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athematical models for gas dynamics @

Kn=NL
A : local mean free path
L: characteristic length

Euler Navier-Stokes Conservation Equations
Equations Equations do not form a closed set
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,%‘ The Boltzmann Equation @
0 0 =G 0
—(nf)+V'i(nf)+F'T(nf)=[—(nf)J
ot or ov ot collision

f : distribution function
n : number density
F : external force
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% Microscopic description of gases @/

« The rarefied regime is described by the Boltzmann equation
« Particulate nature of gas

« QGas is described by the position, velocity, energy of an ensemble of
molecules in a statistical manner

« The microscopic description describes physical processes regardless of
the mathematical complexity of the problem
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Move phase (deterministic)
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Physical statistical simulation of real dilute gas flow

DSMC methodology

@

Millions of molecules representing real gas molecules modify

their velocities and positions as they interact with each other
and the boundaries

e Discretization of time and physical space

Decoupling of the move and the collide phase
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Features of DSMC

e The calculation is always unsteady. Steady state achieved as a
long time state of the unsteady flow

e There are no numerical instabilities

e Fluctuations have the same physical characteristics as the real
fluctuations

® Physics and chemistry models are mere additions to the
molecular model (surface interactions, energy exchange,
chemical reactions)
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Application overview @

Ultimate goal: to provide “piecewise integration” of key scenario
events to determine the plausibility or implausibility of the candidate

failure scenarios

Target of current analysis: Determine aerodynamic and heating
behavior of the Shuttle Orbiter during aerobraking maneuvers

— Provide an independent assessment of the internal plume engineering
model developed by Steve Fitzgerald (NASA JSC)

Methodology: Direct Simulation Monte Carlo method
— DAC implementation by LeBeau (NASA JSC)

Results: Flowfield simulations at representative re-entry trajectory
points
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Modeling procedure

*  Geometry Modeling
- Surface grid: Triangulated
unstructured constructed from
Orbiter CAD model
— Gas phase grid: Cartesian (adapted
where large gradients are present)
« 3-D DSMC Analysis
— Code used: DAC (version 97)
— Thermal and chemical non-
equilibrium included

— Chemistry modeling : Finite rate
chemistry model of Bird
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CAD model for the Orbiter
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DSMC analysis of flight trajectory

» DSMC simulations were performed at two points of the entry trajectory

DSMC/CFD Trajectory Points
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DSMC Point AA DSMC Point A I
EI + 91 seconds El + 197 seconds i ‘A .
25{ *AA
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; 23
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Adapted grid in the
front part of the vehicle
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Grids used for the simulations
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Adapted grid around
the wing
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% Flowfield temperature profile (300kft) @
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<l i 350 kft flowfield @

Surface heating

Q. (W/m?)

10000
6951.93
; 4832.83

3350.82
2335.72
1623.78
1128.84
784.76
545.559
379.269

| 263.665
183.298
127.427
88.5867
61.5848
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W 300 kft flowfield &

Surface heating
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%‘ Temperature profile at wing level @

(350 kft)

T(K)
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10450
9703.53
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8210.68
746425
6717.83
5971.4
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746.425
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'Temperature and density profiles @
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%‘ Wing geometry @
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% Wing leading edge geometry

Vents
(Area = 66 in?

Panel: _—.7¥7\
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& Damage scenarios investigated

* What size plume can burn though wire(s) in 530 seconds
from EI?:

- Scenario A: Breach between RCC panels 9 and 10
- Scenario B: 10 inch hole in RCC panel 8

&

Sandia
National _
Laboratories

10



Damage scenarios simulations @

Goal: Model the effects of a damage to the leading edge

* 3-D representation of critical parts of wing leading edge

* Boundary conditions from undisturbed geometry
simulations

* DSMC simulations performed with full chemical and
thermal non-equilibrium included

s B

Damage scenario A @/
Flow through a slit
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Panel 1 4 ]

_, z = c Representative internal wing @

leading edge flow field

S T(K)
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epresentative internal wing @
leading edge spar heating
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, ‘ Damage scenario B

Panel 8, 10” hole

NISA

- i Number density in flowfield

with streamlines
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%‘ Reference heating distribution @/

in RCC cavity
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% Reference pressure distribution @

in RCC cavity

2

L4

Relerence Pressure
0.30000

0.29200
0.28421
= 0.27663
0.26925
g 0.2620
0.21589
021111
0.20548
0.20000

350kft 300kft

Sandia
aNTSE National

14



Engineering Model Comparisons

— Plume heating model was developed based on continuum flow
assumptions, leading to slightly less diffuse plume structures

— Results are favorable
 Heating predictions within factor of 2
» Similar predicted impingement location
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Conclusions

* The Direct Simulation Monte Carlo method was used to provide
3-D simulations of the early entry phase of the Shuttle Orbiter

* Undamaged and damaged scenarios were modeled to provide
calibration points for engineering “bridging function” type of
analysis

¢ Currently the simulation technology (software and hardware)
are mature enough to allow realistic simulations of three
dimensional vehicles
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Extras @
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w‘ Applications of DSMC and typical @

length-scales

o Hypersonics (m)

a Microelectronics manufacturing processes (cm)
o Physical, Chemical vapor deposition (cm)

o MEMS (microns)

o Non-equilibrium chemistry (atomic level)
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The computational load increases with the density of the flow

The limitations of DSMC

o

number of samples

applications

o DSMC is an MMP empowered technology

NS4

o Statistical error decreases as a function of the square root of the

o DSMC can carry more information than actually needed for some
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%‘ Calculations performed

* 350 kft
— 2 levels of adaptation
« 1st level of adaptation: mean free path wide subcells

* 2nd level of adaptation: 0.5 mean free path subcells
* 300 kft
— 2 levels of adaptation
* 2nd level of 350kft adaptation
* 3rd level of adaptation:(0.1 mean free path subcells)

EANS
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