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ABSTRACT.  Safe-life and damage-tolerant design philosophies of high performance structures 
have driven the development of various methods to evaluate nondestructively the accumulation of 
damage in such structures resulting from cyclic loading.  Although many techniques have proven 
useful, none has been able to provide an unambiguous, quantitative assessment of damage 
accumulation at each stage of fatigue from the virgin state to fracture.  A method based on nonlinear 
acoustics is shown to provide such a means to assess the state of metal fatigue.  The salient features 
of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the 
interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that 
predictably evolve during the metal fatigue process.  The interaction is quantified by the material 
(acoustic) nonlinearity parameter β extracted from acoustic harmonic generation measurements.  The 
β parameters typically increase monotonically by several hundred percent over the fatigue life of the 
metal, thus providing a unique measure of the state of fatigue.  Application of the model to aluminum 
alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using 
different loading conditions yields good agreement between theory and experiment.  Application of 
the model and measurement technique to the on-site inspection of steam turbine blades is discussed.    
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INTRODUCTION 
 
 One of the longstanding goals of nondestructive evaluation has been to develop a 
quantitative means of assessing the state of metal fatigue and, hence, the remaining life of 
the material.   Over the last several decades a number of techniques have been developed, 
but none of them has been able to provide a quantitative, unambiguous assessment of the 
state of fatigue from the virgin state to fracture.  We show here that nonlinear acoustics 
offers great promise as a means of achieving this longstanding goal. 
 Nonlinear acoustics as a scientific discipline spans a range of physical 
phenomena, but we consider here only that phenomena associated with acoustic harmonic 
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generation.  The first experimental evidence of acoustic harmonic generation in solids 
was reported in 1963 independently by Breazeale and Thompson [1] and by Gedroits and 
Krasilnikov [2].  The harmonic generation in their studies resulted from elastic 
nonlinearity in their samples. In 1965 Hikata, Chick, and Elbaum [3] showed that one 
could also obtain considerable acoustic harmonic generation from large densities of 
single dislocations (dislocation monopoles) in materials.  In 1994 Cantrell and Yost [4] 
showed that substantial acoustic harmonic generation could be obtained from dislocation 
dipoles generated during plastic deformation and fatigue.  The first studies of harmonic 
generation from fatigued materials per se were reported by Yermilin et al. [5] in 1973 and 
by Buck [6] in 1976.  The first analytical model of harmonic generation from cracks was 
reported by Richardson [7] in 1979.    
 Over the last several years bulk wave measurements of the nonlinearity 
parameter, a quantitative measure of acoustic harmonic generation, were reported by Na, 
Cantrell, and Yost [8] for stainless steel, Frouin et al. [9] for Ti-6Al-4V, Cantrell and 
Yost [10] for AA2024, and Kim et al. [11] for IN100 nickel-base superalloy.   The most 
significant findings of these four bulk wave studies are (1) the magnitude of the 
nonlinearity parameter increases monotonically for all materials measured as a function 
of percent full fatigue life from the virgin state to fracture (yielding a one-to-one 
relationship between the value of the nonlinearity parameter and the state of fatigue) and 
(2) the increase in the value of the nonlinearity parameter is typically of the order of 
several hundred percent. 
 In view of the findings of the four bulk wave studies, our research objectives over 
the last several years have been (1) to develop a physics-based model of the nonlinear 
interactions of acoustic waves with fatigue-generated substructures that predictably 
evolve during the fatigue process and (2) to compare model predictions to experimental 
measurements to establish the physical basis for developing a reliable fatigue-monitoring 
system using acoustic harmonic generation.   We present a summary of the results 
obtained to date beginning with a discussion of acoustic harmonic generation from the 
most prominent sources of nonlinearity in fatigued metals along with their quantitative 
measures – the nonlinearity parameters.       
 
ACOUSTIC HARMONIC GENERATION IN FATIGUED METALS 
 
 Let us consider launching a purely sinusoidal acoustic wave into a solid sample 
having parallel opposite faces by means of a narrowband transducer attached to one of 
the sample faces.  As the wave propagates through the material, the wave will become 
distorted as the result of a number of sources of nonlinearity within the material.  A 
Fourier transform of the signal received at the opposite face of the sample would reveal 
that the received signal is composed not only of the fundamental wave launched into the 
solid but also harmonic components of the fundamental wave as the result of waveform 
distortion generated by the various nonlinear sources within the material.  One source of 
nonlinearity common to all materials is that from elastic nonlinearity (lattice 
anharmonicity).  
 
 
 



Elastic Nonlinearity       
 
 A quantitative measure of elastic nonlinearity may be obtained from the nonlinear 
Hooke’s Law  
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where σ is the stress, u is the particle displacement, a is the spatial coordinate, and A2

e 
and A3

e are, respectively, the second and third-order Huang elastic coefficients.  The 
parameter βe is the elastic nonlinearity parameter defined from the last equality in Eq.(1) 
as 
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 A quantitative measurement of βe may be obtained by substituting Eq.(1) into 
Newton’s Law, 
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ρ0(∂
2u /∂t2) = ∂σ /∂a , where ρ0 is the mass density and t is time.  We 

obtain the nonlinear wave equation, 
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∂2u /∂t2 = c2[1−βe(∂u /∂a)](∂2u /∂a2).  A solution 
to the nonlinear wave equation, assuming the input waveform u = u1cos(ωt) at a = 0, is u 
= u0 +u1cos(ωt) + u2sin2(ωt – ka) + ···, where u2 = (1/8)k2u1

2aβe.  We thus find from the 
last expression that the elastic nonlinearity parameter βe can be determined from 
measurements of the fundamental and second-harmonic amplitudes u1 and u2, 
respectively, the distance of wave propagation into the material a, and the wave number k 
as   
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2u1
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 To estimate the contribution of βe to the variation in the nonlinearity parameter 
measured in fatigued metals, we write [12] 
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where A4

e is the fourth order Huang elastic coefficient and σ1 is the internal or residual 
stress in the solid.  For typical values of the Huang coefficients and maximum values of 
the internal stress resulting from plastic deformation and fatigue, (Δβe/βe) is of the order 
of one percent or less.  This value is orders of magnitude less than the variation of the 
nonlinearity parameters measured in fatigued metals.  We must, therefore, consider other 
sources of nonlinearity in fatigued metals to explain the measured variation.  
 
Nonlinearity from Dislocation Monopoles 
 
 Cyclic loading in metals continuously generates large numbers of dislocations 
(both edge and screw dislocations) throughout the fatigue life.  Screw dislocations 
generally annihilate as the result of cross-slip and we are left with a preponderance of 
edge dislocations in fatigued metals. A typical edge dislocation is shown in Fig. 1 for a 
simple cubic lattice where the filled circles represent atomic sites. A positive edge 
dislocation may be viewed as being formed by inserting an extra half-plane of atoms into  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1.  Edge dislocations in a simple cubic lattice. 
 
the top half of the lattice as shown in Fig. 1a.  The terminus of the extra half-plane of 
atoms defines the dislocation line and the symbol for a positive edge dislocation is the 
inverted “T”.  A negative edge dislocation, denoted by the upright “T”, may be viewed as 
being formed by inserting the extra half-plane of atoms into the bottom half of the lattice 
as shown in Fig. 1b. 
 In 1965 Hikata, Chick, and Elbaum [3] developed a model for obtaining the 
nonlinearity parameter for single dislocations (monopoles) by assuming that the 
dislocations bow out into a smooth arc between two pinning points separated by the 
distance 2L (the loop length) under the influence of an applied or internal stress σ1.  They 
obtain that the dislocation monopole nonlinearity parameter 
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βhce
mp  is given by 
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where Λmp is the monopole dislocation density, G is the shear modulus, b is the 
magnitude of the Burgers vector, Ω and R are strain and stress conversion factors, and 
|σ1| is the magnitude of the longitudinal internal stress at the site of the dislocation.  
Although the model of Hikata, Chick, and Elbaum has been used successfully for four 
decades, the model does not account for the effects of lattice resistive stresses on the 
bowing of the dislocations.  
 A more realistic model of dislocation bowing has been recently derived by 
Cantrell [13] by assuming that in moving under the influence of an applied or internal 
stress the dislocations encounter periodic lattice resistive shear stresses τlattice given by 
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τ lattice = −τP−N sin[2πξ(y) /als], where τP-N is the Peierls-Nabarro barrier stress, als is the 
lattice spacing, and ξ(y) is the dislocation displacement.  He obtains that the new 
dislocation monopole nonlinearity parameter βmp is given as [13] 
 
 

(a) Positive edge dislocation (b) Negative edge dislocation 
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where σampl is the stress amplitude of the acoustic wave launched into the material and B1 
is a constant.  For large acoustic stress amplitudes Eq.(6) reduces to βmp  ≈ βhce

mp , the 
results obtained by Hikata, Chick, and Elbaum [3].  However, at low stress amplitudes 
βmp exhibits a Bessel function dependence on σampl.  The damped oscillatory dependence 
of βmp on σampl predicted by Eq.(6) has been confirmed experimentally for single crystal 
Al[110] by Yost [14].   
 The damped oscillatory dependence of βmp on σampl disappears when Eq.(6) is 
applied to polycrystalline solids with randomly oriented grains.  However, a strong hook-
like behavior occurs at very low stress wave amplitudes.  The hook-like behavior has 
been reported by Barnard [15] who obtained experimental measurements of the 
nonlinearity parameters of four polycrystalline Cu-Al alloys as a function of the wave 
displacement amplitude (linearly proportional to the stress amplitude).  The experimental 
results of Barnard [15] are shown in Fig. 2.  The hook-like behavior is often called the 
Buck hook in honor of the late Otto Buck.  We see here that the Buck hook is a real 
phenomenon associated with dislocation dynamics at low acoustic drive amplitudes.    
 
Nonlinearity from Dislocation Dipoles 
 
 A third source of nonlinearity in fatigued materials is obtained by noting that 
cyclic loading forces the dislocations to move to–and-fro along their glide paths denoted  
 
 

                              
    
FIGURE 2. Graph of nonlinearity parameters of four Cu-Al alloys plotted as a function of wave 
displacement amplitude (linearly proportional to stress amplitude σampl) (from ref. 15). 
 



 
 
 
 
 
 
 
 
FIGURE 3.  Dislocation dipole with dipole height h. 
 
by the horizontal dotted lines in Fig. 3.  When two dislocation of opposite polarity move 
sufficiently close to each other, they become trapped in each other’s stress field and form 
a stable dislocation pair known as a dislocation dipole.  The distance between the glide 
planes of the dipole is known as the dipole height h.  Cantrell [12] has shown that the 
dislocation dipole nonlinearity parameter is obtained as   
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βdp = [16π 2ΩR2Λdph3(1−ν )2(A2
e)2]/(G2b)    (7) 

 
where Λdp is the dipole density and ν is the Poisson ratio.  We note that the magnitude of 
the internal stress at the site of the dislocation does not enter into Eq.(7), unlike the 
equation for the monopole nonlinearity parameter. 
 
SELF-ORGANIZATION OF DISLOCATION SUBSTRUCTURES 
   
 As fatigue continues, the increasing numbers of dislocation dipoles lead to a self-
organization of the dipoles into specific substructures that depend on the slip character of 
the material.  The slip character is determined by several material properties including the 
stacking fault energy, the magnitude of the shear modulus, the magnitude of the Burgers 
vector, and the short-range order in the material.  In metals there are two distinct slip 
characters – wavy slip and planar slip.  We first consider wavy slip metals. 
 
Wavy Slip Dislocation Substructures   
 
 The first substructure into which dipoles organize in wavy slip metals is the vein 
structure illustrated in Fig. 4.  Fig. 4a is a schematic of the cross-section of the vein  
 
 

                                    
 
FIGURE 4.  Vein structure in wavy slip metals: (a) Schematic of vein cross section.  (b) TEM micrograph 
(longitudinal view) (from ref. 16). 
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 FIGURE 5.  PSB structure in wavy slip metals: (a) Schematic of dipole arrangements (from ref. 16).  (b) 
TEM micrograph (from ref. 16). 
 
structure.  We see that the vein structure consists primarily of a dense array of dipoles 
both of the interstitial type (extra half-plane of each dislocation intersects the glide plane 
of the other dislocation) and the vacancy type (extra half-plane of each dislocation does 
not intersect the glide plane of the other).  Fig. 4b shows a transmission electron 
micrograph of vein structure in single crystal Cu (longitudinal view) obtained by Jin [16].   
The dark regions are the vein structures.  The light regions between the vein structures 
are relatively dislocation-free regions called channels.  For metals with high stacking 
fault energies such as aluminum and many aluminum alloys the “vein” or matrix 
structure is cellular rather than vein-like. 
 With further cyclic loading both the volume fraction of vein structure and the 
dislocation density in the veins increase until a critical value of the dislocation density is 
attained that produces an elastic instability in the vein structure.  The elastic instability 
drives the transformation of the vein structure into the more stable persistent slip band 
(PSB) structure shown in Fig. 5.   Fig. 5a is a schematic of the PSB structure.  It is seen  
that the PSB has a ladder-like morphology with the rungs (also called hedges) of the 
ladder consisting of linear arrays of dipoles.  Fig. 5b shows a transmission electron 
micrograph of PSBs in single crystal Cu obtained by Jin [16].  The hedges are the dark 
rungs on the ladder and the light regions between the hedges are channel regions 
consisting of dislocation monopoles roughly two order of magnitude less dense than the 
dislocations in the hedges.  

We conclude that dislocation dipoles and monopoles are the basic building blocks 
of the veins and persistent slip bands generated during fatigue of wavy slip metals.  The 
dislocation dipoles account for the preponderance of dislocation configurations generated 
during fatigue.  The dislocation monopoles dominate the channel regions of the PSBs and 
account for the observed large plastic strains produced in PSBs under load.   
 
Planar Slip Dislocation Substructures 
 
 The first dislocation substructures generated in planar slip metals consist of 
dislocations arranged in thin, linear bands known as planar slip bands.  Fig. 6a is a 
schematic of a planar slip band.  We see that the planar slip bands are composed of linear 
arrays of dislocation dipoles, as well as monopoles.  Fig. 6b shows a transmission 
electron micrograph of planar slip bands in α-brass obtained by Lukás and Klesnil [17].  
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FIGURE 6.  Planar slip bands and persistent Luders (PLBs) bands in planar slip metals:  (a) Schematic of 
planar slip bands.  (b). TEM micrograph showing planar slip bands (long thin lines) and PLBs (large, dark 
patches) in α-brass (from ref. 17).  
 
The dark, thin lines are the planar slip bands.  The large, dark regions in Fig. 6b are dense 
arrays of planar slip bands known as persistent Luders bands (PLBs).  The PLBs are  
somewhat analogous evolutionarily to the PSBs of wavy slip metals and the persistent 
slip bands are somewhat analogous to the vein structure of wavy slip metals. 
 
 
SUBSTRUCTURAL EVOLUTION, CRACK PROPAGATION, AND RELATION 
TO NONLINEARITY PARAMETERS IN WAVY SLIP METALS 
 
Elastic-Plastic Nonlinearity 
 
 We have established that the basic building blocks of the veins and PSBs 
generated in wavy slip metals during fatigue are dislocation dipoles and monopoles.  
Although dipoles and monopoles also serve as basic building blocks of the planar slip 
bands and PLBs generated in planar slip metals, we postpone discussion of planar slip 
metals until we consider harmonic generation in wavy slip metals in more detail.   

We have identified three sources of harmonic generation in fatigued wavy slip 
metals and three corresponding nonlinearity parameters – the elastic nonlinearity 
parameter βe and two plastic ones, the monopole nonlinearity parameter βmp and the 
dipole nonlinearity parameter βdp.  Contrary to what one might expect, however, the total 
elastic-plastic nonlinearity parameter βe-p is not equal to the simple sum of βe, βmp, and 
βdp, but rather is given by [12] 
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where fmp is the volume fraction of veins and PSBs containing monopoles, fdp is the 
volume fraction of veins and PSBs containing dipoles, 
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It is important to note that fmp and fdp increase monotonically with advancing states of 
fatigue and make the dominant contributions to the variation in the elastic-plastic 
nonlinearity parameter as a function of percent fatigue life. 
 Eq.(8) was derived under the assumption that the fatigue damage is distributed 
uniformly throughout the material.  However, the fatigue damage is generally quite 
localized.  Let VW represent the volume of material swept out by the ultrasonic wave in 
passing through the material and let VF represent that portion of the total volume of 
fatigue damage contained in VW.  We define the wave interaction factor fWI  as fWI = 
VF/VW.  Using this definition of the wave interaction factor, Cantrell [18] has shown that 
the effective elastic-plastic nonlinearity parameter for materials with localized fatigue 
damage is more appropriately given by 
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The wave interaction factor can be calculated as [18] 
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fWI = ( f mpΓmp + f dpΓdp)−1[(c0 /cF )
2 −1]   (12) 

 
where c0 is the phase velocity measured in the virgin state and cF is the phase velocity 
measured in the fatigue state.  The calculations for fWI become more accurate at the 
advanced states of fatigue as the dislocation substructures begin to dominate sample 
inhomogeneity with regard to measurements of cF.  We also note that fWI serves as a 
scaling or normalizing factor that somewhat adjusts for errors in assigning values to the 
dislocation density, loop length, and dipole height. 
 
Crack Nonlinearity 
 
 A fourth source of nonlinearity in fatigued metals is that of crack initiation and 
growth.  Crack initiation generally occurs upon formation of persistent slip bands in wavy 
slip metals and can occur as early as 0.1% of the total fatigue life.  However, the cracks 
do not become measurable using bulk wave harmonic generation until the cracks have 
grown to a size where the Paris-Erdogan Law applies (typically 80-95% fatigue life for 
high cycle fatigue).  Cantrell [19] has applied the Paris-Erdogan Law [20] of crack 
propagation to the Nazarov-Sutin [21] crack nonlinearity model to obtain the crack 
growth nonlinearity parameter βcrk as 
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where 
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a1 = Bσmax /K1c       ,      
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a2 = (n − 2)Ntotal A(BΔσ )
n /2  ,  (14) 

 
Ccrk is the crack concentration, Ntotal is the number of fatigue cycles to failure, K1c is the 
fracture toughness, f is the fraction of fatigue life, Δσ is the applied stress range, B is the 
crack geometry factor, and A and n are experimentally determined material-dependent 
parameters. 
 
Total Nonlinearity Parameter 
 
 The total nonlinearity parameter βtotal is the sum of the elastic-plastic nonlinearity 
parameter and the crack growth nonlinearity parameter 
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β total = βe= p + βcrk  .   (15) 
 
However, before applying the model equations to progressive fatigue damage it is 
essential to have a detailed knowledge of the volume fractions of veins and persistent slip 
bands generated in wavy slip metals as a function of the percent fatigue life of the metal.  
This knowledge allows the calculation of the volume fractions of dislocation monopoles 
fmp and dipoles fdp that appear directly in the model equations.   
 Grobstein et al. [22] have published extensive data on the evolution of veins and 
persistent slip bands from the virgin state to near fracture on specimens of polycrystalline 
pure Ni subjected to a variety of loading conditions.  However, similarly comprehensive 
data for other metals are not generally available in the literature.  We thus make the 
critical assumption that the evolution of veins and persistent slip bands obtained for 
prototypical wavy slip pure Ni is representative of all wavy slip metals with appropriate 
adjustments to account for the effects of alloying elements and microstructure.  This 
assumption has been tested on two wavy slip alloys. 
 
APPLICATION OF MODEL TO FATIGUED METALS 
 
 Fatigue experiments were performed on specimens of aluminum alloy 2024-T4 
and 410Cb stainless steel using ASTM standard cylindrical “dog-bone” specimens 
fatigue in uniaxial, stress-controlled loading with an R-value (minimum load/maximum 
load) of zero.  Harmonic generation measurements were taken on samples cut from the 
gauge section of the specimens after fatiguing.  Different specimens were used for each 
targeted number of fatigue cycles. 
 A plot of the nonlinearity parameter as a function of the percent full fatigue life of 
AA2024-T4 (276MPa loading) is shown in Fig. 7.  The solid line is the theoretical curve 
obtained from the model equations, using the substructural evolutionary data of Grobstein 
et al. [22].  The filled circles are the experimental data points measured by moving the 
transducer to different positions on the samples to obtain the maximum values of the 
nonlinearity parameter.  The agreement between theory and experiment is excellent.  

A plot of the nonlinearity parameter as a function of the percent full fatigue life of 
410Cb stainless steel is shown in Fig. 8.  Again, the solid line is the theoretical curve 
obtained from the model equations, using the substructural evolutionary data of Grobstein  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7.  Graph of nonlinearity parameter of aluminum alloy 2024-T4 fatigued in stress-controlled 
loading at 276MPa plotted as a function of percent full fatigue life. 
 
et al. [22].  The filled circles are the experimental data points.  We note that there is 
considerably more scatter in the data points than was obtained for AA2024-T4.  This is in  
large part due to the fact that the transducer was not moved to various positions on the 
sample surface to obtain the maximum values of βtotal.  All measurements were taken 
along the cylindrical axes of the samples.  Nonetheless, the overall agreement between 
theory and experiment is good. 

Following the data taken on 410Cb stainless steel, a beta (nonlinearity parameter) 
scan was performed on a retired-for-cause steam turbine blade (also made of 410Cb  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 8. Graph of nonlinearity parameter of 410Cb stainless steel fatigued in stress-controlled loading 
at 551MPa plotted as a function of percent full fatigue life.  
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FIGURE 9.  Beta scan of retired-for-cause steam turbine blade showing regions of critical fatigue damage 
where β  > 135.  
 
 
stainless steel) obtained from Dominion Power Corporation.   The scan, shown in Fig. 9, 
was performed in the “boss” area of the  blade and  revealed regions of critical fatigue 
damage where the nonlinearity parameter was measured to be greater than 135.  
Following the beta scan, beta measurements were taken during an on-site inspection at 
one of Dominion Power Corporation’s electrical generating facilities.  A β-value of 
roughly 150, indicating critical fatigue damage, was measured for one of the turbine 
blades.  However, the blade was not replaced, because none of the other NDI techniques 
revealed such critical damage.  The catastrophic failure of that blade several months later 
resulted in major damage to the turbine housing.  Dominion Power now uses beta 
measurements routinely as part of their inspection toolkit.  
 
NONLINEARITY PARAMETERS FOR PLANAR SLIP METALS 
 
 It was pointed out in the above discussion on the substructural evolution of planar 
slip metals that the persistent Luders bands (PLBs) are somewhat analogous 
evolutionarily to the persistent slip bands (PSBs) of wavy slip metals and that the 
persistent slip bands are somewhat analogous to the vein structure of wavy slip metals.  
More importantly, both the PLBs and the planar slip bands are composed of dislocation 
dipoles and monopoles that serve as basic building blocks of the planar slip substructures.  
This suggests that the nonlinearity parameter model developed for wavy slip metals may 
in fact apply to planar slip metals as well.  Further evidence that this may be the case is 
furnished by Hong and Laird [23] who show that for the planar slip Cu-Al alloys 
composed of wavy slip Cu base metal the total fatigue lives are related as NPS = NWS/fPSB 
where NPS is the number of cycles to failure for the planar slip alloy, NWS is the number of 
cycles to failure for the wavy slip metal of which the planar slip alloy is composed, and  
fPSB is the volume fraction of PSBs for the base metal at failure. 
 Encouraged by these results, we have applied the model developed for wavy slip 
metals to planar slip IN100 nickel-base superalloy [24].   The results are shown in  Fig. 
10 where the  normalized  nonlinearity  parameter is  plotted as a function of the  percent 
full fatigue life of the metal.  The solid line is the theoretical curve obtained from the  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 10. Graph of nonlinearity parameter of IN100 fatigued in strain-controlled loading at 0.48% 
plotted as a function of percent full fatigue life. 
 
present model and the filled circles are experimental data points taken from the paper by 
Kim et al. [11].  Again, the agreement between theory and experiment is quite good and   
indicates that the present model, although originally developed for wavy slip metals, may 
in fact be applicable to a wider variety of metals than originally intended.  The wider 
application may be due to the somewhat generic nature of the model in relating the 
nonlinearity parameters to the fundamental dislocation dipole and monopole building 
blocks of the evolving fatigue-generated substructures.   
 
SURFACE ACOUSTIC WAVE MEASUREMENTS 
       
   Since most fatigue damage is manifested near the surface of materials, it is often 
assumed that surface acoustic wave (SAW) measurements of the nonlinearity parameters 
would provide the most expedient and efficient means of assessing accumulated fatigue 
damage.  However, critical fatigue damage is not always first manifested at the surface.  
In many cases, especially for “dirty” alloys, critical damage occurs in the bulk of the 
material at inclusions, grain boundaries, and at interior cracks produced in the bulk 
during materials processing.  For such cases SAW measurements would not detect such 
critical damage.   
 Additionally, the appearance of linear arrays of cracks along the surface wave 
propagation path affects the SAW β measurements differently for wavy slip and planar 
slip metals.  For planar slip metals the cracks initiate late in the fatigue life, generally 
only after the PLBs completely fill the gauge section of the specimen during cyclic 
loading.  In such cases the evolution of the dislocation substructures dominates the β 
measurements.  Such a situation has been shown by Herrmann et al. [25] in a plot of both 
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bulk and SAW measurements of β as a function of percent fatigue life of IN100 nickel-
base superalloy.  The bulk and SAW measurements are in agreement until roughly 85% 
of the fatigue life, where the β-value obtained from SAW measurements is dramatically 
reduced.  
 For wavy slip metals microcracks initiate soon after the appearance of PSBs (as 
early as 0.1% of the fatigue) and make significant contributions to SAW measurements 
for the remainder of the fatigue life.  The contributions are documented by Ogi, Hirao, 
and Aoki [26] who plot the second harmonic amplitude divided by the fundamental 
amplitude as a function of percent fatigue life for wavy slip low carbon steel.  They 
obtain two peaks in the curve at roughly 60% and 85% of the fatigue life as the result of 
cracks interacting with the fatigue-generated dislocation substructures.  The peaks 
introduce an ambiguity in the assessment of the state of fatigue by destroying the one-to-
one relationship between the value of the nonlinearity parameter and the percent full 
fatigue life of the material. 
 
CONCLUSION 
 
 In accordance with the research objectives stated in the introduction we (1) have 
developed an experimentally validated physics-based model of the nonlinearity parameter 
as a function of the percent fatigue life of the metal and (2) have applied the model to 
develop a successful fatigue monitoring system as demonstrated during field inspections 
at Dominion Power Corporation.  But the research is far from complete.  Future research 
must necessarily focus on developing new, user-friendly, sensor technologies that allow 
measurements in geometrically confined/constrained environments.  In addition, it is 
essential to continue to establish the scientific underpinnings for the emerging 
technologies via model improvements and experimental measurements for a variety of 
metals that also includes the influences of the environment, including environmentally-
driven material degradation, on the nonlinearity parameters.    
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