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Abstract— This paper considers the problem of time-domain
assessment of the Phase Margin (PM) of a Single Input
Single Output (SISO) Linear Time-Invariant (LTI) system using
a singular perturbation approach, where a SISO LTI fast
loop system, whose phase lag increases monotonically with
frequency, is introduced into the loop as a singular perturbation
with a singular perturbation (time-scale separation) parameter
ε . First, a bijective relationship between the Singular Pertur-
bation Margin (SPM) εmax and the PM of the nominal (slow)
system is established with an approximation error on the order
of ε2. In proving this result, relationships between the singular
perturbation parameter ε , PM of the perturbed system, PM
and SPM of the nominal system, and the (monotonically
increasing) phase of the fast system are also revealed. These
results make it possible to assess the PM of the nominal
system in the time-domain for SISO LTI systems using the
SPM with a standardized testing system called ”PM-gauge,” as
demonstrated by examples. PM is a widely used stability margin
for LTI control system design and certification. Unfortunately, it
is not applicable to Linear Time-Varying (LTV) and Nonlinear
Time-Varying (NLTV) systems. The approach developed here
can be used to establish a theoretical as well as practical
metric of stability margin for LTV and NLTV systems using a
standardized SPM that is backward compatible with PM.

I. INTRODUCTION

Due to complexity of the dynamics of practical systems,
feedback controllers are designed almost invariably based
on simplified but concrete mathematical models known
as nominal systems under some simplifying assumptions.
However, the designed controllers will be implemented on
the actual systems, which differ from the mathematical
nominal model in many uncertain ways that are known as
(structural) perturbations to the nominal system. The actual
system or any mathematical model with higher fidelity than
the nominal model are then called the perturbed system. In
nonlinear control theory, perturbations that do not change the
order of the nominal system, such as parametric dispersions
or time-dependent variations, and negligible nonlinearities,
are called regular perturbations; whereas those that change
(increase) the order of the nominal system, such as fast
parasitic dynamics that are ignored during controller design,
are known as singular perturbations. An effective controller
must be able to guarantee stability of the actual system
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in the presence of these perturbations. References [1]-[3]
present an overview of singular perturbations including
perturbation models, numerical and analytical treatments,
ideas, results, and the applications of singular perturbation
theory in different fields.

The extent to which a controller accommodate structural
perturbations is called stability margin. Note that stability
margin is different from the concept of domain of
attraction, which is the ability of the controller to cope
with perturbations in initial states. It is also different from
the concept of input-output sensitivity (input-output gain),
which indicates the ability of the closed-loop system to
attenuates perturbations in the input, such as disturbances,
infeasible tracking command trajectories or noises. Based
upon the perturbation categories, stability margin can be
divided into singular and regular perturbation margins. For
Single-Input-Single-Output (SISO) Linear Time-Invariant
(LTI) systems, Gain Margin (GM) and Phase Margin (PM)
have been successfully used to gauge a nominal system’s
capability in accommodating parametric uncertainties
(regular perturbation) and parasitic dynamics (singular
perturbation). While parametric perturbations do affect the
PM, PM is predominantly a margin for accommodating
parasitic dynamics as a singular perturbation margin.
Whereas parasitic dynamics (with non-unity gain) do
affect the loop gain, GM can be considered predominantly
a regular perturbation margin. References [4]-[6] have
discussed Nyquist robust stability margin, time-delay
stability margin and so on, in the fields of robust control
and L1 adaptive control including regular and singular
perturbation margins from the view of above classification.

However, since PM and GM are based on frequency
response of LTI systems, they are not applicable to Linear
Time-Varying (LTV), Non-Linear (NL) systems (including
NLTI and NLTV) systems, which do not lend themselves to
frequency domain analysis or synthesis. A common practice
in controller design for LTV and NL systems applies the
LTI controller design methods at discrete operating states
within the operating envelope or along a nominal trajectory
under the assumptions that the nonlinearity is benign
and time-variance of the system parameters or nominal
trajectory are slow. In operation, the controller gains are
”scheduled” according to the current operating state or
commanded trajectory. In essence, such gain-scheduled
controllers and the closed-loop system are NLTV in nature.
But the current practice is to certify such controllers by the
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GM and PM at the design points, which is well-known to
be neither necessary nor sufficient for stability should the
assumptions of benign nonlinearity and slowly-varying fail
in operation, such as departure or upset, or simply flying a
maneuvering trajectory such as in a flight control system,
thereby jeopardizing the safety of the system. The benign
nonlinearity and slowly-varying assumptions also limit the
performance of the control system.

In recent years many advanced nonlinear and time-varying
control techniques have been developed for NLTV systems
to alleviate the benign nonlinearity and slowly-varying
assumptions, thereby fully exploiting their performance
potentials and improving their safety. However, there does
not appear to have been reported for NLTV systems any
stability margin metrics that are: (i) theoretically based,
(ii) practically measurable, (iii) backward compatible in
the sense that when applied to LTI systems, these metrics
have a bijective correspondence with the GM and PM [7].
The lack of such effective stability metrics has inevitably
hampered the acceptance of advanced LTV and NL control
techniques in control engineering practices.

In this paper, we propose a time-domain approach for
assessing PM of SISO LTI systems based on the singular
perturbation theory, which can potentially be extended to
LTV and NL systems as an effective gauge of stability
margin for parasitic dynamics similar to what PM does for
LTI systems.

The research on singularly perturbed systems with two-
or multi-time scale are of theoretical and practical interests
[8]-[10]. When the general form of the LTI autonomous sin-
gularly perturbed system is considered, it can be represented
as [11]

ẋ(t) = A11x(t)+A12z(t)
ε ż(t) = A21x(t)+A22z(t) (1)

where x(t) ∈ Rn,z(t) ∈ Rm are state vectors of slow and
fast dynamics (two-time scale), respectively; A11, A12, A21,
A22 are constant matrices and A22 is Hurwitz; ε is a small
positive parameter that describes the time-scale separation,
such as the ratio between the bandwidths or between the
time-constants of the slow and fast dynamics. When ε = 0,
(1) reduces to the nominal system

ẋ(t) = [A11 −A12A−1
22 A21]x(t) (2)

In [12] and [13], the perturbed system (1) was decomposed
with Chang transformation [14] into two decoupled
subsystems of the slow and fast dynamics. This result
was generalized in [15] (see also [16]) to multi-time-scale
singularly perturbed linear systems. The multi-time-scale
decomposition can be used for implementing linear dynamic
controllers, observers, and Kalman filters using different
sampling rates.

Many results on stability of singularly perturbed NLTV
systems are available (cf. Chapter 11 of [11] and Tikhonov’s
Theorem, p434 of [11]), which, roughly speaking, establish
that when the null (quasi) equilibrium states of both the
nominal operating error dynamics (defined by the slow
system trajectory relative to the nominal operating state or
trajectory) and the boundary layer dynamics (defined by
the fast system trajectory relative to the slow dynamics)
are exponentially stable, there exists a constant εmax > 0
such that the null equilibrium of the singularly perturbed
system (the composite system) is exponentially stable for all
ε < εmax. We may call εmax Singular Perturbation Margin
(SPM). While both SPM and PM provide an indication
of the stability margin of the nominal (slow) system for
parasitic dynamics, the quantitative relationship between
the SPM εmax and the PM does not appear to have been
studied.

The main results of this paper offer a singular perturbation
approach for time-domain assessment of phase margin. Here,
the nominal system (2) is assumed to have been (exponen-
tially) stabilized with a healthy PM, and the fast system can
be written as

ε ż(t) = A22z(t)+Bfastx(t)
y(t) = Cfastz(t) (3)

where Cfast = A12 and Bfast = A21. Fast system (3) is
assumed to be a monotonic-lag system (i.e. phase lag
increases monotonically with frequency) with sufficiently
large phase lag (larger than the PM of the nominal system)
at the gain cutoff frequency ωcg,nom of the nominal system
for sufficiently small ε . It will be shown that the PM of the
perturbed system can be approximated by the sum of the
PM of the nominal system and the phase of the fast system
at ωcg,nom of the nominal system with an error on the order
of ε2. With the ωcg,nom and εmax, our Theorem 1 establishes
a bijective relationship between the SPM εmax and the PM
of the nominal system with an approximation error on the
order of ε 2. This result can be used to assess the PM of the
nominal system in the time domain when the SPM εmax is
found either by direct calculation of the eigenvalues of the
perturbed system, or estimated using a singular perturbation
approach. In practice, the fast system is designed as a ”PM
gauge,” which should be optimized and standardized in
order to obtain a quantitative estimate of PM of the nominal
system. Proof of Theorem 1 revealed that the PM estimation
error is due to the magnitude frequency response of the fast
system at ωcg,nom, therefore the optimal PM gauging system
should be an allpass filter with unity gain for all ε < εmax.
The usage and effectiveness of this method are shown by
examples.

The significance of the main results of this paper is not
merely an alternative method for determining the PM of a
SISO LTI system; rather it provides an avenue for defining a
stability margin for LTV and NL systems that is theoretically



based, practically measurable and backward compatible
with PM. The extension relies on theoretically rigorous and
practically computable algorithms for computing the SPM
for LTV and NL systems. For LTV systems, a recently
developed differential algebraic spectral theory [17]-[22]
could be used to assess the SPM in a manner similar to the
aforementioned Chang transformation and multi-time-scale
decomposition for LTI systems. The LTV SPM methods,
once developed, could be extended to NLTV systems by
virtue of the equivalence of exponential stability of an
equilibrium state of a NL system and its linearization
thereof. For NL systems (including LTV systems as
a special class), well-known Lyapunov function based
singular perturbation results (see, for instance, Theorems
11.3 and 11.4 in [11]) can be used to obtain conservative
estimates of SPM. In this latter approach, a recent result
on spectral Lyapunov function [23] would prove to be useful.

The paper is organized as follows. After this introductory
section, our main theoretical results will be presented
in Section 2. The singular perturbation approach for
time-domain assessment of PM is illustrated by examples
in Section 3. Section 4 concludes the paper with some
insightful remarks and suggestions for further research.

II. MAIN RESULT

The symbols used in the theorem statement and proof are
shown in TABLE I.

TABLE I

SYMBOLS

Symbols Meanings Unit
PMpt Phase margin of the perturbed system rad

PMnom Phase margin of the nominal system rad
PMfast Phase margin of the fast system rad

Phase of the perturbed system at freq. ω ,
φpt(ω ,ε) with singular perturbation parameter ε rad
φnom(ω) Phase of the nominal system at freq. ω rad

Phase of the fast system at frequency ω ,
φfast(ω ,ε) with singular perturbation parameter ε rad

Magnitude of the perturbed system at freq.
Mpt(ω ,ε) ω , with singular perturbation parameter ε dB
Mnom(ω) Magnitude of nominal system at freq. ω dB

Magnitude of the fast system at freq. ω ,
Mfast(ω ,ε) with singular perturbation parameter ε dB

ωcg,pt Perturbed system gain crossover frequency rad/sec
ωcg,nom Nominal system gain crossover frequency rad/sec
ωBW,nom Bandwidth of the nominal system rad/sec
ωBW,fast Bandwidth of the fast system rad/sec

Perturbed system open loop transfer function
Lpt(s,ε) with singular perturbation parameter ε

Fast system open loop transfer function,
Lfast(s,ε) with singular perturbation parameter ε

The singular perturbation parameter ε is defined by

ε =
ωBW,nom

ωBW,fast
≈ ωcg,nom

ωBW,fast
(4)

and εmax is defined to the smallest ωBW,fast that makes the
perturbed loop system be the ε at onset of instability. The
magnitude M(ω) of transfer function L is defined by

M(ω) = 20log |L( jω)|
The perturbed system (1) is shown in Fig.1.

Fig. 1. Singular Perturbed System

The transfer function of the fast system (3) is given by

Lfast(s,ε) = Cfast[εsI−A22]−1Bfast (5)

A. Theorem 1

Consider the singularly perturbed LTI system (1), where
x(t)∈R

n, z(t)∈R
m; A11, A12, A21, A22 are constant matrices

and A22 is Hurwitz; ε > 0 is the perturbation parameter. If
the fast system is a SISO lag system with unity DC gain and
monotonic phase lag that is sufficiently large for sufficiently
small ε , then PMnom and εmax satisfies a bijective relationship
defined by

PMnom = |φfast(ωcg,nom,εmax)|+O(ε2) (6)

Proof of Theorem 1 relies on the following lemma, which
is an important result in its own rights.

B. Lemma 1

Consider the singular perturbed LTI system (1), with
the same assumptions and definitions of the parameters in
Theorem 1. The following relation between PMpt, PMnom

and φfast is satisfied

PMpt = PMnom + φfast(ωcg,nom,ε)+O(ε2) (7)

C. Proof of Lemma 1

Suppose A22 is Hurwitz, the loop transfer function of the
fast system, which is a rational function with unity DC gain,
and poles having negative real parts, can be written as

Lfast(s) =
∏M1

i=1[εs/zi +1]∏M2
i=1[(εs/ωmi)

2 +(2ζmi/ωmi)εs+1]

∏N1
j=1[εs/p j +1]∏N2

j=1[(εs/ωn j )2 +(2ζn j/ωn j)εs+1]

The fast system is a phase lag system, so

min
{{zi}M1

i=1 ∪{ωmi}M2
i=1

}
> min

{{p j}N1
j=1∪{ωn j}N2

j=1

}
(8)



and ∣∣∣ M1

∏
i=1

[εs/zi +1]
M2

∏
i=1

[(εs/ωmi)
2 +(2ζmi/ωmi)εs+1]

∣∣∣
<

∣∣∣ N1

∏
j=1

[εs/p j +1]
N2

∏
j=1

[(εs/ωn j )
2 +(2ζn j/ωn j)εs+1]

∣∣∣
Let

ωmin = min
{{p j}N1

j=1∪{ωn j}N2
j=1

}
and for the magnitude of Lfast, we have

|Mfast(ωcg,nom)|
< N1

∣∣∣∣20log
∣∣∣ 1

ε j ωcg,nom
ωmin

+1

∣∣∣∣∣∣∣
+N2

∣∣∣∣20log
∣∣∣ 1

1+ ε j 2ζωcg,nom
ωmin

+(ε j ωcg,nom
ωmin

)2

∣∣∣∣∣∣∣ (9)

where ζ ∈ (0,1). By Taylor Expansion of (9) at the point
ε = 0, we obtain

|Mfast(ωcg,nom)|

< 20N1

∣∣∣∣ −ω2
cg,nom

2(ln10)ω2
min

ε2 +O(ε4)
∣∣∣∣

+20N2

∣∣∣∣(1−2ζ 2)ω2
cg,nom

(ln10)ω2
min

ε2 +O(ε4)
∣∣∣∣

= O(ε2) (10)

Since Mnom(ωcg,nom) = 0, the magnitude of the perturbed
system at ωcg,nom is

Mpt(ωcg,nom) = Mnom(ωcg,nom)+Mfast(ωcg,nom)
= Mfast(ωcg,nom)
= O(ε2) (11)

which is shown by Fig.2.

Fig. 2. Magnitude-Frequency Plot

Let |Δω | = |ωcg,pt − ωcg,nom|, and by the mean value
theorem, we have

|Mpt(ωcg,nom)|
|Δω | =

∣∣∣ d
dω

Mpt(ω0)
∣∣∣ (12)

for some ω0 ∈ [min{ωcg,pt,ωcg,nom},max{ωcg,pt,ωcg,nom}]. It
then follows from (12) and the last equality in (11) that

|Δω | = |Mfast(ωcg,nom)|
| d
dω Mpt(ω0)|

= O(ε2) (13)

Let P̃Mpt = PMnom + φfast(ωcg,nom), and

|PMpt − P̃Mpt|
= |(π + φnom(ωcg,pt)+ φfast(ωcg,nom)

)
−(PMnom + φfast(ωcg,nom)

)|
= |(π + φnom(ωcg,pt)+ φfast(ωcg,nom)

)
−(π + φnom(ωcg,nom)+ φfast(ωcg,nom)

)|
≤ | φnom(ωcg,pt)−φnom(ωcg,nom) |

+ | φfast(ωcg,pt)−φfast(ωcg,nom) |
= |Δω |

( ∣∣∣ d
dω

φnom(ω1)
∣∣∣+ ∣∣∣ d

dω
φfast(ω2)

∣∣∣ ) (14)

for some ω1,ω2 ∈ [min{ωcg,pt,ωcg,nom},max{ωcg,pt,ωcg,nom}],
and then

|PMpt − P̃Mpt| = O(|Δω |) = O(ε2) (15)

Therefore

PMpt = PMnom + φfast(ωcg,nom)+O(ε2)

D. Proof of Theorem 1

By assumption, the fast system has a monotonically in-
creasing phase lag. When PMnom is given, |φfast(ωcg,nom,ε)|
increases as ε increases, and PMpt decreases. When PMpt

reaches 0, we obtain εmax. By Lemma 1

PMpt = 0 = PMnom + φfast(ωcg,nom,εmax)+O(ε2)

Therefore

PMnom = |φfast(ωcg,nom,εmax)|+O(ε2)

Notice that φfast(s,ε) = φfast(sε). It follows the assumption
that φfast(s,ε) is a monotonically increasing function of ω
that PMnom is a bijective function of the SPM εmax.

III. TIME-DOMAIN PHASE MARGIN ASSESSMENT

In this section we will apply Theorem 1 and Lemma 1 to
time-domain assessment of PMnom for the nominal system.
We will assume the gain-crossover frequency ωcg,nom is
known for the given nominal system, which will be used to
design a LTI singular perturbation (fast) system L fast(s,ε),
called a PM-gauge, whose phase φfast( jωcg,nom,εmax) will
be used to determine PMnom according to Theorem 1,
where the SPM εmax can be determined in the frequency
domain from the condition PMpt(εmax) = 0. However, the
purpose here is to calculate εmax in the time-domain from
the state equations of the perturbed system comprising
of the nominal and the PM-gauge systems. In Subsection
3.1 we will first present both analytical and numerical
methods for evaluating the SPM εmax in the time-domain.
Then in subsequent subsections we will present three types
of PM-gauge, each of which has unique advantages and



disadvantages that are suited for a certain applications.

The design methods and the effectiveness of the designed
PM-gauges will be demonstrated using the nominal system
shown in Fig.3 with a loop transfer function given by

Lnom(s) =
CPBP(KI +KPs)

s(s+AP)
(16)

which is a first-order LTI plant with a Proportional-Integral
(PI) feedback controller, where the plant parameters are given
by AP = 1, BP = 1, CP = 1. In order to illustrate the O(ε 2)
accuracy of estimated PMnom using different PM-gauges, two
sets of controller gains KI and KP will be used, which result
in two sets of PMnom and ωcg,nom values, as shown in TABLE
II.

Fig. 3. The Nominal System

TABLE II

NOMINAL SYSTEM PARAMETERS

Parameters KP KI PMnom ωcg,nom
Case 1 1 3 π/3 1.7321
Case 2 0.5 7.83 π/6 2.7320

A. Time-Domain Calculation of SPM

Consider the singularly perturbed LTI system (1) where
A22 is Hurwitz, and assume the nominal system (2)
has been exponentially stabilized, i.e. [A11 − A12A−1

22 A21]
is Hurwitz. Then standard singular perturbation theory
provides exponential stability of the perturbed system
for sufficiently small ε > 0. Thus, SPM εmax can be
defined as the least upper bound on ε > 0 for which
the perturbed system remains exponentially stable. The
SPM εmax can then be found by monotonically increasing
ε from a very small value until one of the eigenvalues
of the perturbed system becomes imaginary (including zero).

To this end, first rewrite the perturbed system (1) as a
composite system[

ẋ(t)
ż(t)

]
=

[
A11 A12
1
ε

A21
1
ε

A22

][
x(t)
z(t)

]
= A(ε)

[
x(t)
z(t)

]
(17)

The characteristic equation of (17) can be written as

det[λ I−A(ε)] = λ N +aN(ε)λ N−1 + ...+a2(ε)λ +a1(ε) = 0
(18)

where N = n + m. For ε = εmax, (18) has an imaginary
eigenvalue λ = jβ , which simultaneously satisfies the real-
part and imaginary-part of (18)

(−1)ka2k+1β 2k + ...+a5(ε)β 4 −a3(ε)β 2 +a1(ε) = 0

(−1)ka2(k+1)β 2k + ...+a6(ε)β 4 −a4(ε)β 2 +a2(ε) = 0

(19)

where k = 1,2, ...,M and M = [N/2], and aN+1(ε) = 1,
aN+2(ε) = 0 when appropriate. Thus, a standard numerical
method can be used to solve for β from both equations
in (19) for a given ε , and ε = εmax is determined by
increment ε until the values for β from both equations
are sufficiently close. To speed up the search process,
increment of ε can be variable based on the difference
between the two solutions for β from both equations in (19).

When the order N ≤ 9, it is possible to solve for εmax

from (19) analytically using the root formulas for quadratic,
cubic and quartic polynomials, as illustrated below in the
PM-gauge design examples.

B. Minimum-Phase PM-Gauges

Because minimum-phase zeros introduce monotonic phase
leads, which violate the monotonic phase lag assumption for
Theorem 1, a minimum-phase PM-gauge must be an all-pole
system. Since the magnitude function of an all-pole system
is not a constant, a minimum-phase PM-gauge will have
an O(ε2) error in estimating PMnom according to Theorem
1. The following example illustrates a minimum-phase
PM-gauge.

Consider a second-order minimum-phase PM-gauge with
a transfer function

Lfast(s,ε) =
ω2

0

(εs)2 +2ζω0(εs)+ ω2
0

(20)

The phase function of Lfast( jω ,ε) is given by

|φfast( jω ,ε)| = arctan

(
2ζ εω

ω0

1− (εω
ω0

)2

)
(21)

We choose ω0 = ωcg,nom, so that εmax = 1 corresponds to
PMnom = π/2 rad (90◦). By choosing ζ = 1 we have

PMnom � |φfast( jωcg,nom,εmax)| = arctan
( 2εmax

1− ε2
max

)
(22)

with an O(ε2) error. The approximate relationship between
PM and SPM is plotted in Fig.4.



Fig. 4. Approximate Relationship between PM and SPM for (20)

For the two test cases of nominal systems specified in
TABLE II, the transfer function of the corresponding PM-
gauges along with the corresponding SPM εmax values, esti-
mated PMnom values and the estimation errors, and the bound
k = (PMnom Error)/ε2

max are shown in TABLE 2. The O(ε 2)
accuracy of the estimation error is clearly demonstrated. It is
reassuring to know that the estimation error is significantly
smaller as the design becomes more critical. The estimation
error can be further reduced by using a higher order PM-
gauge, such as cascading two PM-gauges of (20). However, it
will only reduce the constant k in the last column of TABLE
III, not by orders-of-magnitude.

TABLE III

MINIMUM-PHASE PM-GAUGE TEST RESULTS

Parameters Lfast(s,ε) SPMεmax

Case 1
3.0002

(εs)2 +3.4642(εs)+3.0002
0.7087

Case 2
7.4638

(εs)2 +5.4640(εs)+7.4638
0.2819

Param. Est.PMnom Exact PMnom PMnom Err. k
Case 1 1.2331 π/3 = 1.0472 17.75% 0.3701
Case 2 0.5495 π/6 = 0.5236 4.95% 0.3259

It is noted that the SPM εmax determined in the frequency
domain from PMpt(εmax) and that determined using the
time-domain method introduced above are identical. Since
the order of the perturbed system is N = 4, εmax can be
determined analytically using the quadratic root formula
from (19), which now becomes

β 4 −a3(ε)β 2 +a1(ε) = 0

a4(ε)β 2 +a2(ε) = 0

Eliminating β 2 from these equations yields an equation for
ε

a2
2(ε)+a4(ε)a3(ε)a2(ε)+a2

4(ε)a1(ε) = 0 (23)

which turns out to be a second-order polynomial in ε 2, and
therefore can be solved using the quadratic root formula.
Among the four roots, the smallest positive root is εmax.
.

C. Zero-Error PM-Gauges

From the proofs of Theorem 1 and Lemma 1 it is seen
that the O(ε2) estimation error is due to the non-unity

magnitude function of the PM-gauge M fast(s,ε). Thus it
is possible to design zero-error PM-gauges using all-pass
filter transfer functions Lfast(s,ε) whose magnitude function
Mfast(s,ε) = 1. To illustrate the design, consider first-order
all-pass filter transfer function

Lfast(s,ε) =
1− εs

ω0

1+ εs
ω0

(24)

whose phase function is given by

|φfast( jω ,ε)| = arctan

(
2 εω

ω0

1− (εω
ω0

)2

)
(25)

By choosing ω0 = ωcg,nom, so that εmax = 1 corresponds to
PMnom = π/2 rad (90◦), we have

PMnom = |φfast( jωcg,nom,εmax)| = arctan
( 2εmax

1− ε2
max

)
(26)

which is identical to (22). However, there is no estimation
error, and the order of the PM-gauge is only half of that
of the minimum-phase counterpart (20). The drawback of
such zero-error PM-gauges is that they are necessarily non-
minimum-phase, which may cause problem in simulation
verifications of PM or SPM using such PM-gauges. The
results of applying the zero-error PM-gauge (24) to the two
test cases are documented in TABLE IV.

TABLE IV

ZERO-ERROR PM-GAUGE TEST RESULTS

Parameters Lfast(s,ε) SPMεmax

Case 1
1− εs

1.7321

1+ εs
1.7321

0.5774

Case 2
1− εs

2.7320

1+ εs
2.7320

0.2679

Parameters Est.PMnom Exact PMnom PMnom Err.
Case 1 1.0472 π/3 = 1.0472 0
Case 2 0.5236 π/6 = 0.5236 0

D. Approximately-Linear-Phase PM-Gauges

Although the zero-error PM-gauge of the preceding sec-
tion gives exact PMnom from SPM εmax, the relationship
between them is a nonlinear function. In practice, it is
desirable to have a linear relation between PMnom and SPM
εmax with zero-error. A pure transport delay possesses the
desired unity magnitude function and linear phase function.
Thus, we may design linear-phase, zero-error PM-gauge as

Lfast(s,ε) = e−T0εs (27)

whose phase function is given by

|φfast( jω ,ε)| = T0εs (28)

By choosing T0 = π/ωcg,nom, so that εmax = 1 corresponds
to PMnom = π rad (180◦), we have

PMnom = |φfast( jωcg,nom,εmax)| = εmaxπ (29)

While this is highly desirable, it is difficult to analyze the
stability of the delay-perturbed system. This problem can



be alleviated by using the Pade approximation to the delay
transfer function, thereby obtaining approximately-linear-
phase PM-gauges. In fact, the zero-error PM-gauge in the
preceding section is the first-order Pade approximation to
the delay function, but its phase function is quite nonlinear.
Now, consider the third-order Pade approximation to (27)

Lfast(s,ε) =
120−60T0εs+12(T0εs)2 − (T0εs)3

120+60T0εs+12(T0εs)2 +(T0εs)3 (30)

With T0 = π/ωcg,nom and by Taylor expansion at εmax = 0,
we have

PMnom = |φfast( jωcg,nom,εmax)|

=

∣∣∣∣∣2arctan

(
(εmaxπ)3 −60(εmaxπ)

120−12(εmaxπ)2

)∣∣∣∣∣
� εmaxπ (31)

Note that the estimation error of PMnom using the exact phase
function |φfast( jωcg,nom,εmax)| is zero. The error of the linear
approximation PMnom � εmaxπ is given by

err(εmax) =

∣∣∣∣∣ εmaxπ∣∣∣2arctan
( (εmaxπ)3 −60(εmaxπ)

120−12(εmaxπ)2

)∣∣∣−1

∣∣∣∣∣×100%

(32)
which is a monotonically increasing function of εmax maxi-
mizing at εmax = 1 to 0.64%, as shown in Fig.5.
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Fig. 5. Approximation Error for the 3rd Order PM-gauge (30)

Since practically PMnom is seldom more than
1
3

π rad

(60◦), for which the estimation error is given by

err(εmax) ≤ err
(1

3

)
= 0.00125% (33)

which is accurate enough for any practical purposes. The
test results of the approximately-linear-phase PM-gauge on

the two nominal systems are presented in TABLE V. The
approximation errors shown in the TABLE V are due to
two sources: the approximately linear phase and the finite
precision in implementing the transfer function (30), where
by (32) and (33). The estimation error by the linear approx-
imation is indiscernible, and most of the errors are due to
the precision of the implementation. The SPM εmax values
were obtained by solving (19) using the numerical method
presented above using MATLAB.

TABLE V

APPROXIMATELY-LINEAR-PHASE PM-GAUGE TEST RESULTS

Parameters Lfast(s,ε)

Case 1
120−108.8249εs+12(1.8137εs)2 − (1.8137εs)3

120+108.8249εs+12(1.8137εs)2 +(1.8137εs)3

Case 2
120−68.9954T0εs+12(1.1499εs)2 − (1.1499εs)3

120+68.9954T0εs+12(1.1499εs)2 +(1.1499εs)3

Param. SPMεmax εmaxπ Exact PMnom εmaxπ Err.
Case 1 0.3304 1.0380 π/3 = 1.0472 0.8785%
Case 2 0.1660 0.5216 π/6 = 0.5236 0.3909%

The third-order approximately-linear-phase PM-gauge
(30) does increase the difficulty in evaluating the SPM εmax

comparing to the previous two PM-gauge designs, but it
is insignificant, and in fact worthwhile comparing to the
simplicity and accuracy it provides in converting between
SPM and PM. It is also noted that εmaxT0 = εmaxπ/ωcg,nom

indicates how much transport delay the nominal system
can accommodates before onset of instability, which is
commonly known as the delay margin, which has been
proposed in the literature as a candidate for stability metrics
for NL systems. However, a practical method for assessing
the exact delay margin has been lacking. The method
developed here provides an analytical means to evaluate the
(almost) exact delay margin for a given nominal system.

IV. SUMMARY AND CONCLUSIONS

A. Summary

The main results of this paper can be summarized as
follows.

1) : Theorem 1 establishes a bijective relationship
between the Singular Perturbation Margin (SPM) εmax and
the phase margin (PM) of the nominal system with an
approximation error on the order of ε 2 for monotonic-lag
fast systems. In particular, the error will be zero if the gain
of the fast system is identically unity, independent of ε .

2) : Lemma 1 reveals the relationships between the
singular perturbation parameter ε , PM of the perturbed
system, SPM and PM of the nominal system, and the
phase of the fast system at gain crossover frequency of the
nominal system, which is an important result in its own right.



3) : As an application of Theorem 1, a singular
perturbation approach for time-domain PM assessment is
proposed and illustrated by examples. The examples include
design of PM-gauges and determination of SPM in the time
domain from the state equation of the perturbed system
consisting of the nominal and the PM-gauge systems.
The effectiveness of this method is demonstrated with a
zero-error PM-gauge design.

B. Remarks

1) : Relationship between SPM and PM of nominal
system

Theorem 1 establishes a bijective relationship between
the SPM and the PM of the nominal system, with an
approximation error on the order of ε 2, using a monotonic-
lag fast system. This relation not only makes it possible
to assess the phase margin of the nominal system in the
time-domain for LTI systems directly using a singular
perturbation approach, but most importantly it establishes
a basis for using SPM as a theoretically based, practically
measurable and backward compatible metric for stability
margins of LTV systems and NLTV systems.

2) : PM estimation error analysis
The PM estimation error is O(ε 2). Thus the error

increases as ε increases. When the nominal system has a
small PM, as shown Example 1 where PMnom is about 20◦,
the PM-gauge offers a result with very small error. When
the nominal system has a larger PM, the fast system will
need a larger εmax for its phase to reach the phase margin;
therefore, the error will increase, as demonstrated with
example 2. The O(ε 2) PM estimation error is due to the
non-unity gain Mfast(ωcg,nom) of the fast (PM-gauge) system
at ωcg,nom, which causes the ωcg,pt for the perturbed system
to deviate from ωcg,nom. Thus the error can be reduced by
using PM-gauge with unity gain for all ω (allpass filter)
that is independent of ε .

3) : Assessment of SPM
The first part of Section III offers a method to determine

exact SPM in the time-domain from the state equation for
LTI systems. For LTV and NL systems, general methods
for determining exact SPM is unlikely to exist; therefore
effective estimation methods should be developed in order
to use SPM as a practical stability metric. For LTV systems,
a recently developed differential algebraic spectral theory
[17]-[22] could be used to assess the SPM in a manner
similar to the aforementioned Chang transformation and
multi-time-scale decomposition for LTI systems. The LTV
SPM methods, once developed, could be extended to
NLTV systems by virtue of the equivalence of exponential
stability of an equilibrium state of a NL system and its
linearization thereof. For NL system (including LTV systems
as a special class), well-known Lyapunov function based
singular perturbation results (see, for instance, Theorems
11.3 and 11.4 in [11]) can be used to obtain conservative

estimate of SPM. In this latter approach, a recent result
on spectral Lyapunov function [23] would prove to be useful.
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