Preliminary LISA Telescope Spacer Design

J. Livas, P. Arsenovic, K. Castellucci, J. Generie, J. Howard, R.T. Stebbins NASA/Goddard Space Flight Center, USA J. Sanjuan, A. Preston, L. Williams, G. Mueller

University of Florida, Gainesville, USA

Abstract

ADSTRACT The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of ~ 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the primary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the exercised temperature distribution, layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

- 5 x 10⁶ km

entric orbit at 1 AU

nonitor the

Ta LO

LISA Orbit

LOTA

Short arm $(d_1+d_2) + \log \operatorname{arm} (d_{12}) = d_{ct}$

LISA uses a 3-part distan distance between proof m

In general, the compensated sensitivities of an off axis system for SM motion are 4x greater than an equivalent on-axis one, but the axial SM motion is 16x greater due to the off-axis nature of the system

axis motion (only) of the compensato

ced in a helio

The LISA

Objective

evelop and test a mechanical design for the main spacer element between primary and secondary mirrors lerance analysis identifies the MT-M2 spacing as critical irrors and telescope are not part of the scope; just the spacer

Overview of the Mission

The LISA mission studies gravitational waves by detecting the strain they produce with a laser interferometer that measures the strain they produce with a laser interferometer that measures the distance between pairs of freely floating proof masses arranged in a 5 x 10⁶ km equilateral triangle constellation that orbits the sun 20° behind Earth's orbit. The plane of the triangle is angled at 60° with respect to the ecliptic. Each of the three spacecraft are in independent orbit around the sun, so no station-keeping is required to keep the constellation together. The proof masses are isolated from disturbances by using drag-free estellite technology that keeps a spacecraft centered around the proof mass as it moves.

Direct GW detectors like LISA measure the changes in distance between inertial reference particles caused by passing GWs.

Telescope Stability Requirements

- The LISA telescope is for metrology *not* imaging: pathlength stability is key - Two main requirements -1) Wavefront error is </30 – driven by <u>the system-</u>level Strehl ratio requirement of λ/20 2) length stability $S_z^{1/2}(f) \le 1pm/\sqrt{Hz}\sqrt{1+\left(\frac{2.8mHz}{f}\right)^4}$ $30\mu Hz < f < 0.1Hz$

On-axis design used initially because a tolerance analysis was available; off-axis design has tighter requirements
 Main emphasis in this work is on a demonstration of the length stability requirement

Two versions, same prescription
 Not a comparison between designs, but rather the same design implemented on- vs off-axis

Ratio of RMS WFE off-axis to on-axis

Y Z rX rY rZ 6.02 0.79 6.06 4.16 1.97 3.69 16.13 3.70 4.16 0.0023

On-axis tolerance analysis

Materials and Design

Machanical	Milletric (Impedial)	Billionis .	(internal)	
Density	Clenks: (1bft*)	3.1	(10.5)	Range as high as 4.1
Poront v	5 (%)		(0)	Process dependent: can be a few %
Color		Mack		
Flexurel Obrangh	MPs (b/s/z10)	350	(19)	
Elesic Medulus	(Pe (bhris10 [*])	410	(58.5)	
Shoer Medulus	GPu (b/k/x10*)	-	-	
Rulk Modulas	GPs (balaria 10 th)	-		1
Poleom's Rotto	-	0.14	(0.14)	
Compressive Birengt Is	MPs (b/h**x10*)	3800	(984)	
Hardnass	Kpines ²	2000		Second only to diamond (Moh scale)
Frecture Toughnees Kg	MPyrm**	4.8		
Maximum Use Temperature (no losd)	*C(1F)	1850	(2000)	
Thermal				1
Thermal Conductivity	Warr'K (BTU-Int'-In-F)	120	(630)	Range: 100-200 W/m/K
Coefficient of Thermol Excoration	10*70(10*75)	4.0	(2.2)	(Room Temperature)
Oped Rc Heet	"Kg*K (Built+*P)	750	(0.16)	
Restrict				
Distuctric Obrang th	po-kvelmen (volisetnil)		samiconductor	
Volume Residently	aturnan	10"-10"	depart dependent	

Thermal Modeling

Thermal Model to **Determine Test Conditions**

- ΔT=1.5° -719 ΔT=~ 0°
- Basic geometry is Astrium's MTR is Winor modifications
- Added second stre

Other mechanical eleme be strictly correct but a boundary conditions ints and e ed to set so

Comparison of Cylinder and Quadpod

inderstanding	115A Strongback	-11,2 to -7,4	-11,4 to -7.9	-4
-	Optioni Banch	-6.1 to 7.5	6.3 to 7.3	-36
datalle may not	Dista	0 10 36.5	-0.4 to 35.4	-2
ustans may not				_

Cylinder Dr

Results (See J. Sanjuan, poster H03-061-10 for more details)

- Observed Michelson Fringe displacements agree with expected values Fringes move slowly, so stability is acceptable
- Fringes move slowly, so stability is acceptable
 Visibility is >> 60%
 Coefficient of Thermal Expansion (CTE) slightly less than vendor's reported num
 Encouraging: no unusual effects from joints or bonding
 Next step is to construct a Fabry-Perot cavity and lock a laser for stability
 measurement by comparison to a conventional cavity-stabilized laser

Summary and Conclusions

 Silicon Carbide is a viable candidate for a LISA telescope metering structure · Care must be taken when choosing a vendor

ACKNOWLEDGEMENTS: We wish to thank Pete Bender for illuminating discussions. This work is supported in part by NASA contract 00069955.

SiC Pa fore surfa