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Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. 
Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon.   
Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low 
propellant flow rates [1, 2]. The low flow rates (~10 mg/sec) and the temperature at which free flowing liquid 
bismuth exists (above 300°C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new 
type of sensor is required.  

The “hotspot” bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement 
by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can 
be determined from the “time of flight” of the thermal peak, [4, 5]. Previous research and testing has been 
concerned mainly with the generation of the thermal peak and it’s subsequent detection.   In this paper, we 
present design improvements to the sensor concept; and the results of testing conducted to verify the 
functionality of these improvements.  

A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the 
bismuth flow channel to keep the propellant in a liquid state.   The material must be compatible with bismuth 
and must be bonded to conductive elements to allow for conduction of current into the liquid metal and 
measurement of the temperature in the flow.  The new sensor requires fabrication techniques that will allow 
for a very small diameter flow chamber, which is required to produce useful measurements. Testing of 
various materials has revealed several that are potentially compatible with liquid bismuth.  Of primary 
concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected 
materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic 
body cannot expand so much as to cause cracks in the body or cause the bond between parts to delaminate. 
Those parts that will carry the current pulse must be electrically conductive while the sensor body must be an 
electrical insulator. Generally, the material choices—as well as the sensor design—must aid to preserve the 
integrity of the thermal feature to obtain accurate measurements.  The present aim is to also incorporate, into 
the sensor body, an active heating arrangement based on ceramic heater technology similar to that used in 
semiconductor manufacturing.   
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Figure 1.  3D CAD drawing of sensor body half, showing planned hardware placement 
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Improvements to a Flow Sensor for Liquid Bismuth-fed Hall
Thrusters

Kevin W. Bonds* and Kurt A. Polzin †

NASA-Marshall Space Flight Center, Huntsville, AL 35812

A prototype bismuth flow sensor that measures mass flow rate by thermally tagging a
fluid element and detecting the thermal feature downstream is presented. The design of this
sensor seeks to address the manufacturing and operations issues that arose during the
fabrication and implementation of previous versions of the sensor. A sensor body,
fabricated from Macor, was successfully bonded to the various other components that
comprise the sensor. Direct heating of the ceramic body is implemented to keep the bismuth
from losing heat within the sensor. This is achieved by bonding a heater to the body in such
a way that the heater is the fourth wall of the flow channel. Through several thermal cycles,
these bonds have exhibited no signs of degradation or failure. An optical system was
implemented to detect the light emission from the thermal feature, but the light emission
from the metal at these temperatures is very low in the detector system’s wavelength pass
band. Options are proposed to either address the optical detection issues or to retrofit the
sensor with a more conventional thermocouple measurement as was attempted in previous
iterations of the sensor.

Nomenclature
A =	 area (m2)
T =	 temperature (°K)
t =	 time (s)
λ =	 wavelength (µm)
σ =	 Stefan–Boltzmann constant (W/m2-K4)
ε =	 emissivity

I. Introduction

R
ecently, there has been significant interest in using bismuth metal as a propellant in Hall thrusters [1]. In
addition to considerable cost, weight, and space savings, bismuth appears to offer significant performance

advantages over Hall thrusters operating on xenon propellant [2]. Accurately quantifying the performance of a
bismuth-fed Hall thruster requires a very precise, real-time measure of the low propellant flow rates [1, 3]. The low
flow rates (~10 mg/sec) and the temperature at which bismuth melts and freely flows (above 300°C) preclude the
use of off-the-shelf flow sensing equipment [4]. The “hotspot” bismuth flow sensor, described in Refs. [1, 3-6], was
designed to address this deficiency. The sensor is designed to perform a flow rate measurement by measuring the
velocity of the fluid using a thermal tagging technique. A thermal feature, introduced into the flow using a current
pulse to Ohmically heat the fluid, is convected downstream of the heating location until it reaches a thermal
detector. Through calibration, the mass flow rate can be correlated to the “time of flight” of the thermal peak
between the locations of creation and detection [5].

While the present work is primarily concerned with sensing the flow rate of liquid bismuth, liquid gallium was
used for some testing described in this paper because it is easy to handle and is a liquid at near room temperature.
Bismuth has a melting point of 271°C and expands 3.32% in volume during solidification, while gallium has a
melting point of 29.6°C and expands 3.1% [7].
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Issues that arose in the fabrication and testing of previous versions of the sensor have guided our efforts to
improve upon the robustness and reliability of the sensor. The purpose of the present work is to demonstrate that a
robust, reliable flow sensor can be fabricated and used to measure bismuth flow rates. Several flow sensor body
candidate ceramic materials were tested for their compatibility with hot liquid bismuth. In addition, new bonding
agents were used to join the ceramic material, comprising the body of the sensor, with other materials required for
operation. Finally, a fiber-optic temperature detection system, previously discussed in Ref. [5], was implemented to
detect the thermal feature downstream of the heating location. Each of these subtopics is discussed within the body
of this paper. While a fully-operational sensor has yet to be demonstrated, design and testing aimed at quantifying
the performance of the new prototype sensor is described.

II. Hotspot Sensor Description
The principle of operation of the flow sensor is illustrated in Fig. 1 a. A pulse of thermal energy (derived from a

current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is tagged with a thermal
feature that is convected downstream by the flowing liquid metal. A downstream thermocouple or other temperature
measurement device records a ripple in the local temperature associated with the passing hot spot in the propellant
stream. By measuring the time between the upstream generation and downstream detection of the thermal feature,
the flow speed can be calculated using a time-of-flight analysis. This sequence of events is illustrated in Fig. 1b.
The spatial temperature distributions at two different times, t0 and t1, are conceptually illustrated. At time t0, current
is pulsed through the liquid and the temperature at the heating location locally spikes; the temperature at the
thermocouple location remains at the constant, equilibrium value. At some later time t1, the thermal feature that was
created at time t0 reaches the thermocouple location and a spike in the temperature profile is observed. This spike
will be somewhat smaller in peak temperature and broader in spatial extent because the thermal feature will diffuse
as it is convected downstream.

Figure 1. (a) Schematic illustrating the principle of operation using a thermocouple for peak
determination and (b) Conceptual evolution of the hotspot displacement inside the sensor.

The primary advantage of this technique is that is does not depend on an absolute measurement of temperature
but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally
generated, low-frequency thermal fluctuations. The hot spot in the upstream flow is generated by pulsing current
directly through the liquid metal; doing so exploits the intrinsic resistivity of the fluid and obviates the need for a
separate resistive heating element. In order for the hotspot sensor to provide useful results, the spatial integrity of
the hot spot must be maintained until it reaches the location of the thermal detector. The hot spot will tend to flatten
as it propagates, due to thermal diffusion. Therefore, the device must be designed such that the thermal diffusion
timescale is much longer than the convective timescale.

III. Materials Testing and Considerations
The sensor body is fabricated from a ceramic material, which must allow for active heating of the bismuth flow

channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded



to various elements to allow for connection to the rest of a flow system, conduction of current into the liquid metal,
and measurement of the temperature in the flow. The sensor must possess a small diameter flow channel to produce
useful measurements.

Testing of various materials has revealed several that are potentially compatible with liquid bismuth. This was
investigated by placing bismuth pellets (roughly 0.5-0.75 g) on small (roughly 2-cm square) samples of different
ceramics. The furnace temperature was then elevated to a peak of roughly 660°C – well above the melting
temperature of bismuth. The total time above 350°C was approximately 15 hrs. Samples tested included 96% and
99.5% purity alumina (Al2O3), aluminum nitride (AlN), silicon nitride (Si3N4), and boron nitride (BN). In addition
to these materials, the compatibility of bismuth with Macor (glass-mica ceramic) has already been learned through
previous testing [3,4]. It was found that the liquid bismuth did not ‘soak into’ the parent ceramic material in all
cases. After the bismuth cooled and solidified, it could easily be removed from the ceramic surface. Two sample
images of the surface obtained using a scanning electron microscope (SEM) are displayed in Figs. 2 and 3. The
small, bright points in each figure arise from tiny pieces of bismuth remaining on the surface after the bulk material
was removed. In Fig. 2, there are also several light-gray areas, and evaluation of these areas was conducted using an
energy dispersive spectrometer (EDS). The data obtained through both the SEM imagery and the EDS analysis
revealed that there was no significant degradation of the ceramic material and bismuth did not significantly penetrate
the surface of the materials mentioned above.

A concern in the fabrication and testing of a robust, working prototype is the compatibility of the selected
materials with one another. Specifically, the goal is to match the thermal expansion rates of the materials bonded to
the ceramic body to mitigate or eliminate the risk of material cracking or delamination during thermal cycling of the
sensor.

Figure 2. SEM image of 99.5% purity
	

Figure 3. SEM image of Si3N4, after
Al2O3, after exposure to molten bismuth. 	 exposure to molten bismuth.

IV. Flow Sensor Design and Fabrication

A. Design Considerations
The low volumetric flow rate (0.1-1.0 µL/sec) of the propellant requires a small flow chamber cross-sectional

area to maintain a high-enough flow speed to allow for useful “time of flight” measurements [5,8]. Such a small
flow chamber presents difficulties during machining and assembly of the sensor. Machinable ceramics tend to be
brittle, thermally insulating, and possess a low coefficient of thermal expansion. The brittle nature of the ceramics
requires control of the spindle speeds and feed rates during the machining phase and the implementation of
significant strain relief, especially of the external hardware bonded to the ceramic body, during the assembly and
testing phases. The low coefficient of thermal expansion makes it difficult to mate the ceramic body with materials
that have higher coefficients of thermal expansion, such as the metals that comprise the flow sensor fittings, piping,
and electrodes.



Figure 4. Rendering of the flow sensor design. Figure 5. Photograph of the assembled sensor.

The selection of bonding materials and potting compounds presents another problem in that the material must
survive the high temperature required to liquefy bismuth, but it also must survive the thermal expansion and
contraction cycles of the ceramic flow sensor and the other components being bonded to it. In addition, these
materials can come into contact with the molten bismuth and, like the ceramic body they must not interact with the
flowing metal.

B. Sensor Hardware
A rendering of the sensor is shown in Fig. 4 and the assembled sensor is shown photographically in Fig. 5. The

sensor body is fabricated from Macor, and programmable CNC machining is employed to give precision control
over the dimensions. While Macor was used for this flow sensor due to its machinability, future iterations could be
fabricated out of one of the many ceramic candidates tested above depending on the ruggedness desired and the
restrictions on the different coefficients of thermal expansion between individual parts of the sensor. The flow
channel was machined to a depth of 0.020” using a 0.031” diamond-coated endmill, resulting in a target cross-
sectional area of the flow chamber was 0.744 in2. A small, flat ceramic heater manufactured by Kyocera
Corporation is bonded to the flow sensor and used for active heating of the flow channel. To ensure the propellant
remains in the liquid phase, the ceramic heater is placed in direct contact with the flow. The design of the sensor is
such that one side of the flow chamber is left open during machining, allowing the heater to be bonded to the sensor
body to form the fourth side of the flow channel. A layer of epoxy (ceramic-based adhesive made by Aremco) of
uniform thickness and precise depth is applied to the Macor and then the heater is placed on the surface, bonding
them together. It is imperative that that epoxy is not squeezed into the flow chamber during the bonding process.
While a bit of thinning of the epoxy is expected during the process of pressing the two surfaces together, the epoxy-
layer was applied with a thickness of 4.5mils.

The electrodes used to introduce the ‘hotspot’ into the fluid and the fiber optic used to optically detect the
thermal feature downstream of the electrodes are both bonded to the sensor body perpendicular to the flow channel.
The electrodes enter in a plane parallel to the heater wall while the fiber is perpendicular to the heater surface. The
electrode channel was machined using a 0.020” diamond-coated, ball endmill while the hole for the bare fiber was
drilled with a #74 drill. The streamwise distance from the electrode channel to the fiber hole is 1 cm. The
electrodes are 0.016 inch diameter tungsten wire and the fiber is 400 µm multimode silica fiber. As with the heater,
these components were bonded to the ceramic using an alumina ceramic-based epoxy.

As a method of strain relief the ceramic body is suspended in a bolted cradle assembly. The cradle assembly is
attached to the ceramic body only by the propellant inlet and outlet tubing which is attached to the fitting through
welding. The small (0.062 in.) stainless steel tubing is bonded to the ceramic using the alumina ceramic-based
epoxy. The contact area of the flow sensor exposed to the much more thermally-conductive stainless steel tubing is
minimized by using such a small diameter tubing, restricting the heat losses from the system. The fittings, Swagelok
VCR glands and female VCR nuts, are tack-welded to the cradle assembly to permit easy installation and removal of
the feed lines without placing strain on the ceramic body.



The fiber to ceramic junction also required a method of strain relief. J-B Cold Weld epoxy was used at the base
of the junction to provide tensile strength and RTV silicon was used to build a flexible boot outside of the epoxy.
Both products are malleable enough during application to be applied without fear of damage to the fiber in the
process. The epoxy has, to date, withstood exposure to both hot bismuth and gallium, and it has proved to be useful
in fixing small leaks at the various material interfaces.

V. Optical System

During flow sensor operation the fiber is in direct contact with the fluid. This simplifies the calculations for
spectral radiance since the angular and directional distribution can be neglected and emissivity can be calculated as
the total hemispheric radiance for a 400 µm diameter spot for the given material at a given wavelength and
temperature. However the shape of the emissivity curves for both bismuth and gallium at the flow sensor operating
temperatures are not well known. In the absence of data on the topic assumptions must be made based on the
emissivity of a black body. The spectral radiance for a black body is the familiar [9]:

	

P = QeAT ସ
	

(1)

Using Wien’s law the wavelength of maximum light emission intensity for a given black body temperature is

	

 ௠axߣ
= 2898Tൗ
	

(2)

Wein’s law indicates that the wavelength corresponding to the maximum intensity of emitted radiation is
inversely proportional to the absolute temperature of the emitting surface. Consequently, as temperature increases
the wavelength decreases [10]. The peak wavelength for various blackbody temperatures is given in tabular form in
Table 1.

Table 1. Wavelength of peak intensity
for a given black body temperature.

(°C)	 (µm)
150	 6.85

200 6.12

250 5.54

300 5.06

350 4.65

400 4.30

Generally, emissivity is low for a highly reflective surface [11-13]. The materials in question are highly
reflective and little is known about the shape of their spectral radiance curves at various temperatures. Neither
material has been extensively studied as neither enjoys wide usage in industrial applications. Without emissivity
curve data it is difficult to estimate the amount of total photon energy that is being transmitted to the fiber. Further
complicating matters are the losses associated with fiber transmission and the inherent spectral response curve of the
photodetector.

Two different InGaAs photodiode based systems were tested to evaluate the feasibility of using an optical
system for peak temperature determination. One photodetector has a response to wavelengths in the 1.2-2.6 µm
range while the other operates in the 0.7-1.8 µm range. The 400 µm single-strand bare silica fiber has a spectral
response in the 0.4-2.2 µm range. Detection was attempted with both InGaAs detectors over a temperature range of
150-350°C for both bismuth and gallium. A type K stainless steel sheathed thermocouple was used for temperature
comparison. However, Table 1 indicates that the wavelength range for both detectors and silica fiber are all quite far
from the wavelength of peak emission for a blackbody at the temperatures tested. Consequently, the signal from the
photodiodes was dominated by noise and not very useful



VI. Current Status and Future Testing
The primary difficulty that has arisen in the present prototype flow sensor concerns the ability to sample the

hotspot temperature accurately using the optical technique. Stated simply, the intensity of the light emitted from
bismuth and gallium is too low in the pass-band of our optical detection system to permit discernment of the hot
spot. This is complicated by the emissivity of both materials being low at these temperatures; and the emissivity of
bismuth shifting as it oxidizes. One possible option is to redesign the detection hardware so that the wavelength
pass band permits the passage of longer wavelength light. Another possible option is to dope the end of the current
fiber in a material that will emit more light in the system’s pass band, serving as an intermediary between the
bismuth or gallium and the detection system.

Another option is to construct a new sensor that directly measures temperature using a thermocouple. Problems
were encountered with the thermocouple measurement in previous iterations of the flow sensor primarily because
the probe had to be inserted into the flow channel through what was, essentially, a blind hole. This made it
extraordinarily difficult to align the thermocouple within the flow channel. In the present iteration, however, the
flow channel is initially exposed, which may make it significantly easier to install a thermocouple into the setup.
One additional issue encountered when using thermocouples was the relatively slow response time associated with
thermocouple data acquisition systems. This served to limit the resolution on the flow rate measurement, but since
an absolute temperature measurement is unimportant for the sensor, it may be possible to amplify the thermocouple
signal and then use standard (and faster) data acquisition systems.

Once a reliable method to measure the temperature has been validated, the flow sensor will be calibrated to
correlate the time of flight of the hot spot pulse to the flow rate. This will be performed by expressing the liquid
metal onto a scale to directly measure the mass flow rate as a function of time while simultaneously pulsing the
system many times during the calibration to obtain time of flight data.

VII. Conclusion
We have presented a new prototype hotspot bismuth flow sensor that seeks to address issues that had been

associated with the manufacturability and operability of previous iterations of the device. Many ceramics were
tested for their compatibility with hot, liquid bismuth and showed resistance to the molten liquid. The sensor body
was fabricated from the machinable ceramic Macor, which was successfully mated to the other parts of the sensor
without leaks. All materials have remained bonded during several thermal cycles with no sign of degradation or loss
in joint integrity. Direct heating has been implemented to minimize the heat loss of the fluid while it passes through
the sensor. An optical temperature detection system was implemented in the present design to monitor the hot spot
as it was convected downstream, but at present this has proven inadequate owing to the low emission of light in the
detector system’s wavelength pass band. Options to address this issue include attempting to shift the emission into
the pass band of the optical detection system or retrofitting the sensor with a thermocouple measurement in a
manner similar to that attempted in previous iterations.
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