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Abstract 

We examined the effects of 30 min of exposure to either + 3Gx or +3Gz centrifugation on 

cerebrovascular responses to 800 head-up tilt (HUT) in 14 healthy individuals. Both before and 

after +3Gx or +3Gz centrifugation, eye-level blood pressure (BPeye) , end tidal CO2 (PETC02), 

mean cerebral flow velocity (CFV) in the middle cerebral artery (trans cranial Doppler 

ultrasound), cerebral vascular resistance (CVR) and dynamic cerebral autoregulatory gain 

(GAIN) were measured with subjects in the supine position and during subsequent 800 HUT for 

30 min. Mean BPeye decreased with HUT in both the Gx (n= 7) and Gz (n=7) groups (P<O.OOl), 

with the decrease being greater after centrifugation only in the Gz group (P<0.05) . PETC02 also 

decreased with HUT in both groups (P<O.Ol), but the absolute level of decrease was unaffected 

by centrifugation. CFV decreased during HUT more significantly after than before 

centrifugation in both groups (P<0.02). However, these greater decreases were not associated 

with greater increases in CVR. In the supine position after compared to before centrifugation, 

GAIN increased in both groups (P<O.OS , suggesting an autoregulatory deficit), with the change 

being correlated to a measure of otolith function (the linear vestibulo-ocular reflex) in the Gx 

group (R=0.76, P<0.05) but not in the Gz group (R=0.24, P=0.60). However, GAIN was 

subsequently restored to pre-centrifugation levels during post-centrifugation HUT (i.e., as BP eye 

decreased), suggesting that both types of centrifugation resulted in a leftward shift of the cerebral 

autoregulation curve. We speculate that this leftward shift may have been due to vestibular 

activation (especially during +Gx) or potentially to an adaptation to reduced cerebral perfusion 

pressure during +Gz. 

Keywords: transcranial Doppler, middle cerebral artery, hypergravity, head-up tilt, 

centrifugation, orthostasis, vestibular, otolith, cerebral blood flow 



r 
-_. -- - -- - --

3 

INTRODUCTION 

Orthostatic intolerance is common after space flight (5 , 8). However, the pathophysiology 

of this problem is complex and varies among affected individuals (5). Although peripheral 

vascular resistance responses are often compromised with standing in returning astronauts (5, 8), 

it is clear that other mechanisms also contribute to diminished orthostatic performance after 

space flight (2, 5). In some crewmembers, for example, postflight orthostatic intolerance 

develops without concurrent hypotension, suggesting that control of the cerebral circulation may 

be altered in a relatively isolated fashion (5). This notion is supported by the fact that 

paradoxical vasoconstriction of the cerebral circulation is known to precede not only vasovagal 

presyncope in both the clinical (9, 10) and research (4) settings, but also the orthostatic 

intolerance that occurs after parabolic flights (33, 35). 

Cerebral autoregulation is the process by which cerebral blood flow (CBF) is maintained 

over a wide range of cerebral perfusion pressures (CPP) (29) . The range or set point of the curve 

representing cerebral autoregulation is variable and is influenced by prevailing CPP (Fig. 1). For 

example, chronic hypertension may shift the cerebral autoregulatory curve towards the high

pressure end (rightward shift) thereby predisposing affected individuals to hypoperfusion should 

low CPP be experienced. In contrast, chronic local cerebral hypoperfusion (45) and some forms 

of chronic orthostatic hypotension (23) appear to shift the same curve leftward (21), potentially 

improving tolerance for reductions in CPP during orthostatic stress. Although previous work 

suggests that shifts in the cerebral autoregulatory curve can also occur acutely during 

cardiovascular stresses such as lower body negative pressure (LBNP) (47,48) and head-up tilt 

(HUT) (3), the time course of such adjustments in humans is nonetheless still poorly understood. 

One goal of the present study was to determine whether cerebral hypotension experienced 

during up to 30 min of + 3Gz centrifugation subsequently results in altered cerebrovascular 

control and orthostatic tolerance. Another goal was to determine if + 3Gz centrifugation differs 

from + 3Gx centrifugation with respect to its effect on cerebrovascular control and orthostatic 

tolerance. Because the acceleration experienced during + 3Gx is along the nasooccipital axis of 

the body, little change should be expected in CPP during this stimulus. We therefore 

hypothesized that 30 min of + 3Gx exposure would lead to minimal change in cerebrovascular 

responses during post-centrifugation (vs. pre-centrifugation) HUT. In contrast, we postulated 
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that exposure to 30 minutes of + 30z (i.e., acceleration along the longitudinal, or head-to-foot 

axis of the body) would cause a leftward shift in the CBF autoregulatory curve due to the 

reductions in CPP produced by this stimulus, in turn leading to improved cerebrovascular control 

during post-centrifugation (vs. pre-centrifugation) HUT. Finally, based on evidence that the 

brainstem pathways involved in vestibular-autonomic reflexes in animals (42) also influence 

CBF (32) and cerebral autoregulation (12), along with the recent finding that the cerebral 

autoregulatory curve may be shifted downward in motion sick subjects after parabolic flight (35), 

we speculated that if post-centrifugation changes in cerebrovascular control developed in the 

present study, that they would relate to measurements of otolith-ocular reactivity in our 

individual subjects. 

Materials and Methods 

Subjects. Fourteen healthy subjects (twelve male and two female) participated in this 

study. The subjects averaged 26 yrs in age (range = 22-38), 73.8 ± 11.9 kg in weight and 175 ± 5 

cm in height. All subjects passed a US Naval or NASA physical examination and on the basis of 

the examination, urine and blood tests were determined by the examining physician to be free of 

neurological, cardiopulmonary, renal or other systemic disease. In addition, each gave written, 

informed consent. Alcohol, heavy exercise, anti-motion sickness and all other medications were 

strictly prohibited for the 24 hours prior to testing. All protocols were approved by the Johnson 

Space Center Institutional Review Board and by the local Naval (Pensacola) and national (Public 

Health Services) bioethics committees. 

Centrifugation. Subjects were assigned to experience up to 30 min of either + 30x (Ox 

group, n=7) or + 30z (Oz group, n=7) acceleration on the Coriolis Acceleration Platform located 

at the Naval Aerospace Medical Research Laboratory in Pensacola, Florida (18). A chair in a 

cabin located 20.5 ft from the center of the centrifuge was utilized for testing. For + 3Gx 

centrifugation, subjects sat head erect in the chair with a headrest used to position and stabilize 

the head. For +30z centrifugation, subjects were recumbent in a chair with head towards the 

center of the centrifuge. The centrifuge profile consisted of a constant angular acceleration for 

19s to a constant velocity of 122 deg/s. This created a constant + 30x or + 30z force depending 

on subject position. To end exposure, a constant deceleration lasting 19s was used. 
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Otolith-ocular responses were examined in all 14 subjects by measuring vertical 
~ 

nystagmus slow-phase velocities, as recently described by McGrath, et al. (18), during an initial 

5-min exposure to + 3Gz. For the purposes of this study, the level of otolith sensitivity was 

inferred from the magnitude of vertical slow-phase velocity (18). During this initialS-min + 3Gz 

run, monocular (right) eye movements were recorded in darkness using a helmet-mounted 

infrared video-oculography system (Cohu Model 6412, San Diego, CA). This system consisted 

of a video camera that imaged the eyes from above using dichroic mirrors and infrared light 

sources. During the recordings, subjects were asked to gaze straight ahead while fixating on a 

remembered center-calibration target approximately 0.6 m in front of them. This target location 

was utilized to minimize effects of voluntary gaze strategies across subjects, and to enhance our 

ability to compare differences in vertical nystagmus slow-phase velocity across subjects. To 

ensure that there was no relative motion between the cameras and the eye during +Gz stress, the 

helmet was held firmly in place via an inflatable bladder and chin-strap system. After the 

completion of the initialS-min +3 Gz run, the subject' s helmet and camera system were removed. 

Either immediately thereafter (Gz group) or 1-5 days later (Gx group), a 25-min +3Gz run or 30-

min +3Gx run was then performed with the lights on following the same 

acceleration/deceleration profile noted above. During + 3Gz centrifugation, no anti-G straining 

maneuvers were allowed, although all subjects wore a standard naval antigravity suit to prevent 

G-induced loss of consciousness (G-LOC). These suits inflated automatically when the force 

exceeded +2Gz. In the event that a subject experienced symptoms of incipient G-LOC (i.e. , grey 

out, tunnel vision, etc.) in spite of G-suit prophylaxis, the centrifuge run was terminated early 

and post-centrifugation testing was commenced (see below). During min 5-9 and 16-20 of the 

second portion of + 3Gz centrifugation (and during the equivalent portion of + 3Gx 

centrifugation), subjects carefully and continually performed yaw head movements initially 15 

deg to the left, then back to the center, then 15 deg to the right, then back to center, etc., in a 

repetitive fashion, holding each position for a total of 15 s. These head movements were 

designed to approximate .those that might be performed by an astronaut or aviator during flight 

maneuvers. However, if at any time a subject began to experience stomach awareness, the head 

movements were stopped and gaze returned to the center position. Pre-defmed test-termination 

criteria for both + 3Gx and + 3Gz centrifugation also included severe nausea or actual vomiting. 

l ___ . ___ _ 
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Tilt Testing Supine (SUP) and 80° HUT data were collected during identical pre- and 

post-centrifugation testing sessions. Both the centrifuge room and the adjacent pre-/post

centrifugation testing facility were maintained at the same constant temperature and humidity 

during all sessions. The pre-centrifugation testing session occurred 1-5 days before 

centrifugation and the post-centrifugation testing session within 15 min after exit from the 

centrifuge. Two to three hours prior to both sessions, subjects consumed the same breakfast 

consisting of fruit, cereal grains and optional low-fat milk. 
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For this investigation, the sequential activities of test subjects were as foHows both before 

and immediately after centrifugation: 1) ambulation to the testing facility, located - 150 ft from 

the centrifuge; 2) cardiovascular instrumentation approximately 10 min later; 3) 30-40 min of 

SUP rest followed by 3-5 min of additional rest for pre-HUT SUP recordings; and, finally 4) 

HUT testing to 80° for a maximum of 30 min using a motorized custom tilt table (United States 

Navy, Pensacola, FL). Variance in the time of subject transfer from the centrifuge and in the 

actual cardiovascular testing times were generally on the order of 5-1 0 min each. 

In the pre-/post-centrifugation testing facility before, during and after HUT, mean 

cerebral flow velocity (CFV) in the middle cerebral artery (MCA) was measured via a 2 MHz 

pulsed flat transcranial Doppler (TCD) probe (Transpect, Medasonics, Mountain View, CA) 

placed over the right temporal bone. The signal was range gated to a depth of 45 to 55 mm, to 

ensure insonation of the M 1 segment of the MCA. Once the signal was maximized, the probe 

was fixed in place for the duration of the test using a Velcro headband. Beat-by-beat blood 

pressure (BP) was obtained from a finger cuff (Finapres 2300, Ohmeda, Englewood, CO) fixed 

by an arm board at the level of the heart. To determine BP at the level of the MCA (BPeye), the 

distance from the heart level to the eyes was measured and the hydrostatic equivalent of BP 

subtracted from the values obtained from the finger. End-tidal CO2 (PETC02) and respiratory rate 

(RR) were also monitored via a nasal catheter (Puritan-Bennett, Wilmington, MA) while heart 

rate (HR) was determined using a standard electrocardiogram. Criteria for orthostatic intolerance 

during HUT included any of the following: a sudden drop of systolic BP > 25 mmHg or of 

diastolic BP > 15 mmHg; an absolute systolic BP < 70 mmHg; a sudden and sustained drop in 

HR of> 15 bpm; an absolute HR < 40 for subjects whose resting absolute HR is > 50; severe 

lightheadedness; severe nausea or actual vomiting. 
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Data Analysis. The analog CFY, ECG and BPeye signals were sampled simultaneously at 

10kHz per channel using an 8-channel digital tape recorder (TEAC RD-Il1 T, Teac Inc., Tokyo, 

Japan) . Off-line data analysis was performed with customized data analysis software. The peak 

velocity envelope of the TCD waveform was used to represent the instantaneous blood flow 

velocity in the MCA. Beat-by-beat signals were displayed during analysis and any artifacts 

removed. Regional cerebral vascular resistance (CYR) in the distribution of the MCA was 

estimated as CYR= BPeye /CFY. 

The effects of centrifugation on orthostatic adjustments in cerebral hemodynamics were 

assessed by examining CFY, mean BPeye, PETC02 and CYR responses. For this analysis steady 

state data of 1-3 min duration were selected both for the SUP period and for the early (ELY, first 

10 min) as well as the late (LATE, last 5 min) period of HUT. Visual inspection of all data 

segments ensured that none contained noise spikes or ectopic beats. 

Dynamic Autoregulation Calculation. Cerebral autoregulation maintains CFY relatively 

constant by using changes in CYR to buffer changes in mean BPeye that would otherwise cause 

large fluctuations in CBF. To assess dynamic cerebral autoregulatory responses both before and 

after centrifugation, the combined steady state CFY and mean BPeye data from each of the SUP, 

EL Y and LATE HUT periods were first obtained. In some cases only 1-2 min of the SUP data 

were usable. All steady state data segments were then resampled at 5 Hz using linear 

interpolation and low pass filtered with a cutoff frequency of 1 Hz (8th order zero-phase 

Butterworth) (27). For each data set, a transfer function gain (GAIN) between CFY and mean 

BPeye was then calculated using a standard fast Fourier transformation after the method ofPanerai 

et al. (27). Calculations of GAIN correlate well with other measures of autoregulation (26, 46), 

and have been used in the past to differentiate patients with impaired vs. intact autoregulation (1, 

26-28). Specifically, if dynamic autoregulation is functioning properly, changes in mean BP eye 

cause minimal changes in CFY, and thus GAIN is low. On the other hand, if dynamic 

autoregulation is impaired, changes in mean BP eye cause large changes in CFY and thus GAIN is 

high. In addition to GAIN, we also calculated the coherence (COH) and phase delay (pHASE) 

between CFY and mean BP eye in the 0.02-0.5 Hz range (27). 

Vestibular-Cerebrovascular Interactions. To examine a possible relationship between 

vestibular (otolith) gain and changes in cerebral autoregulation, vertical nystagmus slow-phase 
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velocity values were compared to changes in autoregulatory parameters from pre- to post 

centrifugation using a linear least squares method. Subjects with greater slow-phase velocity 

values are presumed to have greater otolithic sensitivity (18) and as such they were investigated 

for any potentially corresponding changes in cerebral autoregulation. 
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Statistics. The effect of HUT or Group (Gx vs. Gz) on CFV, BPeye' PETC02, CVR, GAIN, 

COH and PHASE was assessed using a repeated-measures two-way ANOVA, respectively, with 

a Student-Newman-Keuls test for multiple comparisons. Data are presented as mean±SEM with 

levels of P<0.05 considered significant. 

RESULTS 

Of the 14 subjects who participated, one was unable to complete the 5 min +3Gz run for 

vertical nystagmus slow-phase velocity and was excluded. One subject participated in both the 

+ 3Gx and + 3Gz protocols several weeks apart. Therefore, of the 14 total long-duration 

centrifugation runs, half were in +3Gx (Gx group, n=7) and half were in +3Gz (Gz group, n=7). 

Because ofpre-G-LOC symptoms, of the seven runs in +3Gz, only one lasted for the entire 30 

min. The average total duration of + 3Gz completed was 24.3 min (Range = 10.9 - 30). On the 

other hand, all seven of the +3Gx runs lasted for the entire 30 min. Although none of the 

subjects vomited within the centrifuge, two of the seven subjects in the Gx group and three of the 

seven subjects in the Gz group experienced either transient headache or epigastric distress during 

centrifugation, with one of the subjects in the Gz group also experiencing severe but transient 

nausea during the final deceleration. . 

Tables 1-2 show the pre- and post-centrifugation values for mean BPeye, CFV, CVR, 

GAIN, HR, PETC02, and RR in the SUP position immediately prior to HUT. None of these SUP 

parameters changed from pre- to post-centrifugation with exception of SUP GAIN, which 

increased significantly after centrifugation in both groups (Table 1). SUP COH also increased 

significantly after centrifugation, but only in the Gx group (Table 3). 

Responses to HUT. Compared to SUP, HR increased (Table 2, P<O.OOl) and mean BP eye 

decreased (Fig. 2, P<O.OO 1) in both groups with HUT both before and after centrifugation. In 

addition, the decrease in mean BP eye with HUT was greater both before and after centrifugation in 

the Gz group than in the Gx group (P<0.01). PrrC02 also decreased in all subjects during HUT 

-' 
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both before and after centrifugation (Table 2, P<O.O 1), with no associated change in RR (Table 

2). 

In both groups before centrifugation, CFV decreased after the transition from SUP to 

HUT. However, the decrease in CFV was significant (vs. SUP) only in the Gz group during 

LATE HUT (Fig. 3, P<O.02). On the other hand, in both groups after centrifugation, CFV 

decreased significantly (vs. SUP) during both EL Y and LATE HUT (Fig. 3). Nonetheless, this 

change did not reduce the ability of any subject to complete HUT, since no subject in either 

group developed intolerance to HUT as a result of centrifugation. 

9 

In the Gx group, CVR did not change from SUP to HUT either before or after 

centrifugation (Fig. 4). However, in the Gz group, CVR decreased (vs. SUP) during ELY but not 

during LATE HUT both before and after centrifugation (Fig. 4, P<O.05), mirroring to some 

degree the simultaneous decreases in mean BPeye (Fig. 2). 

Cerebral Autoregulation and Vestibular-Cerebrovascular Interactions: As noted above, 

after centrifugation, SUP GAIN increased in both groups (Table 1) and SUP COH increased in 

the Gx group (Table 3). Interestingly, however, the increase in SUP GAIN was strongly 

correlated to vertical nystagmus slow-phase velocity in the Gx group (R=O.76, P<O.05, least 

squares linear regression) but not in the Gz group (R=O.24, P==O.60) . In addition, the significant 

increase in COH in the Gx group was strongly correlated to vertical nystagmus slow-phase 

velocity (R==0.87, P<O.Ol). 

Before centrifugation, GAIN was not influenced by HUT in either group (Fig. 5). In 

contrast, after centrifugation, GAIN decreased significantly during HUT in both groups (Fig. 5). 

With respect to the transfer function analyses (Table 3), HUT did not influence COH before or 

after centrifugation in either group. However, in both groups, the PHASE between CFV and 

mean BPeye tended to increase during HUT, but with upright values becoming significantly 

greater than SUP values only in the Gz group during LATE HUT (P<O.05). 

DISCUSSION 

The major findings of this study were as follows. First, short-term (10-30 min) exposure 

to either + 3Gx or + 3Gz impaired dynamic cerebral autoregulation (i.e., increased GAIN) in the 

SUP position. Second, this increased SUP GAIN occurred without any simultaneous change in 
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SUP CFY and resolved during a decrease in BPeye with HUT, suggesting that both +3Gx and 

+ 3Gz centrifugation may have shifted the static cerebral autoregulation curve to the left (Fig. 6). 

This leftward shift, in tum, appeared to allow for a better maintenance of CBF in the face of 

hypotension immediately after centrifugation. Third, in our Gx group, the increased GAIN after 

centrifugation was related to the extent of vestibular (otolith) reactivity as estimated from 

individual measurements of vertical nystagmus slow-phase velocity, suggesting that vestibular 

pathways might playa role in the regulation of CBF. 

The finding that GAIN increased in the SUP position post-centrifugation is unexpected, 

especially in our Gx group. To our knowledge, no prior studies have reported a stimulus in 

humans that results in increased unstressed SUP GAIN. Although this increased GAIN could 

potentially suggest that centrifugation shifted our subjects' autoregulation curves rightward 

rather than leftward (Fig. 1), our results are most consistent with a leftward shift since GAIN was 

restored (reduced) to pre-centrifugation levels during HUT, once BPeye decreased below SUP 

levels (Fig. 6). If there had been a rightward shift, GAIN should have remained high as BPeye 

was reduced. Moreover, SUP PETC02 values in the present study were unchanged in both groups 

after centrifugation when GAIN was simultaneously increased (Tables 1-2), suggesting that the 

increases in GAIN cannot be attributed to changes in PETC02• 

In both groups after centrifugation, the increased GAIN in the SUP position followed by 

the normalization of GAIN during HUT is reminiscent of a similar combination of findings that 

has been reported, presumably as a beneficial adaptation, in patients with chronic orthostatic 

hypotension (1 , 34). On the other hand, exposure of healthy subjects to 2 weeks of head-down 

bed rest (i.e., simulated microgravity) has been reported to exacerbate an impairment of dynamic 

autoregulation that occurs in response to high levels ofLBNP (47, 48). Thus it appears that 

whereas recent exposure to simulated microgravity may impair dynamic cerebral autoregulation 

in the context of cardiovascular stress, recent exposure to hypergravity (Gz or Gx) may have an 

opposite, protective effect. In the present study, a leftward shift in the static autoregulation curve 

after exposure to hypergravity is also supported by the fact that during post-centrifugation HUT, 

CFY decreased to similar absolute levels as during pre-centrifugation HUT in spite of relatively 

greater falls in mean BP eye (Figs. 2-3). This improvement in the static autoregulation curve was 

especially remarkable within the Gz group since their exacerbated decreases in mean BP eye with 
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HUT after (compared to before) centrifugation were statistically significant. Especially in the Gz 

group therefore, the overall findings during post- vs. pre-centrifugation HUT suggest an 

increment, not a decrement, in orthostatic tolerance. 

Serrador et al. (35) have recently examined changes in dynamic cerebral autoregulation in 

human subjects after parabolic flight, a stimulus that consists of alternating exposures to both 

micro- and hypergravity. Perhaps not surprisingly, there were no significant changes in SUP or 

upright GAIN from pre- to post-parabolic flight within either an orthostatically tolerant subject 

group or an orthostatically intolerant subject group, suggesting that the effects of micro- and 

hypergravity on dynamic autoregulation may have generally offset one another under these 

circumstances. However, in the same study, the individuals who became orthostatically 

intolerant after parabolic flight had increases (as opposed to no change or decreases) in GAIN 

during the early portion of HUT both pre- and postflight, suggesting that preflight measurements 

of GAIN might be useful for predicting nascent. postflight deficits in orthostatic tolerance in 

related environments such as space flight. 

As noted earlier, adaptation of the cerebral autoregulation curve to lower BPs occurs in 

both chronic local cerebral hypoperfusion (45) and orthostatic hypotension (l, 21, 23). However, 

the exact stimulus duration necessary to induce such shifts is unknown. Ossard and colleagues 

(25) have demonstrated that as exposure to a given level of +Gz progresses during centrifugation, 

CFV increases and then becomes maintained well above theoretical levels given the actual level 

of BPeye . This finding suggests that autoregulation may adapt rather acutely to the current CPP 

range. Because our own subjects were exposed to relatively short durations (S30 min) of + 3Gz 

or + 3Gx, our findings are also consistent with the notion of acute adaptation. Nonetheless, both 

our Gz and Gx groups had an increase in SUP GAIN after centrifugation, whereas only the Gz 

group should have experienced a reduced CPP during centrifugation. This finding suggests that 

adaptation of the autoregulation curve in our study was not entirely dependent on reductions in 

CPP. 

One potential explanation for the increased SUP GAIN and presumptive leftward shift in 

the static cerebral autoregulatory curves of our subjects is a resetting of the sympathetic nervous 

system activity modulating cerebrovascular tone. For example, in primates, both unilateral 

superior cervical ganglionectomy and alpha adrenergic blockade with intravenous 
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phenoxybenzamine enhance the maintenance of CBF in the face of hypotension, shifting the 

autoregulation curve acutely to the left (7, 14) and impairing the autoregulatory response to acute 

increases in BP (14, 44). However, these effects are mainly reversed after chronic 

sympathectomy (7, 11). Moreover, stimulation of the cervical sympathetic nerve in primates 

acutely decreases CBF (13, 20) while shifting the autoregulation curve to the right (13, 17). 

Nonetheless, the question of whether the sympathetic nervous system plays a primary role in 

cerebral autoregulation is still under debate (29, 32). In rhesus monkeys, for example, bilateral 

superior cervical ganglionectomy does not affect cerebral autoregulation, and attenuation (rather 

than complete disappearance) of cerebral vasodilation in sympathectomized animals during 

cerebellar fastigial nucleus stimulation suggests the existence of a second (presumably 

cholinergic) intrinsic or extrinsic nervous pathway also exerting an effect on the cerebrovascular 

bed (19). 

In humans, the role that sympathetic pathways play in regulating CBF is even less clear. 

For example, stellate ganglion block increases CBF in humans as determined by single photon 

emission computed tomography (SPECT) (39) but not as determined by magnetic resonance 

imaging CMRl) (22). Moreover, the increase in CBF as determined by SPECT may have been 

partly due to increased skin blood flow because in the MRl study, common carotid artery blood 

flow feeding extracerebral beds was increased while CBF remained unchanged. In another 

study involving direct stimulation of the stellate ganglion during surgery, CFV increased 

possibly due to a vasoconstriction at the MCA (40). However, patients in that study were 

anaesthetized both with isoflurane, which is known to ablate autoregulation (37), and with 

nitrous oxide, which is a potent vasodilator when combined with isoflurane (36). Therefore, the 

increases in CFV during stellate ganglion stimulation were likely the result of increased mean BP 

augmenting CFV through vessels with impaired autoregulation. Direct intravenous infusions of 

norepinephrine into both anaesthetized (38) and conscious (24) human patients also do not affect 

CBF or CVR. Thus it is not clear that inhibition or stimulation of the stellate ganglion affects 

CBF in humans. 

The possibility that vestibular activation could influence an extrinsic or intrinsic 

neurogenic pathway and modulate a leftward shift in the cerebral autoregulatory curve must also 

be considered. In animals, neurons from the vestibular nuclei project directly to the nucleus 
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tractus solitarii (NTS) (43 ). Lesions of the NTS in turn globally impair cerebrovascular 

autoregulation, independent of any specific effect on baroreceptor input (12). Vestibular 

pathways also influence neurons in the rostral ventral lateral medulla (RVLM) (42) . The RVLM 

in turn originates not only descending sympathetic projections to intermediolateral cell column 

(i.e., to the preganglionic sympathetic neurons of the spinal cord) (42), but also 

sympathoexcitatory neurons that may serve as regulatory elements of the cerebral circulation 

(32). Finally, vestibular inputs also project significantly to cerebellar pathways whose fibers, 

upon stimulation, induce the so-called "fastigial pressor response" (FPR) peripherally (42). 

Besides eliciting the intrinsic FPR, stimulation of these pathways also elicits a neurogenic 

cerebral vasodilation that shifts the cerebral autoregulation curve upward rather than leftward or 

rightward (19). Moreover, this vasodilation is not entirely dependent upon sympathetic 

pathways, but rather depends as well on a second neurogenic pathway that may be cholinergic in 

origin (19). Since the post-centrifugation changes in GAIN observed in our Gx subjects were 

statistically related to vertical nystagmus slow-phase velocity, it seems possible that the leftward 

curve shift in this group could have been due in part to the effects of increased otolith activity 

induced by centrifugation. In support of this hypothesis, the aforementioned data of Serrador et 

al. (35) also suggest that during parabolic flight-induced motion sickness, which requires an 

intact vestibular apparatus for induction, a downward shift occurs in the cerebral autoregulation 

curve even before the initiation of any postflight orthostatic stress. 

Alternative mechanisms by which a leftward shift in the autoregulation curve may have 

occurred are unclear. In spontaneously hypertensive rats, acute intravenous infusion of 

angiotensin converting enzyme (ACE) inhibitors results in a leftward shift of the cerebral 

autoregulation curve (30), thought to be mediated not via sympathetic nervous pathways, but 

through reductions in circulating angiotensin II (30, 31). Although acute use of ACE inhibitors in 

normotensive humans may also increase vasodilatory reserve (6), it does not consistently result 

in a leftward shift of the autoregulation curve (41). Direct infusion of angiotensin into the 

internal carotid arteries of awake humans also does not result in any change in CBF or CVR (24). 

One potential explanation for decreases in CFV in general during HUT might be dilation 

of the MCA at the point of insonation. However, recent measures of MCA diameter by MRl 

combined with TCD assessment of CFV have demonstrated that MCA diameter at the MI 

--~.- .- --- --~ -- - v 



14 

segment does not change despite large changes in CFV elicited by stimuli such as LBNP and 

changes in PETCO] (34). Other work has examined the lower limit of cerebral autoregulation 

using a combination of ganglionic blockade and LBNP to induce hypotension. These studies 

showed significant correlations between CBF (using 13JXe) and CFV, r=O.60 (15) and r=O.73 

(16), further supporting the view that changes in cerebrovascular tone occur downstream from 

the segment used for TCD measures. Thus, it appears that changes in CFV proportionally reflect 

changes in CBF. 

Other more obvious factors that can decrease CBF during HUT include inadequate CPP 

due to decreased BPeye and cerebral vasoconstriction due to decreases in PETC02• With regard to 

the former, however, the ability of our Gz group to maintain upright CFV at similar levels after 

(compared to before) centrifugation in the face of significantly decreased BPeye suggests that 

some factor other than the fall in BPeye influenced CBF during post-centrifugation HUT. 

Moreover, it is highly unlikely that this unknown factor related to changes in PETC02 since 

decreases in PETC02 during HUT in the Gz group (and in the Gx group) were unchanged as a 

result of centrifugation (Table 2). In our Gx group, the finding of increased SUP GAIN after 

centrifugation also cannot be explained by exposure to reduced CPP (i.e., as it might be 

explained in the Gz group) or by reference to SUP PETC02 because, as noted earlier, SUP PETC02 

was unchanged in both groups. 

Conclusions 

This study provides the first evidence that exposure to hypergravity (either +Gz or +GJ 

influences cerebral autoregulation in humans. The particular finding that dynamic autoregulation 

was impaired in the SUP position but restored in the upright position after BP was lowered 

specifically suggests that exposure to hypergravity results in a leftward shift of the static cerebral 

autoregulation curve. Although the mechanism for this proposed shift is unclear, it may involve 

adaptation to reduced CPP during +Gz exposure and/or possibly a vestibular-mediated effect on 

nervous pathways that modulate cerebrovascular tone. Since exposure to hypergravity appears to 

shift the cerebral autoregulation curve to the left, thereby improving orthostatic tolerance, an 

interesting question deserving of future study is whether exposure to the micro gravity of space 



,- - -- --- --- ~ ~- ---- -~, ~ 

flight conversely shifts the cerebral autoregulation curve to the right, thereby impairing 

orthostatic tolerance in returning astronauts. 

15 
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Figure Legends 

Figure 1 - Theoretical shifts in cerebral autoregulation curve during chronic exposure to 
hypotension (gray line) or hypertension (dotted line). 

20 

Figure 2 - Changes in mean blood pressure at eye level (BPeye) for the Gx and Gz groups, 
respectively, both prior to (PRE, open circles) and after (pOST, filled circles) centrifugation in 
the supine (SUP) and early (ELY) and late (LATE) upright (HUT) positions. Values are means ± 
SEM. *, significantly different from SUP (P<O.OO I) . a , significantly different than PRE value 
(P<O.05). 

Figure 3 - Changes in CFV for the Gx and Gz groups, respectively, before (PRE, open circles) 
and after (POST, filled circles) centrifugation in the supine (SUP) and early (ELY) and late 
(LATE) upright (HUT) positions. Values are means ± SEM. *, significantly different from SUP 
(P<0.05). 

Figure 4 - Changes in CVR for the Gx and Gz, groups, respectively, before (PRE, open circles) 
and after (POST, filled circles) centrifugation in the supine (SUP) and early (ELY) and late 
(LATE) upright (HUT) positions. Values are means ± SEM. *, significantly different from SUP 
(P<0.05). 

Figure 5 - Assessment of dynamic autoregulatory gain (GAIN) in the Gx and Gz groups, 
respectively, before (PRE, open circles) and after (POST, filled circles) centrifugation in the 
supine (SUP) and early (ELY) and late (LATE) upright (HUT) positions. Increased GAIN 
indicates autoregulation is impaired. Values are means ± SEM. *, significantly different from 
SUP (P<O.05). a , significantly different than PRE value (P<0.05). 

Figure 6 - Theoretical shift in the cerebral autoregulation curve due to short-term exposure to 
either + 3Gx or + 3Gz centrifugation, and to head-up tilt (HUT, see Bondar et al. (3)). The arrows 
indicate the direction of the theoretical shifts. 
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Tables 

Table 1- Values d u r ing Supine Baseline C ollections in Both Groups Pre and Postflight 

Gx Group Gz G roup 

Mean BPeye (mmHg) 

CFV (cm/s) 

CVR (mmHglcm·s· l
) 

GAIN ((cm ·s·I )2/mmHg2) 

Pre 
94 ± 3 
51 ± 3 

1.9±0.1 
0.65 ± 0.07 

Post Pre 
95 ± 6 86 ± 3 
56 ± 6 

1.8 ± 0.2 
0.83 ± 0.7* 

50 ± 6 
1.9 ± 0.2 

0.71 ± 0.14 

Post 
81 ± 3 
53 ± 5 

1.7 ± 0.3 
1.04 ± 0.11 * 

Values are Mean ± standard error. *, significantly different from pre-centrifugation (P<0.05) 

T able 2 - Cardiovascular & Respiratory Responses 

P r e-Centrifugation Post-Centrifugation 
SUP EARLY LATE SUP EARLY LATE 

Gx HR (beats/min) 62 ± 2 74 ±4 t 78 ± 6 t 58 ± 1 77 ±2 t 75 ± 3 t 
P ETC0 2 (mmHg) 39 ± 2 35 ±2 * 34 ± 3 * 41 ± 2 33 ± 3 * 36 ± 2 * 
RR (breaths/min) 15 ± 2 14 ± 1 14 ± 1 15 ± 1 14 ± 1 15 ± 1 

Gz HR (beats/min) 63 ± 4 80 ± 4 t 82 ± 5 t 62 ± 1 85 ± 5 t 89 ± 6 t 
P ETC0 2 (mmHg) 43 ± 1 36 ± 3 * 36 ± 3 * 43 ± 1 38 ± 2 * 36 ±2 * 
RR (breaths/min) 14 ± 2 14 ± 1 16 ± 1 14 ± 1 14 ± 1 15 ± 1 

Values are Mean ± standard error. *, significantly different from SUP (P<O.OI). t, significantly 
different from SUP (P<O.OOI) 
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Table 3 - Values from Transfer Function analysis between CFV and BPeye 

Pre-Centrifugation Post-Centrifugatfon 
SUP EARLY LATE SUP EARLY LATE 

Gx Coherence 0.48 ± 0.04 0.66 ± 0.06 0.59 ± 0.08 0.65 ± 0.05 t 0.67 ± 0.05 0.70 ± 0.04 
Phase (rad) 0.17 ± 0.08 0.24 ± 0.04 0.25 ± 0.06 0.17 ± 0.06 0.25 ± 0.02 0.28 ± 0.04 

Gz Coherence 0.54 ± 0.06 0.59 ± 0.06 0.55 ± 0.07 0.60 ± 0.04 0.61 ± 0.04 0.60 ± 0.03 
Phase (rad) 0.07 ± 0.06 0.20 ± 0.04 0.32 ± 0.10 * 0.07 ± 0.08 0.24 ± 0.05 0.35 ± 0.05 * 

Values are Mean ± standard error. *, significantly different from SUP (P<O.05). t , significantly 
different from Pre-Centrifugation (P<O.05) 
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