
In the Applied Aerosciences and CFD branch at Johnson Space Center, computational
simulations are run that face many challenges. Two of which are the ability to customize
software for specialized needs and the need to run simulations as fast as possible. There are
many different tools that are used for running these simulations and each one has its own
pros and cons. Once these simulations are run, there needs to be software capable of
visualizing the results in an appealing manner. Some of this software is called open source,
meaning that anyone can edit the source code to make modifications and distribute it to all
other users in a future release. This is very useful, especially in this branch where many
different tools are being used. File readers can be written to load any file format into a
program, to ease the bridging from one tool to another. Programming such a reader
requires knowledge of the file format that is being read as well as the equations necessary to
obtain the derived values after loading. When running these CFD simulations, extremely
large files are being loaded and having values being calculated. These simulations usually
take a few hours to complete, even on the fastest machines. Graphics processing units
(GPUs) are usually used to load the graphics for computers; however, in recent years, GPUs
are being used for more generic applications because of the speed of these processors.
Applications run on GPUs have been known to run up to forty times faster than they would
on normal central processing units (CPUs). If these CFD programs are extended to run on
GPUs, the amount of time they would require to complete would be much less. This would
allow more simulations to be run in the same amount of time and possibly perform more
complex computations.

https://ntrs.nasa.gov/search.jsp?R=20100033621 2019-08-30T12:01:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10556007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA USRP – Internship Final Report

Summer 2010 Session 1

Designing and Implementing an OVERFLOW Reader for
ParaView and Comparing Performance between Central

Processing Units and Graphical Processing Units

David M. Chawner1 and Ray J. Gomez2

NASA Johnson Space Center, Houston, Texas, 77058

In the Applied Aerosciences and CFD branch at Johnson Space Center, computational
simulations are run that face many challenges. Two of which are the ability to customize
software for specialized needs and the need to run simulations as fast as possible. There are
many different tools that are used for running these simulations and each one has its own
pros and cons. Once these simulations are run, there needs to be software capable of
visualizing the results in an appealing manner. Some of this software is called open source,
meaning that anyone can edit the source code to make modifications and distribute it to all
other users in a future release. This is very useful, especially in this branch where many
different tools are being used. File readers can be written to load any file format into a
program, to ease the bridging from one tool to another. Programming such a reader
requires knowledge of the file format that is being read as well as the equations necessary to
obtain the derived values after loading. When running these CFD simulations, extremely
large files are being loaded and having values being calculated. These simulations usually
take a few hours to complete, even on the fastest machines. Graphics processing units
(GPUs) are usually used to load the graphics for computers; however, in recent years, GPUs
are being used for more generic applications because of the speed of these processors.
Applications run on GPUs have been known to run up to forty times faster than they would
on normal central processing units (CPUs). If these CFD programs are extended to run on
GPUs, the amount of time they would require to complete would be much less. This would
allow more simulations to be run in the same amount of time and possibly perform more
complex computations.

Nomenclature
ALU = Arithmetic Logic Unit
API = Application Programming Interface
CEV = Crew Exploration Vehicle
CFD = Computational Fluid Dynamics
CPU = Central Processing Unit
CUDA = Compute Unified Device Architecture
GPU = Graphics Processing Unit
JSC = Johnson Space Center
LIC = Line Integral Convolution
NASA = National Aeronautics and Space Administration
OVERFLOW = Overset Grid Flow Solver
PC = Personal Computer
SDK = Software Development Kit
USRP = Undergraduate Student Research Program

I. Introduction
n order to fully comprehend what forces are acting on a vehicle at any point in flight at any possible condition, it
is common practice to compile data from 3 sources: flight tests, wind tunnel tests, and CFD (Computational Fluid

Dynamics.) Each source has strengths and weaknesses which make it a necessary source of information, so each

1 USRP Intern, Applied Aerosciences and CFD Branch, NASA Johnson Space Center, Texas A&M University.
2 Aerospace Engineer, Applied Aerosciences and CFD Branch, NASA Johnson Space Center, Mail Stop – EG3.

I

NASA USRP – Internship Final Report

Summer 2010 Session 2

needs to be used appropriately. Flight tests provide the most accurate data, but are the most expensive. Wind tunnel
testing is about one order of magnitude less expensive, but has scale and interference issues. This leaves CFD as the
cheapest alternative for data collection. Once the data is collected it is more useful to visualize it in a graphical form.
One of the CFD solvers used at Johnson Space Center (JSC) is called the Overset Grid Flow Solver
(OVERFLOW.)1 OVERFLOW solves the Navier-Stokes equations at each grid point in order to determine the
forces and moments at each point on the grid. OVERFLOW produces output files that contain this data in an easy-
to-read format for a visualization tool.
 There are many commercial visualization tools available that can read the CFD solutions, one very powerful
visualization tool is an open source tool called ParaView. When a piece of software is classified as open source it
means that the source code that the software was written in is openly available for public use. A person is able to
modify the source code in any way that they want and is able to have their new code included in newer releases of
the product. Since ParaView is open source, a tool can be written to read the OVERFLOW output file and display
the data appropriately.
 CFD solvers take a significant amount of time to provide the desired data. Many of these solvers are only
utilizing the Central Processing Units (CPUs) which are common for programs. However, a new trend in
programming is to write code that utilizes the computing power of the Graphical Processing Units (GPUs.) GPUs
are known to be able to perform mathematical computations at a fraction of the time of the CPU. The GPU and the
CPU are still required to communicate with each other because of the memory restrictions in the GPU. If CFD
solvers and other codes were capable of being executed on GPUs and CPUs, the time it takes to receive output from
the solver would be dramatically decreased, thus allowing for more complex computations to occur and for more
cases to be run in a shorter amount of time.

II. Designing an OVERFLOW Reader for ParaView
OVERFLOW output files follow a format that simplifies the process of creating a reader, but there are many

different variations of the format depending on the characteristics of the grid file that was used. Grid files contain
every point that is to be evaluated. Some grids are grouped together, referred to as a single zone, while other grids
have multiple zones. Grids can also be two or three dimensional, which changes the layout of the output file. The
output files may contain different numbers of turbulence and chemistry variables as well. In order to get the simplest
possible version of the code these different formats must be generalized to create a layout that all variations can

apply and can be coded in a readable fashion.

A. Visually Determining File Characteristics
There are many signs in the OVERFLOW output file that can be

used to determine whether a grid was single zoned or was a three
dimensional grid. The files contain size information, or record markers,
that are written by the machine itself, not necessarily the program. These
record markers show how many bytes of data are contained in each of
the sections in the file. For example, the output files will either start with
how many zones are contained in each file, or with the dimensions of
the only zone in the file. This information is either one or three integers,
four or twelve bytes. If the size marker is four bytes, then it can be
determined that the grid is a single zone; twelve bytes indicate a
multiple zoned grid. After the number of zones has been determined
there is a header of information that contains information pertaining to
how many chemistry quantities there are for each point in each zone. If
a file contains a single zone, the data at each point in that zone can be
read, otherwise, each zone will have to be read one after another until all
values have been read. The record markers are key pieces of information
that reveal a lot of information about the file itself.

B. Programming the Reading Capabilities
There are two files that need to be read into ParaView in order for

the visualization to begin, the grid file and the output file or solution
file. The grid file reading capabilities were borrowed from another
similar reader in ParaView that reads PLOT3D files and this portion of

Figure 1. PLOT3D Reader in
ParaView. Shows the user interface for
the PLOT3D reader in ParaView.

NASA USRP – Internship Final Report

Summer 2010 Session 3

the reader only required minor
changes. Figure 1 shows the
interface for the PLOT3D
reader in ParaView. Note that
the user must manually enter
in whether the file is a multi
grid file or uses iblanking.
One of the goals for the new
OVERFLOW reader is to
automatically detect these
qualities so that the user is not
required to manually enter
them. Since ParaView is open
source as previously
mentioned, borrowing the grid
reading components from this
reader is possible. However,
there exist some major
differences between PLOT3D
and OVERFLOW solution
files making it not as simple
as copying an existing reader.
For instance, additional

chemistry and physics quantities are available in the OVERFLOW file. Once the solution file has been input by the
user using ParaView’s interface, the new reader can begin to read the files.

First, the reader determines whether the file is a grid file or a solution file and calls the appropriate C++
functions. If the file is a grid file, the endianness, or byte order, of the file is determined by reading in the first
integer and seeing if it makes sense if the bytes were swapped. Since this first integer is either going to be a four or a
twelve, it is easy to see if it makes sense “backwards.” This first integer can also be used to determine if the file is a
single zoned or a multiple
zoned grid.

The reader then begins
back at the beginning of the
grid file, reads in the number
of zones, calculates how many
points there would be if the
file was in three dimensions,
determines the size of this
information and then
compares that to the actual
record marker of the next
block, which is how many
points there actually are. If the
predicted number and the
actual size are equal, the file is
in three dimensions; otherwise
the file is in two dimensions.

After the correct number of
dimensions is known, the grid
file is then checked to see
what the precision of the data
is and whether or not the grid
contains iblanking, or point
visibility, information. The file
can either be written with
single or double precision,

Figure 2. Volume Rendering of Plumes. Shows an example of ParaView’s
volume rendering of plumes on the Orion CEV.

Figure 3. Surface LIC of X-38. Shows an example of ParaView’s Surface LIC on
the body of an X-38. This LIC shows local flow near the surface as read by the new
reader.

NASA USRP – Internship Final Report

Summer 2010 Session 4

which refers to the size of the numbers in the file; many problems require double precision. In order to determine the
precision of the file, the reader starts at the beginning of the grid file determines how many zones there are and uses
the dimension figured out previously to calculate the total number of points and then reads in the next record
marker, similar to what is done in previous steps. There are four possibilities for the size of this next record marker,
single precision with iblanking, double precision with iblanking, single precision with no iblanking and double
precision with no iblanking. Single precision is calculated as the total number of points multiplied by the size of a
float, four bytes while double precision is calculated as the total number of points multiplied by the size of a double,
eight bytes. Iblanking is calculated by taking the total number of points multiplied by the size of an integer, also four
bytes. This record marker is compared to all four combinations of these values to determine the precision of the file
and if the file contains iblanking information.

After gathering this information from the grid file, it is then used to read in the physics and chemistry
calculations from the solution file.
To handle the fact that each file can
have a different number of physics
and chemistry quantities, C++
objects are created only when that
quantity needs to be stored. These
objects hold all of the quantities at
each point in the grid. After all of the
quantities have been collected, other
quantities such as Mach number,
velocity and pressure coefficient are
calculated at each point if the user
desires them.

C. Using ParaView with the New
Reader

To use the new reader a user
would simply load the grid file and
corresponding solution file and press
the apply button. After the file is
loaded a user could create contours,
slices and many other unique
visualization tools. A visualization of
the body is created by doing a
contour of velocity at a very low
number. Color scales can be changed
to show the various calculations that
were done while reading the file.
Also, bodies and slices can be
colored by other quantities. A unique
tool in ParaView that is enabled as a
plugin is the Surface Line Integral
Convolution (LIC.) It is difficult to
graphically display vector quantities
effectively. Drawing arrow heads on
a body creates excess clutter.2 This
feature provides a unique way to
visualize vector fields. As illustrated
in Figure 3, the vector quantities are
shown by lines along the surface of
the body. This removes the need for
arrow heads or other distracting
information. In order to check the
integrity and validity of the new
reader an image that was created

(a)

(b)

Figure 4. Comparison between FieldView and ParaView. (a) Shows the
image created by loading the Orion CEV in FieldView. (b) Shows the image
created by loading the Orion CEV in ParaView.

NASA USRP – Internship Final Report

Summer 2010 Session 5

using another visualization tool called FieldView was compared to the image created by ParaView.

D. Comparing Different Readers
A grid file and the corresponding solution file of the Orion Crew Exploration Vehicle (CEV) were loaded into

ParaView. The shape of the vehicle was created by creating a contour at velocity magnitude equal to 0.0001. This
contour is then colored by pressure coefficient and the range of the contour is changed to -1 to 1. Next, a slice is
taken that is normal to the y-axis. This slice is colored by Mach number on a range from 0 to 1.4. Finally, the plumes
are created by creating another contour of the second species density at a value of 0.95. The plumes are colored by
the standard gray solid color. Figure 4 shows both images created using FieldView and ParaView. Notice that the
shape of the blue region behind the CEV is smoother in the ParaView image than it is in the FieldView image.
However, notice that the body is smoother in the FieldView image. ParaView also created an image that appears
darker, but that can be changed by modifying some display settings in the application. Overall, it appears that the
new OVERFLOW reader for ParaView worked very well on this case; the images compare very well and there are
no major discrepancies on the ParaView rendered image.

E. Assuring Reader Correctness
To fully test that the reader works for a variety of cases and files, many more files were tested. Doing this

ensures that the reader is able to correctly load any type of file, with any of the key characteristics that were
described earlier. The files were loaded into ParaView and put through the same rigorous testing of matching
previously created images. Other test files that were loaded include a complete Shuttle launch vehicle, an entry
Orbiter, a parachute and an X-38 grid. These files were also loaded
with their respective solution files to ensure proper calculation of
physics and chemistry quantities. Every time a change in the reader
code was made, all previous cases were run in order to ensure that
the new changes didn’t affect any previous fixes. This practice is
commonly referred to as regression testing. In the end, all files that
were loaded were successful, and therefore, the new reader can be
considered a success.

III. Comparing Performance between GPUs and CPUs
Most programs today do not fully take advantage of the

processing power that is available. Programs do not need to be
executed on high powered machines in order to experience large
increases in performance. The same resource that a user’s personal
computer (PC) uses to display the images on the screen can be used
to see improved performance in execution times. There exist many
useful tools and packages that a programmer can download and
install on their PC to link standard programming languages such as
C, Python and Java to libraries of functions that ease the transition
from executing solely on the Central Processing Unit (CPU) to
executing on both the CPU and Graphics Processing Unit (GPU.)

A. What are GPUs and Why Use Them?
GPUs are mainly used in PCs today as the computing resource

that renders windows and images on the computer monitor.
Rendering and displaying images requires a lot of computing power
to quickly calculate what color each pixel on the screen should be
in order to correctly display the image as a whole. Not only do
these calculations have to be quick, they also must be accurate. All
of the calculations on the CPU or GPU occur in Arithmetic Logic
Units (ALUs.) If more ALUs are available, the computations will
be done in a quicker amount of time. However, the GPU ALUs are
slower in performance to the CPU ALUs. This is not seen by the
user due to the fact that the GPU is performing many more
calculations simultaneously than the CPU is. Figure 5 shows that

Figure 5. Typical CPU and GPU Chip
Configurations. Shows the ratio of ALUs
(green boxes) to memory (dark orange boxes)
on the CPU and GPU.

NASA USRP – Internship Final Report

Summer 2010 Session 6

the GPU has many more ALUs than the CPU, but the CPU has more memory available.3 Each group of ALUs in the
GPU has a small amount of shared cache or memory.

In a CFD solver, the same calculations are solved at every point in the grid hundreds or thousands of times to
receive a single solution. As mentioned previously, running a CFD solver takes a long amount of time, even on the
fastest machines, due to the large numbers of calculations that need to be solved. When doing repeated calculations
such as multiplying matrices, these computations take a long amount of time. This is the type of situation that GPU
programming is suited for. GPU programming will show a large increase in performance in cases where the same
calculations need to be performed repeatedly. With more ALUs available, more calculations are able to be done
simultaneously. If more calculations are done in a shorter amount of time, the program will take less time to run the
same amount of steps.

A large workstation with many CPUs capable of running hundreds of processes simultaneously is not required
for a program to experience a performance increase, neither is a PC with multiple cores on which the programmer
must have knowledge and experience of manually splitting up the program in order to take advantage of these
resources. Many companies such as NVIDIA who manufacture graphics cards are making the transition for
programmers to utilize the resources available in a typical PC. This study will measure the performance results of
two benchmarks running on both CPUs and GPUs.

B. What is CUDA?
NVIDIA has created a tool called the Compute Unified Device Architecture (CUDA) that makes the transition to

GPU programming simpler. This tool was selected for the performance comparisons in this study because it is a tool
that works only on specific NVIDIA graphics cards, cards that the PC that these tests were performed on used.
CUDA is a collection of instructions that a programmer can use to directly talk to the GPU in order to execute tasks
on the GPU. CUDA provides programmers with both a high level and low level Application Programming Interface
(API) that can be used to communicate with the GPU. An API allows and facilitates interaction between the
programmer and the computer. The CUDA high level API allows programmers to stay far away from many of the
details of the GPU while still achieving the desired performance increase. However, the low level API allows the
programmer to manipulate the GPU in order to receive an additional performance increase.

The high level API was used to program the tests used for the comparison. The high level API provides
programmers with functions that look very similar to standard C functions. These functions perform some low level

tasks such as figuring out how many processes are
capable of being run, scheduling them and actually
performing the computations. In order to program the
GPU, all that an inexperienced programmer would have
to learn is a few basic CUDA functions, how they are
used with the standard C programming language.
Integrating all of these components provides the user with
the desired performance increase. However, not all
aspects of the C language are allowed with the CUDA
API. For instance, the use of recursion is not allowed and
there is no support for function pointers.

A typical CUDA program would begin by loading the
data from the CPU to the GPU. As shown in Figure 5 by
the dark orange boxes, there is a larger amount of
memory on the CPU. The size of the available memory
depends on the manufacturer of the CPU and GPU and if
there are other processes running that are using some of
this memory. After the data is loaded from the CPU to the
GPU, the CPU tells the GPU what is to be executed. Once
that is done, the GPU begins to execute those instructions
in parallel. Once all instructions have been performed, the
data is then copied back to the CPU.

C. Performance Limitations
While the performance of executing a program on a

GPU should be improved from running it on a CPU, there
are some limitations to the amount of improvement. First,

Figure 6. Thread Diagram. Shows a typical way that
a GPU program is divided into blocks and threads.

NASA USRP – Internship Final Report

Summer 2010 Session 7

since the data is being transferred from CPU to GPU and vice versa the speed that the data can be transferred is a
limiting factor on performance. The data is transferred through a subsystem called a bus. The maximum speed of the
data travelling through this bus depends on the manufacturer. Also, if there is other data travelling or waiting to be
sent through the bus, this could cause slowdowns in performance.

Another limiting factor to performance is that not all of the code should be executed on the GPU. As mentioned
previously, the GPU is very efficient at performing similar computations simultaneously. The GPU is not very
efficient at doing other types of computations. If the GPU is performing a task that it is not designed to do, it will
execute those calculations at an unimpressive speed. This will create a limitation in performance. However, if the
task was performed on the CPU, this will also create a slowdown, but it will not seem as dramatic. It is good practice
to only use the GPU to perform tasks that it will excel at, because performing other tasks will cause significant
slowdowns.

Another limiting factor to performance is properly splitting the original program into blocks and threads. When
executing tasks on the GPU, the large task is split into smaller tasks, called blocks, through either API. This allows
for the maximum usage of the GPU core and leaves no wasted space. Each thread would then execute the
appropriate calculations, get grouped back together into blocks and then the blocks will get grouped back together
back to the original grid. This technique is depicted in Figure 6. A grid is divided into blocks and each block is
divided into threads. Each thread executes the instructions on a different collection of data.

Also, if the program contains a control structure such as an if statement or for loop, this could decrease
performance. The uncertainty provided by these statements cause threads to be manipulated in ways that they were
not supposed to be, creating a potential for performance decreases.

Finally, it is important for the programmer to remember that some GPUs do not have ALUs that are capable of
performing double precision calculations. Precision will be lost if values that are too large are being computed.
Depending on the make and model of the GPU, this might not be the case, and it might support double precision
calculations. If the application a programmer is running requires double precision capabilities, a newer, more
expensive GPU might be required.

When programming using the CUDA architecture
on a GPU, a programmer must be very careful to try
and not violate any of the practices, otherwise
performance will be compromised.

D. CUDA SDK and Additional Materials
When downloading the NVIDIA CUDA toolkit it

is also recommended to also download the CUDA
Software Development Kit (SDK.) The SDK
provides many examples of the various functions in
the API. These examples vary from getting GPU
information to image rendering and post processing.
Figure 7 shows a screenshot of a fluids example from
the CUDA SDK. There are also additional reference
materials on the NVIDIA CUDA website such as
Getting Started Guides, Best Practices Guides, and
API references. These are all valuable tools in order
for beginners to learn the languages and restrictions
as well as see detailed examples of how the code
should be written.

A recent study performed by Intel claims that the
GPU will not perform 100 times better than the CPU
on many applications.4 In this article, Intel states that
after optimizing the code, the average performance gap between GPU and CPU is only 2.5 times faster on average.
These cases were run on CPUs and GPUs that many people have already installed in their PCs, however, it is
unclear whether the optimizations were properly done. The study that is described below is another attempt at
gathering performance information between the CPU and GPU.

Figure 7. CUDA Fluids. A screenshot of the fluids
simulation from the CUDA SDK.

NASA USRP – Internship Final Report

Summer 2010 Session 8

E. Comparing GPU and CPU
Execution Times

The following comparisons were
made between GPU and CPU versions of
similar codes executing on the same PC.
It should be noted that the CPU version
of the code only executed on only 1 core,
while the GPU version had the potential
of executing using 64 cores, 8 processors
with 8 cores each. Steps were taken to
ensure that the codes were identical,
except for the necessary CPU versus
GPU distinctions such as data transfer
and variable loading. The GPU versions
of the code came from the CUDA SDK
and were slightly modified to perform
the necessary actions as discussed below.
When timing the functions, special care
was taken to make sure that only the
pertinent sections of code were being
timed. CPU versions of the code were
written in standard C++.
1. Matrix Multiplication

This benchmark performed matrix
multiplication of specific sizes
containing random numbers. The
computations that were performed
yielded results to the equation A x B = C,
where A is of scale 1 x 2, B is of scale 1
x 1 and C is of scale 1 x 2. To keep
consistent with the practices mentioned
above, the tests were run at multiples of
80, meaning that the actual size of the
matrices is the scale factor multiplied by
80, i.e. at size factor 1, matrix A was of
size 80 x 160, B was of size 80 x 80, and
C was of size 80 x 160.

The GPU version of the matrix
multiplication code came directly from
the SDK and required very few
modifications. The modifications were to
change the output formatting to allow for
a script to run the test cases
automatically and gather the output. The
CPU version of this matrix
multiplication code performed the same
variable initializations and computations
as the GPU code. The test was run a total
of five times at each size factor and the
results were averaged together. The only
portion of the code in each version that
was being timed was the multiplication
portion. Therefore, the results are only
showing the ratio of computing the
multiplication between CPU and GPU.

To create a ratio plot as shown in

Figure 8. Matrix Multiplication Benchmark Results. Shows the ratio
of execution times by dividing CPU execution time by GPU execution
time.

Figure 9. Particles in a Box Benchmark. Shows a screen capture of the
particles in a box simulation executing on the GPU.

NASA USRP – Internship Final Report

Summer 2010 Session 9

Figure 8, the average execution time for the CPU case was divided by the average time for the GPU case, so that the
results were a number larger than 1. This ratio plot shows how many times faster the GPU version of the code is to
the CPU code.

The ratio appears to be showing a linear trend; as the size of the matrices increase, the ratio of CPU to GPU
execution times also increases. While this is a rather simple example to be comparing, it shows that the potential for
performance increases are possible even in trivial tests such as matrix multiplication.
2. Particles in a Box

This code simulates particles acting freely in a box, able to collide with other particles and the box walls as
shown in Figure 9. The code works by first creating a three dimensional grid of a specified size in the code. Next,
initial positions and velocities are calculated for each particle. For each iteration specified by the user, new positions
and velocities are calculated based on gravity and other forces existing in this box. After all particles have these
updated quantities, the program figures out which cell the particle is in and creates a table of particles and the cell
they are located based on the center of the particle. This table is then sorted according to cell number. For every
particle in a given cell number, a collision algorithm is used to see if these particles are colliding and it applies the
appropriate calculations. Since particles can be in more than one cell at a time, the collision algorithm is applied to
all of the neighboring cells as well. All of these steps are applied each iteration.

The GPU version of this code was taken from the CUDA SDK and was modified in order to remove gravity and
allow for perfectly inelastic collisions. The original code also allowed a graphical representation of the box to be
displayed; this was removed to make the CPU and GPU versions more similar. Also removed from the GPU version
were some printing statements so that the code can be easily executed from a script and output gathered in a single
location. The CPU version performs the same steps as the GPU code, namely no graphical display, no fancy output
and same computations in the same order.

This benchmark ran several tests, each with a different number of particles at 18 different numbers of iterations.
Each combination of number of particles and iterations was run three times, and an average was taken. That average

execution time was divided
by the number of iterations
to calculate a time per
iteration value. This was
done on both the CPU and
GPU versions. A ratio was
also calculated by dividing
the average execution time
for the CPU and dividing it
by the average execution
time for the GPU at each
combination. The results
were then grouped by
number of particles and
plotted. The results of this
benchmark are shown in
Figure 10.

As the number of
particles is increasing, the
ratio of CPU execution time
to GPU execution time is
increasing. However, it
appears that around 1000
particles, the ratio seems to
be hitting a maximum value
of approximately 16. This
means that the GPU code is
16 times as fast as the CPU
code. It is unclear whether
this value is the absolute
maximum value without
doing more testing.

Figure 10. Particles in a Box Benchmark Results. Shows the ratio of execution
times by dividing CPU execution time by GPU execution time. Each line corresponds
to a different number of particles that were run in this benchmark.

NASA USRP – Internship Final Report

Summer 2010 Session 10

However, as the number of particles increases, the execution time also increases, and it becomes more time
consuming to run these simulations. But it can be implied that as the number of particles continues to increase, the
ratio of execution times should be no less than 16. This speedup may only occur to a fraction of the entire code,
meaning that the entire program will not be 16 times faster on GPU than on CPU.

IV. Conclusion
Running a CFD simulation provides the user with a file of numerical data. This data must be read into a

visualization tool in order to graphically understand what the data is. Adding a reader to an open source tool such as
ParaView can improve the visualization of that numerical data. Open source software simplifies adding new
capabilities to existing software. When the output file that is to be read follows a specific format it makes it easier to
create such a reader. Verifying that the reader works correctly requires many different test cases and a lot of
patience. Any new change to the reader during testing requires that all previously tested cases be retested. While this
procedure is time consuming it is essential to assuring that the reader will work for multiple cases. It is also a good
idea to see if an image that was created using another visualization tool can be duplicated using the new tool with
the new reader. If CFD simulations were able to run using both CPUs and GPUs they would require less time to be
completed. As shown in this study, for matrix multiplication codes, the GPU code can run at least 150 times faster
than the CPU code. This is quite a tremendous improvement that increases as the size of the matrices increase. The
particles in a box benchmark that was run represented a more realistic application of what could be achieved using
GPU processing power. As the number of particles increased, the ratio of CPU execution time to GPU execution
time also increased. The ratios that were gathered from this study indicate that the potential for improvements in
code execution time exist. Remembering that the CPU code could be optimized to enable multiple processors on a
PC, this code only utilized one of eight available processors, could decrease the ratio. There are GPU workstations
available that contain multiple powerful graphics cards, and the CUDA toolkit provides programmers with functions
to link multiple GPUs together. These benchmarks could be run on higher quality, faster, more powerful machines
and a new set of ratios could be received. This study showed what a typical programmer might see, using the PC
readily available to them.

Acknowledgments
We would like to thank Jay LeBeau for his help with organizing and assisting in these tasks by providing

computing resources.

References
1Nichols, R.H., Buning, P.G., “Users Manual for OVERFLOW 2.1,” University of Alabama and NASA Langley Research

Center, 2008.

2Forssell, L., “Visualizing Flow Over Parametric Surfaces Using Line Integral Convolution,” Proc. IEEE Visualization 1994,

Washington, DC, 1994.

3NVIDIA CUDA Programming Guide version 3.1.1 (7/21/2010) http://developer.download.nvidia.com/compute/cuda/3_1/

toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf [cited 3 Aug 2010].

4Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., et al. “Debunking the 100X GPU vs. GPU myth:

an evaluation of throughput computing on CPU and GPU,” ACM SIGARCH Computer Architecture News, Vol. 38, No. 3, June
2010, pp. 451-460.

