integrated airframe and propulsion system, along with identified technologies, is projected to
meet or exceed all N+3 targets. Results of the environmental and performance characteristics of our
advanced vehicle concept with technology inputs are summarized in Table 17.

TABLE 17.—LM’S PREFERRED CONCEPT WITH CRITICAL
TECHNOLOGY MEETS OR SURPASSES ALL N+3 GOALS

NASA N+3 Efficient

N+3 Goal Status

MultiMach Aircraft

(Beyond 2030)
Environmental Goals
Sonic Boom 65 to 70 PLdB 70 to 76 PLdB

low boom flight KEY GOAL

75 to 80 PLdB

unrestricted flight
Airport Noise 20 to 30 EPNdB 18.4
(cumulative below stage 3) (32.2 jet only)
KEY GOAL

Cruise Emissions <5 EINOx 5 EINOx
(g/kg fuel) Plus particular and water vapor mitigation
Performance Goals
Cruise Speed Mach 1.3 t0 2.0 Mach 1.6

low boom flight

Mach 1.3t02.0

unrestricted
Range 4000 to 5500 nmi 4850 nmi
Payload 100 to 200 pax 100 pax
Fuel Efficiency 3.5t04.5 3.64
(pax-nmi/lb-fuel) (pax-nmi/lb-fuel)
KEY GOAL
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Appendix A.—Acronym L.ist

AFRL Air Force Research Laboratory

ANSI American National Standards Institute
ASA Absorption of Sound by the Atmosphere
ASDI Aircraft Situation Display to Industry
ASE Aero-Servo Elasticity

ASP Accelerating Swirler Passage

AST Advanced Supersonic Transport

ATC Air Traffic Control

ATM Air Traffic Management

ATMS Advanced Thermal Management System
ATS Air Transportation System

BFL Balanced Field Length

BIMS Biologically Inspired Morphing Structures
BPR Bypass Ratio

CAD Computer Aided Design

CAEP Committee on Aviation Environmental Protection
CDP Compressor Discharge Pressure

CFD Computational Fluid Dynamics

CFG Gross Thrust Coefficient

CG Center of Gravity

CMC Ceramic Matrix Composite

CPR Core Pressure Ratio

CvC Constant Volume Combustion

DBD Dielectric Barrier Discharge

DDT Deflagration-to-Detonation Transition
DFM Departure Flow Manager

DOC Direct Operating Costs

DOD Department of Defense

DRE Distributed Roughness Elements

EBC Environmental Barrier Coatings

EINOx Emission Index for NOx

EIS Entry Into Service

EPNL Effective Perceived Noise Level

ETMS Enhanced Traffic Management System
FAA Federal Aviation Administration

FAR Fuel/Air Ratio

FHV Fuel Heating Value

FOM Figure of Merit

FPR Fan Pressure Ratio

GE General Electric
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GRC
GTOW
HPT
HTEX
HX
IML
IR&D
IRP
ISA
KCAS
KEAS
LCTR
LDI
LLI
LM
LMCO
LPT
LTO
MDAO
MFR
MFTF
MN
MTOW
NAS
NLF
NOx
NPR
NPSS
NRA
oD
OEI
OEW
OML
OPR
OTA
PAI
PAX
PC
PDC
PDE
PLdB

Global Research Center

Gross Takeoff Weight

High Pressure Turbine

Heat Exchanger

Heat Exchanger

Inner Mold Line

Internal Research & Development
Intermediate Rated Power
International Standard Atmosphere
Knots Calibrated Airspeed

Knots Equivalent Airspeed

Large Civil Tiltrotor

Lean Direct Injection

Late Lean Injection

Lockheed Martin

Lockheed Martin Corporation
Low Pressure Turbine

Landing and Takeoff
Multi-Disciplinary Analysis and Optimization
Mass Flow Ratio

Mixed Flow Turbofan

Mach Number

Maximum Takeoff Weight
National Air Transportation System
Natural Laminar Flow

Nitrogen Oxides

Nozzle Pressure Ratio

Numerical Propulsion System Simulation
NASA Research Announcement
Outer Diameter

One Engine Inoperative
Operational Empty Weight

Outer Mold Line

Overall pressure ratio

Open Travel Alliance
Propulsion/Airframe Integration
Passenger

Power Code

Pulse Detonation Combustor
Pulse Detonation Engine
Perceived Loudness Decibels
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PLR
PR
P-RNAV
QSST
RCD
RH
RNAV

ROC
RQL
RVSM
SERN
SF
SFC
SLS
SOA
SST
TAPS
TOC
TOFL
TOGW
TRL
TSS
UAS
UPWT
VCE
VL]
WBS

Programmed Lapse Rate

Pressure Ratio

Precision Route Navigation

Quiet Supersonic Transport
Rapid Conceptual Design
Relative Humidity

Route Navigation

Required Navigation Performance
Rate of Climb

Rich Quench Lean

Reduce Vertical Separation Minimum
Single Expansion Ramp Nozzle
Scale Factor

Specific Fuel Consumption

Sea Level Static

State of the Art

Supersonic Transport

Twin Annular Premixed Swirler
Top of Climb

Takeoff Field Length

Takeoff Gross Weight
Technology Readiness Level
Transportation and Security Solutions
Unmanned Aircraft System
Unitary Plan Wind Tunnel
Variable Cycle Engine

Very Light Jets

Work Breakdown Structure
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