Space Operations Mission Directorate (SOMD) Space Communications and Navigation Program (SCaN)

Proposal for a Joint NASA/KSAT Ka-band RF Propagation Terminal at Svalbard, Norway

System Planning Division – Mr. John Rush Project Element – Technology Development Discipline – Advanced Studies

Jeffrey Volosin August 2010

Keeping the universe connected.

Glenn Research Center
Dr. Roberto Acosta (PI)
James Nessel (Co-I)


Goddard Space Flight Center
Kevin McCarthy
Armen Caroglanian

Why are these studies important?

As science mission data throughput demands increase, it is desired by NASA to characterize the site-dependent atmospheric propagation effects at Ka-band frequencies to manage expectations for NEN system performance

Propagation Study Goals:

- □ Determine expected site-dependent low level signal attenuation at Ka-band for NEN sites
- □ Determine extent of increase in system
 noise temperature at Ka-band for NEN sites
- □ Determine extent of high level signal attenuation, scintillations and depolarization effects at Ka-band for NEN sites (IF A SATELLITE OPPORTUNITY EXISTS)

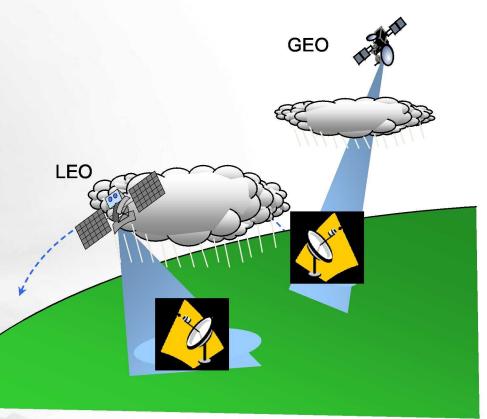
Benefits to NASA/KSAT

- □ Enhanced system planning through accurate determination of expected Ka-band attenuation and depolarization performance
 □ Improve mission planning to manage expectations/maximize
- ☐ Improve mission planning to manage expectations/maximize mission success and data throughput
- □ Enhance fidelity of current ITU-R and global propagation models
- Augment current propagation databases with new data in an area of the world where no previous Ka-band propagation measurements currently exist
- □ Prepare for deployment of NEN Ka-band polar network

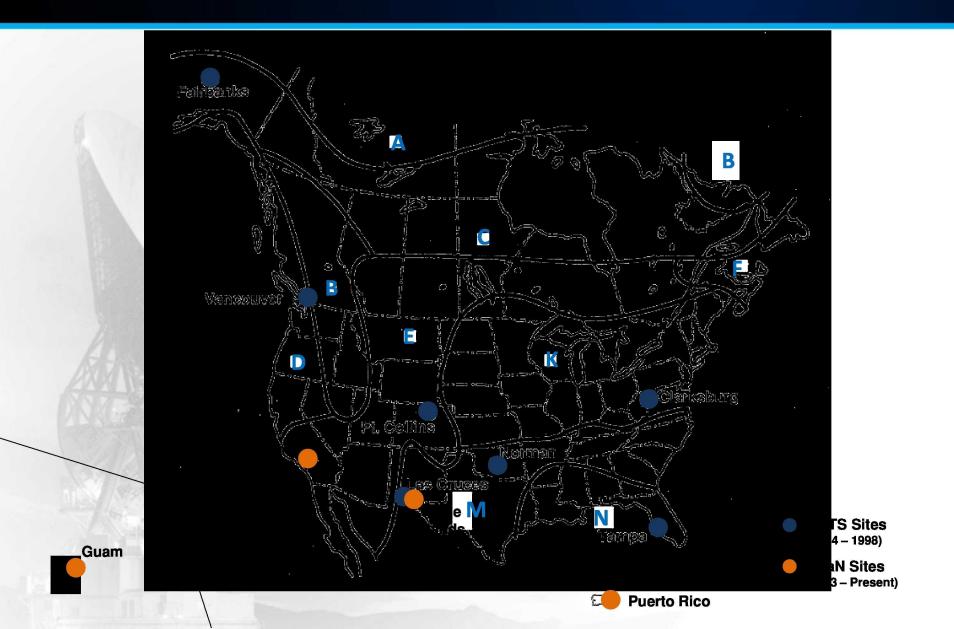
NASA Experience in RF Propagation Experiments

(See REFERENCES Section for List of Relevant Publications)

Ka-Band Rain Attenuation Measurements


1991 – 2004 : Collected 36 Station-Years
Advanced Communications Technology Satellite (ACTS)

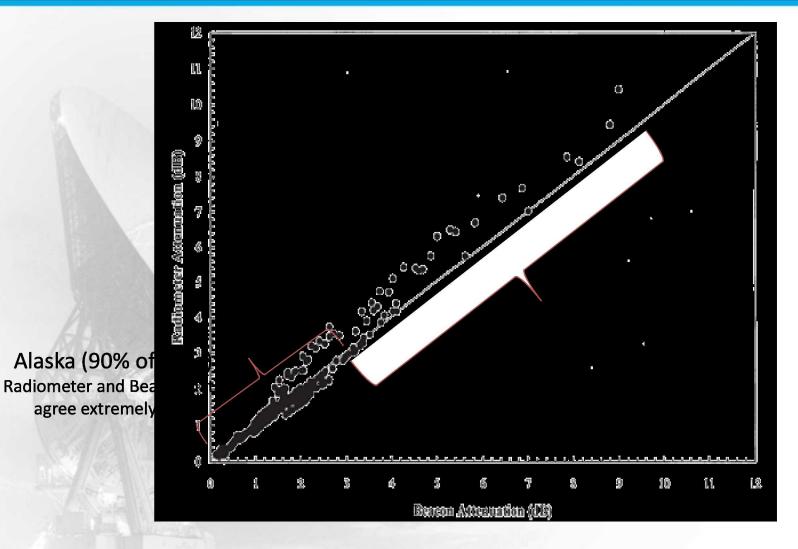
Developed the Ka-Band ITU-R Attenuation Model (not accurate on average of $\sim 3-6$ dB @ 90%)


2007 - Present: Collected 5 Station-Years

Ka-Band Amplitude and Phase Characterization of Goldstone Deep Space Network (DSN) Tracking Complex

Ka-Band Amplitude and Phase Characterization of White Sands/Guam Tracking and Data Relay Satellite System (TDRSS) Ground Terminals

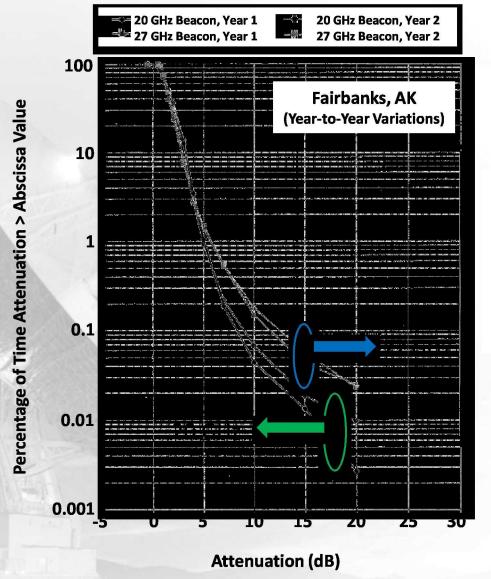
NASA Sites Characterized 1991 – 2010



Lessons Learned From Site Characterization

Location	Frequency: Station Years	Lessons Learned
Fairbanks, Alaska ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Cloud Effects Scintillation
British Columbia, Canada ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Fade Duration Scintillation effects Melting layer
Fort Collins, Colorado ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Rain and snow effects Polarimetric radar
Tampa, Florida ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Subtropical Zone Site Diversity
Las Cruses, New Mexico TDRS GN	20.2 GHz: 6 st. yrs. 27.5 GHz: 5 st. yrs.	Scintillation TDRS ancillary data * Phase Decorrelation
Norman, Oklahoma ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Rain Rate Scintillation Snow on Antenna
Clarksburg, MD ACTS	20.2 GHz: 5 st. yrs. 27.5 GHz: 5 st. yrs.	Rain Rate Scintillation
Ashburn, VA SOMD	20.2 GHz: ~1 st. yr.	Depolarization
Humacao, Puerto Rico SOMD	20.7 GHz: 1.5 st. yrs.	Tropical Zone
Goldstone, California DSN GN	20.2 GHz: 3.5 st. yrs.	* Phase Decorrelation Cloud Effects Desert Zone

Similar Climate Measurements


(Example Analysis)

Note: Based on climatological similarities/differences with Alaska, Svalbard site *expected* to have good radiometer/beacon agreement ~99% of time (lower rain rate region)

Similar Climate Measurements

(Example Analysis)

Lessons Learned

- 1 Design Links based on actual data (~ 5 years, but 3 is reasonable)
- 2 1 dB extra margin at 27 GHz vs. 20 GHz at > 99 % weather

Proposed NASA/KSAT Ka-Band Campaign

PRIMARY GOALS -

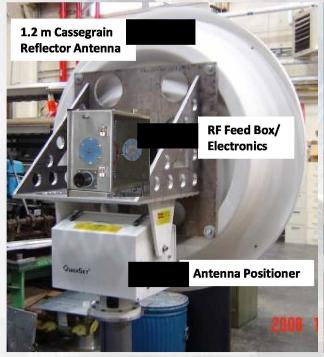
□ Radiometric observations of sky brightness temperature at relevant frequency and elevation angle of operation to determine increase in system noise temperature and attenuation

SECONDARY GOALS -

- Measurements of atmospheric depolarization and scintillation effects if satellite of opportunity (possessing a K/Ka-band beacon) can be identified.
- Higher fidelity attenuation data (>99% availability level) utilizing beacon signal measurement

A Space Act agreement between NASA and KSAT would be required

± Each party brings to the table the funding and expertise and analyzed data is made available to KSAT

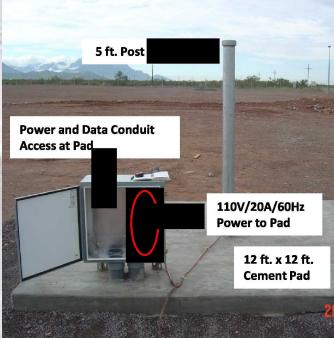

Expected financial costs from both NASA and KSAT

Proposed NASA/KSAT Ka-Band Campaign

NASA Responsibilities

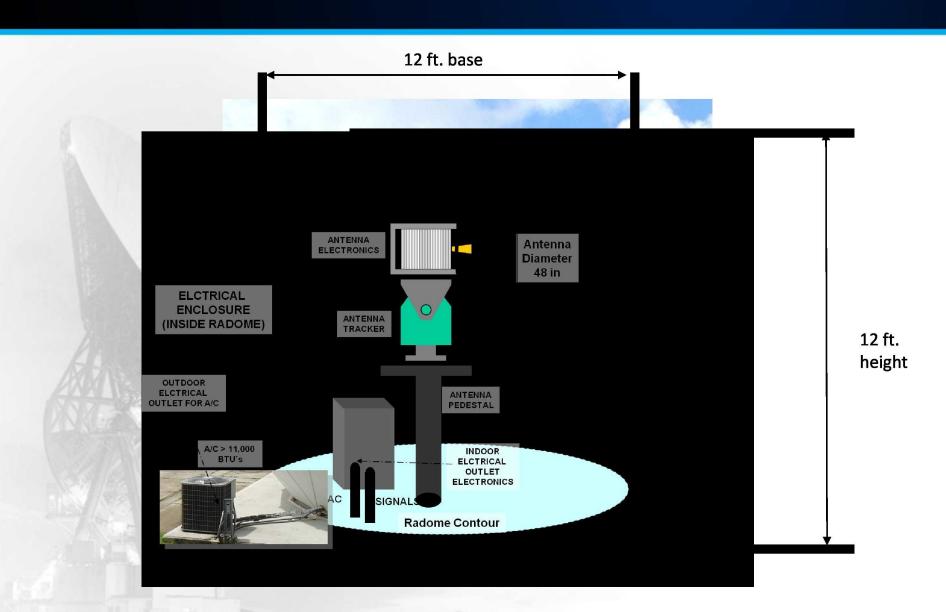
- ± Construction and system testing of RF Propagation Terminal
- ± Perform installation of propagation terminal and radome at Svalbard site
- ± Assist in system diagnostics and repair, if necessary
- **±** Analysis of recorded data

NASA to provide the following hardware:


Proposed NASA/KSAT Ka-Band Campaign

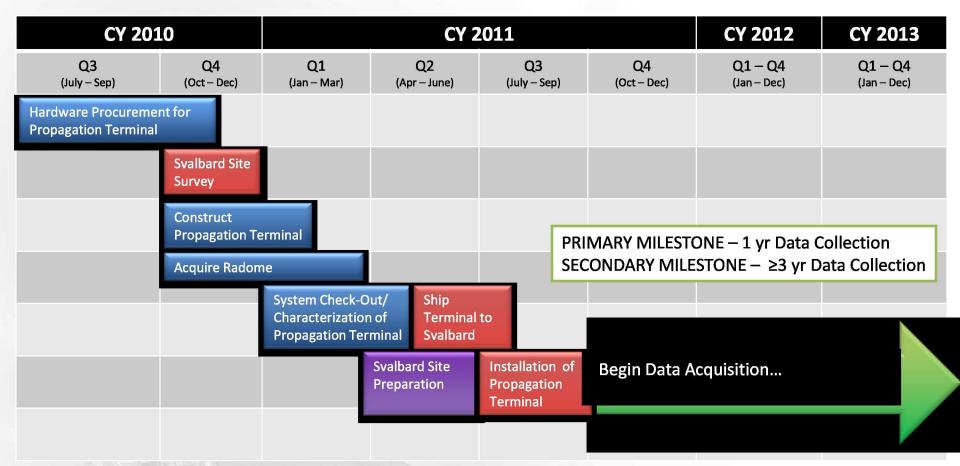
KSAT Responsibilities

- **±** Preparation of site (cement pads, **CABLE CONDUITS**, infrastructure, data transfer, etc.)
- ± Assist in propagation terminal installation at Svalbard site
- ± Monitoring of propagation terminal operation, addressing potential system issues, if necessary
- Provide external access to data (internet connectivity)


KSAT to provide the following infrastructure:

Svalbard Terminal Overview

ROM Proposed Effort


NASA Funding	FY11	FY12	FY13	FY14
RF Propagation Terminal (Beacon Receiver + Radiometer) *	\$15K			
Propagation Terminal Radome (Galileo Composites) **	\$20K			
Shipping Costs **	\$10K			
Contractor Labor (Construction/Operations)	\$30K	\$20K	\$20K	\$20K
Travel (estimate \$5K/trip/person)	\$20K	\$10K	\$10K	\$10K
Total:	\$95K	\$36K	\$36K	\$36K

KSAT Funding	FY11	FY12	FY13	FY14
Site Preparation **	\$75K			
Contractor Labor **	\$50K			
Site Operator Support (0.1 WYE) **		\$30K	\$20K	\$20K
Data Access (Internet Services)		\$2K	\$2K	\$2K
Total:	\$125K	\$32K	\$22K	\$22K

^{*} Propagation Terminal cost reduced for FY11 budget due to use of FY10 funding for hardware procurements

^{**} Svalbard costs are best estimates derived from Guam construction costs (may not fully address issues concerned with climate)

Proposed Schedule/Milestones

Note: Schedule derived for Calendar Year (CY)

REFERENCES

Acosta, R.: ACTS USAT 20 and 30 GHz Depolarization Effects Due to Rain & Snow. Ninth ACTS Propagation Studies Workshop (APSW IX) Meeting, Herndon, VA, 1996.

Acosta, R.; Manning, R.; Cox, T.; and Johnson, S.: Two Years ACTS Propagation Data in Cleveland. Proceedings of 21st NASA Propagation Experimenters (NAPEX XXI) Conference, El Segundo, CA, 1997.

Acosta, R.; Reinhart, R.; Kifer, D.; and Emrich, C.: Wet Antenna Studies at LeRC. Proceedings of 21st NASA Propagation Experiments (NAPEX XXI) Conference, El Segundo, CA, 1997

Emrich, C.; and Acosta, R.: Case Study on Fade Rate Computational Methods. 10th ACTS Propagation Studies Workshop (APSW X) Meeting, Boca Raton, FL, 1997.

Emrich, C.; Acosta, R.; Wilson, W.; and Kalu, A.: Narrow Angle Diversity Study at FSEC. 10th ACTS Propagation Studies Workshop (APSW X) Meeting, Boca Raton, FL, 1997.

G. Feldhake, Dr. Ailes-Sengers, Comparison Of Multiple Rain Attenuation Models With Three Years Of Ka-Band Propagation Data Concurrently Taken At Eight Different Locations, Third Ka-Band Utilization Conference, 1997.

Acosta, R.: Rain Fade Compensation Alternatives for Ka Band Communication Satellites. Third International Ka Band Utilization, Sorrento, Italy, 1997.

Acosta, R.: Antenna Wetting Effects on Ka-Band Low Margin System. Fourth International Ka Band Utilization, Venice, Italy, 1998.

Manning, R.: A Unified Statistical Rain Attenuation Model For Communication Link Fade Predictions And Optimal Stochastic Fade Control Design Using A Location-Dependent Rain-Statistics Database, International Journal of Satellite Communications, ACTS-90-001, 1990

C. Cox, T. Coney, R. Acosta: ACTS Adaptive Rain Fade Compensation Performance, APS-URSI, IEEE International Symposium and Radio Science Meeting, 1999.

REFERENCES

- R.J. Acosta, J.A. Nessel, I.K. Bibyk, B. Frantz, D.D. Morabito, Measurements of K-Band Carrier Amplitude and Phase Fluctuations Due to Atmospheric Effects via Interferometry, 12th Ka and Broadband Communications Conference, Sep. 2006.
- J.A. Nessel, R.J. Acosta, D.D. Morabito, Goldstone Site Test Interferometer: Phase Stability Analysis, 13th Ka and Broadband Communications Conference, Sep. 2007.
- R.J. Acosta, B. Frantz, R. Jirberg, J.A. Nessel, D.D. Morabito, Goldstone Site Test Interferometer, 13th Ka and Broadband Communications Conference, Sep. 2007.
- D.D. Morabito, R.J. Acosta, J.A. Nessel, Goldstone Site Test Interferometer Atmospheric Decorrelation Statistics use in Spacecraft Link Budgets: First Year on Data," 14th Ka and Broadband Communications Conference, Matera, IT, Sep. 2008.
- J.A. Nessel, R.J. Acosta, D.D. Morabito, Goldstone Site Test Interferometer 1-yr Statistics, 14th Ka and Broadband Communications Conference, Matera, IT, Sep. 2008.
- R.J. Acosta, J.A. Nessel, D.D. Morabito, Interferometer Phase Analysis Procedure, 14th Ka and Broadband Communications Conference, Matera, IT, Sep. 2008.
- J.A. Nessel and R.J. Acosta Directivity of a Sparse Array in the Presence of Atmospheric Induced Phase Fluctuations for Deep Space Communications, NASA TM 2010-216241, March 2010.
- R.J. Acosta and J.A. Nessel, Path Length Fluctuations Derived From Site Test Interferometer Data, NASA TM 2010-216355, July 2010.
- J.A. Nessel, "Atmospheric Compensation for Uplink Arrays via Radiometry", 2010 IEEE International Symposium on Antennas and Propagation, July 11-17, 2010

New Mission Drivers Summary 11 Missions Launching in Next 7 Years Require NEN Upgrades

J	Mission & Launch Date										¥				
	MetOp ⁽¹⁾	SCaN Testbed	IDCM	IRIS	000-2	LADEE	GPM-Core	SMAP	ICESat-II	CLARREO-1	DESDynl-Lidar	CLARREO-2	SCaN SRD Requirement	Total # of Drivers	
	FY	11	FY13			FY14	FY16	FY17 +			SC				
OQPSK Modulation	X	X	X	X	X		X	X	Х	X	X	X	Х	12	
LDPC Decoding				X					X	X	X	X	X	6	
CFDP									х	X	X	X	х	5	
SLE									X	X	X	X	X	5	
Data Rate >150 Mbps									х	x	X	x	х	5	
Other Services	X (2)					X ⁽³⁾		X (4)						3	
San Testhed					100		000-2		1		2) N 3) Li	_ EN sup _l 1cMurd	port con o X-Band 'S-1 (Mu	d Freq. E	Ехра