
CESE

Architectural Analysis of Dynamically

Reconfigurable Systems

Technical Presentation

Presenter: Dharma Ganesan
Principal Investigator (PI): Dr. Mikael Lindvall, CESE

NASA POC: Sally Godfrey, GSFC

Team members:
Dr. Chris Ackermann, Dr. Arnab Ray, Lyly Yonkwa (CESE)

GMSEC, CFS, RBSP
In collaboration with Fraunhofer Institute for Experimental Software Engineering (IESE)

1© 2010 Fraunhofer USA, Inc.

Center for Experimental Software Engineering

https://ntrs.nasa.gov/search.jsp?R=20100035131 2019-08-30T11:56:05+00:00Z

CESE

Background

• Many NASA projects use flexible architecture

styles for

– creating loosely coupled systems

– minimizing future software change

• Examples of such systems:
– Goddard Mission Services Evolution Center (GMSEC)

• A reusable framework for ground systems

– Core Flight Software (CFS)

• A reusable framework for flight systems

2

CESE

Problem

• Increased flexibility of architectural styles

decrease analyzability

• Behavior emerges and varies depending on

the configuration

• Does the resulting system run according to

the intended design?

• What architectural decisions impede or facilitate

testing?

3

CESE

Top Down Approach

• Architecture analysis

– focusing on critical components’ behavior data

– visualizing architecture relevant events

– drilling down to details as necessary

• Detect defects and deviations

– modeling, comparing planned vs. actual behavior

• Architecture and its testability

4

CESE

Currently Targeted Projects:

GMSEC and CFS
• Reusable framework for ground and flight

systems

• GMSEC and CFS systems are running at

FC-MD

• Confirmed defects/violations reported in

several papers

Some example results

5

CESE

Analyzing Software Architectures

Component A Component B

Software Bus

Component A Component B Software Bus

No static dependencies!

static analysis is not sufficient

Component A Component B

Push/Pull

Goal

… …

New toolDynamic Save

Run-time Events difficult to analyze because

There are too many low level events

New tool can detect architecture

relevant events and hide

irrelevant information
6

CESE

Analyzing Runtime Events

• Problems

– different events are of

interest

– events can occur in

any order

– huge number of events

– range between events

might be very large

points of interest

Solutions: Goal-oriented data collection and

a pattern recognition engine
7

CESE

Actual Architecture Recognition

Planned architectural
style

Runtime events

Actual architectural style

Rules

Rules:

Filter:

The constructor name of a Filter contains “Filter”

Push:

The callee of a method call is a “PipedWriter”

instance,

the name of the method is “write”,

the caller is an Instance of Filter

Architecture

Recognition

Planned architectural styles:

E.g. Pipe & Filter, Publish Subscribe

Runtime events:

init,timestamp=1264620606308,constructor=v1.MergeFilter,instanceid=obj578ceb

call,timestamp=1264620606317,methodname=java.io.PipedReader.read,callee=obj9ed927,caller=objfa7e74,argument=null

8

CESE

GMPUB in Dynamic SAVE

9

This diagram was automatically created by Dynamic SAVE

using run time information from GMSEC

Problem: Much information, but GMSUB component that receives messages missing!

Timing information

Message information

Including parameters

Thousands of Messages!

Publisher

Where’s Subscriber?

CESE

Sample output from new

approach

10

This diagram will be automatically created by the new approach

using the same run time information from GMSEC

Only critical messages

Visible, all else hidden

Pattern engine matched

pairs of messages and

reduced the information significantly!

Unexpected

Duplicate

message!

CESE

Sample output from new

approach …

11

This diagram will be semi-automatically created by the new approach

using the same run time information from GMSEC

Pid_7720(SA) Pid_7252 (CAT)

Pid_3804 (GEDAT)

Pid_4704 (CAT GUI)

Connection port for publishing to the software bus

Connection port for subscribing to the software bus

Pid_7024 (RECO)

CESE

Taking message timing delays

into account

12

This diagram will be automatically created by the new approach

using the same run time information from GMSEC

The slopes indicate

message delays that may

Impact behavior

Timing is off!

Sent before but arrives after!

CESE

Architecture and Testability –

CFS Examples
• We analyze the CFS architecture and its

unit testing architecture

• Focus of the analysis:

– What architectural decisions impede or

facilitate testing?

13

CESE

Some Recommendations for

improved testability

• Modules should be programmed to

abstract interfaces

– mock implementations of interfaces for unit

testing

• Some internal details of modules should

be public – cannot “hide” everything

• Avoid using the same return code of

functions for different scenarios

14

CESE

Abstract Interfaces and

Testability – CFS example

linux/osapi.c rtems/osapi.c vxworks6/osapi.c Test/ut_osapi_stubs.c

int32 OS_QueuePut(...){

...

sendTo(...);

...

}

int32 OS_QueuePut(...){

...

rtems_message_queue_send(...);

...

}

int32 OS_QueuePut(...){

...

msgQSend (...);

...

}

int32 OS_QueuePut (...) {

// Mock Implementation

}

Software Bus (SB)

15

CESE

Open some internal details –

CFS example
int32 CFE_ES_LoadLibrary(char *EntryPoint, char *LibName, …) {

boolean LibSlotFound = FALSE;

for (i = 0; i < CFE_ES_MAX_LIBRARIES; i++) {

if (CFE_ES_Global.LibTable[i].RecordUsed == FALSE) {

LibSlotFound = TRUE;

break;

}

}

if(LibSlotFound == FALSE) return CFE_ES_ERR_LOAD_LIB;

}

/* Test for loading more than max number of libraries */

for (j= 0; j < CFE_ES_MAX_LIBRARIES; j++) {

CFE_ES_Global.LibTable[j].RecordUsed = TRUE;

}

Return = CFE_ES_LoadLibrary("EntryPoint","LibName“, …);

UT_Report(Return == CFE_ES_ERR_LOAD_LIB, "CFE_ES_LoadLibrary",

"No free library slots");

16

CESE

Summary and Next Steps
• We’re building a new approach that

– helps understand, visualize, and validate

software systems that use loosely coupled

architecture styles

– helps evaluating testability of the architecture

• Next steps

– refine software tools and method, apply also

to other NASA systems

17

CESE

Acronyms

• AFRL – Air Force Research Laboratory

• APL – Applied Physics Laboratory

• ARC – Ames Research Center

• CESE – Center for Experimental Software

Engineering

• cFE – core Flight Executive

• CFS – Core Flight Software

18

CESE

Acronyms (2)

• CHIPS - Cosmic Hot Interstellar Plasma

Spectrometer

• CLARREO - Climate Absolute Radiance

and Refractivity Observatory

• COTS – Commercial Off-The-Shelf

• DSILCAS – Distributed System Integrated

Lab Communications Adapter Set

• Dyn-SAVE – Dynamic SAVE

19

CESE

Acronyms (3)

• GLAST - Gamma-ray Large Area Space

Telescope

• GMSEC – Goddard Mission Services

Evolution Center

• GOTS – Government Off-The-Shelf

• GPM - Global Precipitation Measurement

• GSFC – Goddard Space Flight Center

• IV& V – Independent V & V

20

CESE

Acronyms (4)

• JSC – Johnson Space Center

• LADEE - Lunar Atmosphere and Dust

Environment Explorer

• LDCM - Landsat Data Continuity Mission

• LRC - Langley Research Center

• LRO - Lunar Reconnaissance Orbiter

• MMOC – Multi-Mission Operations Center

• MMS - Magnetospheric MultiScale
21

CESE

Acronyms (5)

• MSFC - Marshall Space Flight Center

• RBSP – Radiation Belt Storm Probes

• SAVE – Software Architecture

Visualization and Evaluation

• SDO – Solar Dynamics Observatory

• TRMM – Tropical Rainfall Measuring

Mission

• V & V – Verification and Validation

22

