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Abstract—We have done detailed petrologic study of the angrite, D'Orbigny, and

geochemical study of it and Sahara 99555. D'Orbigny is an igneous-textured rock composed of

Ca-rich olivine, AI-Ti-diopside-hedenbergite, subcalcic kirschsteinite, two generations of

hercynitic spinel and anorthite, with the mesostasis phases ulv6spinel, Ca-phosphate, a silico-

phosphate phase and Fe-sulfide. We report an unknown Fe-Ca-Al-Ti-silicate phase in the

mesostasis not previously found in angrites. One hercynitic spinel is a large, rounded

homogeneous grain of a different composition than the euhedral and zoned grains. We believe

the former is a xenocryst, the first such described from angrites. The mafic phases are highly

zoned; mg# of cores for olivine are –64, and for clinopyroxene –58, and both are zoned to Mg-

free rims. The Ca content of olivine increases with decreasing mg#, until olivine with –20

mole% Ca is overgrown by subcalcic kirschsteinite with Ca –30-35 mole%. Detailed zoning

sequences in olivine-subcalcic kirschsteinite and clinopyroxene show slight compositional

reversals. There is no mineralogic control that can explain these reversals, and we believe they

were likely caused by local additions of more primitive melt during crystallization of D'Orbigny.

D'Orbigny is the most ferroan angrite with a bulk rock mg# of 32. Compositionally, it is

virtually identical to Sahara 99555; the first set of compositionally identical angrites.

Comparison with the other angrites shows that there is no simple petrogenetic sequence, partial

melting with or without fractional crystallization, that can explain the angrite suite. Angra dos

Reis remains a very anomalous angrite.

Angrites show no evidence for the brecciation, shock, or impact or thermal

metamorphism that affected the HED suite and ordinary chondrites. This suggests the angrite

parent body may have followed a fundamentally different evolutionary path than did these other

parent bodies.



INTRODUCTION

Angrites form an enigmatic group of mafic igneous rocks that were formed on an

asteroidal parent body very early in solar system history (e.g. Mittlefehldt et al., 1998). They are

characterized by Al-Ti-diopside-hedenbergite, Ca-rich olivine, kirschsteinite, anorthite and

aluminous, Fe-rich spinels. Because they are rare, we have only a rudimentary understanding of

the origin of the angrites. Thus, study of new angrites provides us with significant new

information on the igneous processes that occurred on asteroids in the immediately post-natal

solar system.

The first "comprehensive" study of angrites was done by Mittlefehldt and Lindstrom

(1990), who did geochemical study of all three angrites known at that time. They showed that

Lewis Cliff 86010 and Lewis Cliff 87051 were plausibly connected via olivine control, and that

Angra dos Reis was compositionally distinct. Further, they suggested that angrites were formed

by partial melting of carbonaceous chondrite-like source regions in which olivine and aluminous

spinel were residual phases. Later, a fourth angrite, Asuka 881371 was recovered in Antarctica

(Yanai, 1994), and showed petrologic and geochemical similarities particularly with LEW 87051

(Mikouchi et al., 1996).

Recently, two new angrites have been found. Sahara 99555 is a 2.7 kg angrite from

North Africa, and D'Orbigny is a 16.6 kg angrite from Argentina. Sahara 99555 is an igneous

textured rock with mineralogical and petrographic similarities to the groundmass of A-881371

(Mikouchi et al., 2000a,b). Preliminary petrologic descriptions show that D'Orbigny is a

complex rock composed of two dense, crystalline fractions separated by a more porous fraction,

and that it contains glass (Kurat et al., 2001a,b; Varela et al., 2001). The dense crystalline

fraction is an igneous textured rock showing mineralogic and petrologic similarities to both A-
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881371 and Sahara 99555 (Kurat et al., 2001a; Mikouchi and McKay, 2001; Mittlefehldt et al.,

2001). The advent of two new, and large, angrites indicates that time is ripe to update the

database on these rare meteorites, and reconsider the genesis of the group.

Here we report our completed petrologic and geochemical study of bulk samples of the

compact portion of D'Orbigny. We have also done a comparative geochemical study of a bulk

sample of Sahara 99555.

SAMPLES AND ANALYTICAL METHODS

We obtained a small chip of D'Orbigny from the finder for characterization. Several

serial polished thin sections were made from this chip for petrographic observation and electron

microprobe analysis (EMPA). From the remaining material, several small fragments were used

to do instrumental neutron activation analysis (INAA) and fused-bead electron microprobe

analysis (FB-EMPA) for major, minor and trace element characterization.

We did EMPA using the Cameca SX100 electron microprobe at NASA Johnson Space

Center, and the Cameca SX50 electron microprobe at the University of Oklahoma. Analytical

conditions for the SX100 probe were 20 kV, 40 nA for mafic silicates and oxides, and 15 kV 20

nA for plagioclase. Analytical conditions for the SX50 probe were 20 kV, 20 nA with a 2 gm

beam for mafic silicates, oxides and plagioclase. Representative and average mineral analyses

are given in Tables 1-4. We also did BSE and elemental mapping at JSC using 20 kV and 40 nA

conditions.

We prepared two samples for geochemical analysis from the —300 mg of chips used for

this purpose. D'Orbigny is a find, and there is some rusting of the accessory sulfides in the



sample. From the chips, we handpicked those that appeared to be the least affected by the

terrestrial environment. These chips, massing —200 mg, were ground and homogenized, a —56

mg split taken for INAA, and a —25 mg split was used for major element analysis. This latter

split of the homogenized powder was fused into a glass bead in an Ar atmosphere and analyzed

for major elements via EMPA on the JSC SX100 probe. Analytical conditions were 15 kV, 15

nA with the beam rastered over a 10 x 10 µm area. The major element data are presented in

Table 5.

INAA was done using standard JSC procedures (Mittlefehldt, 1994) in two irradiations.

The results of the first INAA on D'Orbigny showed slightly higher than expected K, which we

suspected might indicate terrestrial contamination. From the remaining chips of D'Orbigny, we

removed potential terrestrial alteration material from the surfaces and handpicked the cleanest

chips. These were further cleaned in ultra-pure water in an ultrasonic bath, dried and the entire

sample was ground and used in the second irradiation. We also analyzed a small split of

homogenized powder of Sahara 99555 prepared in L. Nyquist's clean laboratory. The exterior

surface of this latter sample was mildly leached in 2N HC1 prior to grinding. About 522 mg of

Sahara 99555 was ground, homogenized and a 29 mg split was used for INAA. The results of

our INAA on the angrites are given in Table 6. An average of our analyses of USGS standard

sample BHVO-1 is also given, along with the recommended values.

PETROGRAPHY AND MINERAL CHEMISTRY

General

Our sample of D'Orbigny is an unshocked, unmetamorphosed, vesicular rock consisting

of AI-Ti-diopside-hedenbergite (formerly called fassaite), Ca-rich olivine, subcalcic
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kirschsteinite, anorthite, hercynitic spinel, ulv6spinel, Fe-sulfide, Ca-phosphate, a silico-

phosphate phase, and an Fe-Ca-Al-Ti-silicate not previously reported from angrites. The overall

texture is subophitic, with areas of graphic intergrowth of olivine+subcalcic kirschsteinite and

anorthite (Fig. la). The Al-Ti-diopside-hedenbergite grains are up to —3 mm long, generally

subhedral with strong optical zoning. Anorthite grains are up to —1 mm long, euhedral to

subhedral, and often skeletal. Olivine grains are also up to —1 mm long, euhedral to subhedral,

and optically zoned. Hercynitic spinel occurs as —50 µm euhedral grains enclosed in pyroxene

and anorthite, but one of our thin sections also contains one —0.8 mm rounded grain (Fig. lb).

Hercynitic spinel is surrounded by symplectic reaction boundaries. Ulvospinel, Fe-sulfide, Ca-

phosphate, silico-phosphate and Fe-Ca-Al-Ti-silicate occur in the mesostasis. Ulv6spinel grains

are typically skeletal and roughly 100 pm in size. The silico-phosphate grains are euhedral to

anhedral, about 10-20 µm in hexagonal cross section and —100 µm in length. Groups of them are

often poikilitically enclosed in clinopyroxene grain rims. The Fe-Ca-Al-Ti-silicate occurs as

anhedral to subhedral grains —50 µm in size. Iron sulfide occurs as irregular patches —50-100

µm in size composed of numerous small, rounded grains.

Olivine and Subcalcic Kirschsteinite

Olivine is strongly zoned, and Ca-rich. Representative average olivine and subcalcic

kirschsteinite compositions are given in Table 1. Olivine cores are homogeneous in

composition; the most magnesian cores have molar 100*Mg0/(MgO+FeO) (mg#) —64, —1.3

mole% Ca (100*Ca/(Ca+Mg+Fe)) (Fig. 2, 3) and contain 0.0008-0.0010 atoms per formula unit

Cr. In general, olivine grains are zoned to about mg# 9 with Ca steadily increasing to about 20

mole%. These inner euhedral margins are overgrown by a band of subcalcic kirschsteinite (Fig.

4) with mg# 9 and 30-35 mole% Ca at the contact with olivine (Fig. 3). The subcalcic
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kirschsteinite is zoned to mg# —0 with 33-35 mole% Ca. Olivine again appears in the margins of

the composite grains at —mg# 6-5 and —17-20 mole% Ca, where it is intergrown with the

subcalcic kirschsteinite. This complex intergrowth persists to the edge of the grains at mg# 0.

In detail, the zoning sequence can be more complex (Fig. 4, 5). At the edge of the

homogeneous olivine cores, the zoning sequence (first bright band in Fig. 4 BSE image) begins

with a decrease in mg# coupled with an abrupt increase in Ca (Fig. 5). The mg# decreases to

—19, while Ca increases to — 10 mole % over a distance of —24 µm in this grain. (Because we

don't know whether the plane of the section is normal to the zoning bands, the distances cited are

maxima.) In this zone, Cr decreases from the homogeneous core content down to the detection

limit (about 0.0001-0.0002 apfu) over a distance as short as 10-15 µm. There is then a short

reversal in zoning in which the mg# rises and the Ca content decreases slightly, while Cr remains

essentially below detection, followed by a return to normal zoning with mg# decreasing to —10

and the Ca content reaching —18 mole%. The first bright band contains numerous dark spots (in

BSE) of roughly µm size, which are not present elsewhere in the zoning profile (Fig. 4). These

are rich in Ca, and Fe- and Mg-free (Ca-phosphate?). The olivine is overgrown by a band of

zoned subcalcic kirschsteinite with mg# decreasing from —9 to 5, while Ca remains relatively

constant at —35 mole%. Outside the subcalcic kirschsteinite zone is a zone of mixed olivine and

subcalcic kirschsteinite (Fig. 4) where mg# steadily decreases to —0 while the Ca contents of

olivine and subcalcic kirschsteinite remain relatively constant (Fig. 5).

A1-Ti-Diopside-Hedenbergite

The clinopyroxene is Al-Ti-diopside-hedenbergite which varies in mg# from —58 to 0

with >50 mole% Ca (Fig. 2). Representative average clinopyroxene compositions are given in



Table 2. The Ca and Ti contents show systematic variation with Mg (Fig. 6). At high Mg

(-0.55-0.20 apfu), the Ca content rapidly increases from —0.94 to —0.98 apfu, and thereafter

remains relatively constant while the Mg content decreases to 0. Likewise, the Ti content

increases while Mg decreases down to about 0.02 apfu. Titanium slightly decreases with a

further slight decrease in Mg, but reaches a relatively constant, though scattered, content of

—0.10 apfu through the remainder of the compositional sequence. Note that there are some

clinopyroxene grains with Ti contents distinct from the trend established by the majority (Fig. 6).

The Cr content of clinopyroxene steeply decreases with Mg content, and reaches the detection

limit when Mg is — 0.30 apfu (Fig. 6). Because Al is involved in coupled substitutions in

clinopyroxene with Ti and Cr, we show the Al-2*Ti-Cr (modified Al) content, effectively the

R2+Al2S]06 component, vs. Mg in Figure 6. This modified Al content is relatively constant for

Mg of 0.55 to —0.15 apfu, and then gradually decreases with decreasing Mg. Some grains at

high Mg have unusually high modified A1. There are some grains with distinctly low modified

Al; these are the same grains with low Ti contents.

Zoning in clinopyroxene is illustrated in Figure 7. A 335 µm profile, taken from the

grain center to the rim shows slight decrease in mg# from —58 to 53 over 170 µm, followed by

sharp decrease to —0 at the rim. In detail, there are two breaks in mg# at —110 and —160 µm

where mg# slightly increased (Fig. 7c). The Cr content sharply decreases from the center out,

with two slight reversals at —60 and 150 µm. Titanium is homogeneous in the central region, and

there are two offsets in the Ti profile at —160 and 230 µm; the former coincides with the second

break in the mg# profile. Both Ti and Al-2*Ti-Cr show sharp variations in the outer —100 µm.

These are not correlated, however, the spike in the Ti profile immediately precedes a spike in the

Al-2*Ti-Cr content, and these correlate with a sharp increase in the Ca content.
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Spinels

There are three distinct spinel phases: (i) a single large, rounded hercynitic spinel (Fig.

lb), (ii) smaller hercynitic spine] enclosed in plagioclase and clinopyroxene, and (iii) ulvospinel

in the mesostasis. The core of the large hercynitic spinel (Fig. lb) is homogeneous over a

distance of at least 300 µm, with the composition Hc32.5Sp55.5Cm9.OUv0.5Mt2.5 (Table 3, Fig. 8).

The smaller hercynitic spinel grains are typically enclosed in clinopyroxene and plagioclase, and

show ghost euhedral outlines - the grains now consist of variably rounded cores with symplectic

borders that show the original euhedral outlines of the grains (Fig. 9). The small grains are

distinct in composition from the large, rounded grain (Fig. 8). They contain a lower spinel

component yet higher chromite component, and are zoned showing increasing hercynite with

decreasing spinel and chromite (Table 3, Fig. 8) over distances of 20-30 µm. Both the large and

small hercynitic spinels have symplectic reaction rims containing spinels that are richer in Fee+,

Fe3+, Ti and sometimes Cr, and poorer in Al and Mg. The two grains shown in Fig. 9 have semi-

continuous borders composed of µm-sized Cr-rich spinel grains. The mesostasis ulvospinel

grains are typically euhedral skeletal grains about 100 µm across, with relatively uniform

compositions of Hc4.5-7.5SPO.1-0.4Cmo.OUV71.1-77.4Mt17.6-21.4 (Table 3).

Mesostasis Phases and Plagioclase

Silico-phosphate is a poorly characterized phase found in some angrites (Kaneda et al.,

2001; Mikouchi et al., 2000a; Mittlefehldt et al., 2001; Prinz and Weisberg, 1995; Warren and

Davis, 1995). In D'Orbigny, silico-phosphate is relatively homogeneous in composition,

although we did find one grain with a distinctly different composition (Table 4). We have not

done extensive study of this phase, however.
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We have discovered an unidentified phase in the mesostasis not previously been reported

from angrites. This phase is homogeneous in composition (Table 4) and has a cation/Si ratio of

—2.65.

Plagioclase is —An 100 , with 0.5-0.8 wt% FeO and 0.1-0.3 wt% MgO (Table 4).

GEOCHEMISTRY

The major element composition and CIPW normative mineralogy of D'Orbigny and other

angrites are given in Table 5, and select major, minor and trace element contents of D'Orbigny

and Sahara 99555 are given in Table 6. Like other angrites, D'Orbigny is highly depleted in Na,

with a bulk rock Na20 content of 0.017 wt%, and has Ca/Al greater than the CI ratio. All

angrites are critically silica-under saturated, with normative nepheline and Ca 2SiO4 (Cs). The

FeO content is slightly higher, while the MgO content is slightly lower in D'Orbigny than for any

other angrite, giving it the lowest mg# among angrites. D'Orbigny has a low Cr 20; content,

0.042 wt%, roughly a third the content of the next lower angrite, LEW 86010.

Our INAA data on D'Orbigny and Sahara 99555 (Table 6) show that these two meteorites

have very similar compositions. They both have the unusually low Cr contents and slightly high

FeO. They have similar Co contents, which are higher than found for other angrites, except A-

881371 (Mittlefehldt and Lindstrom, 1990; Warren et al., 1995 — Warren et al. give a

preliminary Co content for A-881371 of 51 µg/g). The rare earth elements (REE), Hf, Ta and Th

in D'Orbigny and Sahara 99555 are also nearly identical; the REE in particular show a clear

distinction between D'Orbigny and Sahara 99555 on the one hand, and all other angrites on the

other (Fig. 10). This is the first case in which two angrites are essentially identical in

composition. Although absolute abundances of incompatible lithophile elements distinguish all
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angrites from one another (excluding D'Orbigny and Sahara 99555), the Sm normalized patterns

for all of them, excluding Angra dos Reis, are very similar (Fig. 11).

DISCUSSION

Among meteorite classes, a large number of differentiated parent bodies are represented.

Most of these are represented only by deep-seated igneous materials - the various magmatic iron

meteorites and pallasites (e.g. see Mittlefehldt et al., 1998). There are relatively few crustal

igneous materials, i.e. basalts, in our meteorite collections. Rare basaltic/gabbroic segregations

and clasts are present in the acapulcoite-lodranite suite, in some IAB irons and in some IIE irons

(e.g., Ikeda et al., 1997; McCoy et al., 1997; Takeda et al., 2000). Because of the unusual

textural settings of these segregations and clasts, it is difficult to completely understand their

genesis. There are two igneous meteorite groups containing a large fraction of basaltic material;

the large howardite, eucrite diogenite (HED) suite and the small angrite group. The HED suite is

largely composed of breccias in which many of the components have undergone thermal

metamorphism (e.g. see Mittlefehldt et al., 1998). Hence, the magmatic processes responsible

for the formation of the BED parent body crust have been partially obscured. The angrites, in

contrast, have suffered less post-crystallization modification, and thus are a truer record of

asteroidal igneous processes. Unhappily, the angrite group is small, six members so far, so the

range of materials available for study is severely limited.

Here, we will discuss first the detailed petrology of D'Orbigny, compare it to the other

angrites, and discuss the composition of D'Orbigny and Sahara 99555. We will fold this

information into the broader picture of angrite petrogenesis, and finally, compare and contrast

the evolution of the angrite parent body with that of the HED meteorite suite.
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Petrology and Crystallization of D'Orbigny

The most unusual aspect of our thin sections of D'Orbigny is the large, rounded spinel

grain that occurs in one of them (Fig. lb). A similar textural setting for spinel has not been

reported for other angrites. This spinel grain is homogeneous over a scale of at least 300 µm,

while the smaller euhedral grains are zoned on scales of a few tens of µm (Figs. 8, 9). The large

spinel is also distinct in composition, with the unusual combination of being more magnesian,

yet poorer- in chrome (Fig. 8). The combined textural and compositional characteristics suggest

that the large spinel is xenocrystic material in this angrite, like the proposed origin for the

magnesian, chrome-rich coarse olivine grains in LEW 87051, Asuka 881371 and other samples

of D'Orbigny (e.g. Kurat et al., 2001b; Mikouchi and McKay, 2001; Mikouchi et al., 1996).

Most angrites contain coarse magnesian, chrome-rich olivine grains that are believed to

be xenocrystic in origin (e.g. see Mikouchi et al., 1996). Our thin sections of D'Orbigny do not

contain them. The smaller, euhedral olivine grains contain cores that are homogeneous in mg#,

and minor element content (Fig. 5), and similar- in composition to those reported from Sahara

99555 (Mikouchi et al., 2000a,b). There is a sharp boundary between the homogeneous core and

strongly zoned rim (Fig. 4). Based on our preliminary data, we suggested that this might indicate

a two stage cooling history (Mittlefehldt et al., 2001). However, we now believe that this

indicates a stage in the crystallization history when the second major mafic phase,

clinopyroxene, began crystallizing. Support for this position comes from the detailed zoning

profile (Fig. 5). The zoned rim is marked by a sharp drop in Cr 203 in the olivine, along with a

decrease in mg#. The most magnesian olivine cores contain about 0.043 wt% Cr 203 (Table 1),

essentially the same as the bulk rock (Table 5). Hence, assuming these cores are phenocrysts,

the olivine/melt Cr partition coefficient is —1, which is consistent with experimental studies
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(Jones, 1995). Crystallization of olivine will therefore not change the melt Cr 2O3 content

appreciably, consistent with the constant concentration in the core. In contrast, the most

magnesian clinopyroxene contains about 0.54 wt % Cr 203i yielding an effective

clinopyroxene/melt partition coefficient of —10, and the Cr content of clinopyroxene decreases

sharply with mg# (Figs. 6, 7). Because of this, we now believe that the initiation of zoning in

olivine reflects the onset of clinopyroxene crystallization, and not a change in cooling

environment.

The details of the zoning profile in olivine show slight reverse zoning in mg# from —18 to

20, and in Ca content from —9.7 to 7.0 mole% (Fig. 5), and this is correlated with a mottled zone

in the first bright band (Fig. 4). This reversal, and the texture showing scalloped borders for the

reversal (Fig. 4), suggest the melt composition became slightly more magnesian and with a

higher Si activity (which will cause a decrease in olivine Ca content) at this point. We do not

find a good mineralogical explanation for this reversal. One phase that could cause an increase

in melt Mg/Fe and Si activity is ulv6spinel. However, this phase occurs as a late phase in the

mesostasis, and the textures indicate that it did not appear early enough in the crystallization

sequence to explain the reverse zoning. In addition, this would not explain why the zoning

returns to normal after a short span of crystallization. Neither is the reverse zoning caused by

crystallization of the hercynitic spinels. The cores of these spinels have molar Mg/Fe ratios of

—1, compared to the bulk rock ratio of —0.5. Hence, crystallization of hercynitic spinel will

further deplete the melt in Mg and not cause reverse zoning in olivine. A third possibility is that

it represents an influx of more primitive melt causing back-reaction of the olivine grain surfaces.

Detailed ion microprobe studies across the zone may shed light on this. D'Orbigny contains

glasses with compositions like the bulk rock composition (Varela et al., 2001; see Table 5) that
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must have entered the stone after crystallization. The zoning profile in clinopyroxene also shows

reversals in mg# and Cr, and offsets in Ti (Fig. 7) which may indicate ingress of distinct melts.

The Cr reversals in particular suggest this, as an increase in Cr content in the melt phase is

unlikely to be caused by crystallization of other phases. Finally, the small euhedral spinels often

contain Cr-rich rims, even when enclosed in anorthite (Fig. 9), which suggests that more Cr-rich

melts may have been responsible for the reaction that formed the rims. This petrographic

evidence suggests that multiple magma batches may have been locally present during

crystallization of D'Orbigny. Whether this represents additions of new magma from the parent

body interior, or simple stirring of the crystallizing, heterogeneous magma during flow, cannot

be determined at present.

The zoned olivine contains overgrowths of zoned subcalcic kirschsteinite on euhedral

olivine outlines (Fig. 4). There is a distinct gap in olivine compositions; we find no olivine

compositions between mg# —9 and —6-5 (Figs. 2, 3). The texture suggests that the subcalcic

kirschsteinite overgrowths are magmatic. Outside the euhedral subcalcic kirschsteinite margin is

a zone of mixed subcalcic kirschsteinite and olivine, indicating that towards the end of

crystallization, olivine and subcalcic kirschsteinite co-crystallized.

Clinopyroxene also contains relatively homogeneous cores (in mg# and Ti) and zoned

rims, but the cores are not as uniform as those in olivine (Fig 7). Note that the core region of the

clinopyroxene grain shows a marked decrease in Cr content with only a slight change in mg#.

This is consistent with our contention that clinopyroxene crystallization initiates zoning in the

olivine. The core region also shows slight decreases in Al-2*Ti-Cr, indicating that the non-

quadrilateral component R2+Al2SiO6 in clinopyroxene initially decreases. The zoning profile in

the rim region shows a substantial decrease in mg# and A1-2*Ti-Cr, and a substantial increase in
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Ti and Ca (Fig. 7). Both Ti and Al-2*Ti-Cr show small scale "spikes" that indicate abrupt

increases in the non-quadrilateral components. Note that we have done only one detailed profile

across a clinopyroxene grain, and if sector zoning is present, than this profile may not by

representative of all zoning variations.

Plagioclase was likely a near-liquidus phase as it commonly forms graphic intergrowths

with olivine, indicating co-crystallization. There is much less intergrowth between plagioclase

and clinopyroxene. Because of the lack of Na and K in D'Orbigny, plagioclase compositions

cannot be used to examine the crystallization history of this phase. Although there is variation in

the MgO and FeO contents of plagioclase, we have not found systematic zoning in these minor

components. In part this is due to the skeletal and intergrown nature of many of the grains,

making growth fronts difficult to identify with certainty.

The euhedral hercynitic spinels are commonly included within clinopyroxene and

plagioclase grains, but don't extend into the mesostasis (Fig. 9). In addition, they typically show

reaction boundaries of variable thickness. This suggests that hercynitic spine] crystallization

began early, and then became unstable in the changing melt. Based on our preliminary results,

we suggested that spinel was a liquidus phase along with olivine in part because of the presence

of the large hercynitic spinel grain (Mittlefehldt et al., 2001). However, we now consider this

spinel to be xenocrystic, and we have not observed a textural association between the magnesian

olivine cores and the small euhedral hercynitic spine]. Thus we cannot precisely determine when

this spinel appeared in the crystallization sequence. Figure 12 shows the crystallization sequence

we infer for D'Orbigny.
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The extreme compositional zonation of minerals and the presence of late-stage, trace

phases in the mesostasis (Ca-phosphate, silico-phosphate, unknown Fe-Ca-Al-Ti-silicate) in

D'Orbigny indicate that this rock underwent rapid, complete crystallization; D'Orbigny

represents a melt composition. This is also suggested by the observed variations in trace

elements in clinopyroxene and olivine (Floss et al., 2001). Note however, that our observations

suggesting that more than one melt may be involved in the genesis of D'Orbigny, if true, might

indicate that this is a hybrid composition, not a single melt composition.

Comparison of D'Orbigny with Other Angrites

D'Orbigny is texturally most similar to Sahara 99555, or the groundmass fractions of

Asuka 881371 and Lewis Cliff 87051 (Mikouchi and McKay, 2001; Mittlefehldt et al., 2001).

Mikouchi et al. (2000a,b) presented a brief description of Sahara 99555. Sahara 99555 shares

many similarities with D'Orbigny — the vesicular nature of the stone, the igneous texture with

common olivine-anorthite graphic intergrowths, and the compositions of the minerals are very

similar. Mikouchi and McKay (2001) further show that mineral compositions in Sahara 99555

and D'Orbigny almost completely overlap. Olivine cores in Sahara 99555 have mg# of ~63 and

contain —0.8 wt% CaO (Mikouchi et al., 2000a,b), essentially identical to D'Orbigny (this work;

Mikouchi and McKay, 2001). Mikouchi and McKay (2001) find slightly more magnesian

clinopyroxene cores than we do; their most magnesian clinopyroxene has an mg# of —63,

compared to —58 in our thin sections. These are more magnesian than any reported for Sahara

99555 (mg# <50; Mikouchi et al., 2000a,b).

Although there are greater textural similarities between D'Orbigny and Sahara 99555,

mineral compositions of D'Orbigny more closely match those of the groundmass fraction of A-
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881371. The most magnesian olivine phenocrysts, kirschsteinite and clinopyroxene of A-881371

(Mikouchi et al., 1996) are only slightly more magnesian than the most magnesian mafic phases

in D'Orbigny (Fig. 2). The cores of olivine phenocrysts in LEW 87051 have mg# —80 (McKay

et al., 1995; Mikouchi et al., 1996), substantially higher than those of D'Orbigny. Nevertheless,

the most magnesian clinopyroxene and subcalcic kirschsteinite grains in LEW 87051 are very

similar to those of D'Orbigny (Fig. 2). McKay et al. (1995) show (their Fig. 2) magnesian

clinopyroxene grains with mg# slightly less than 60, and with T10 2, Al2O3 and Cr2O3 contents

within the ranges we find of D'Orbigny magnesian clinopyroxene grains (Table 2).

Our thin sections of D'Orbigny do not contain the xenocrystic, magnesian olivine found

in A-881371 and LEW 87051, although other samples do (Kurat et al., 2001b; Mikouchi and

McKay, 2001). Mikouchi and McKay (2001) estimate that magnesian olivine xenocrysts make

up roughly 1% of D'Orbigny, compared to —10% of A-881371 and LEW 87051. They further

point out that olivine xenocrysts have not been reported from Sahara 99555. In view of the

heterogeneous nature of xenocryst distribution in D'Orbigny and its low abundance, it may well

be that they also occur in Sahara 99555, which has not been extensively sampled. Deep-seated

xenoliths and xenocrysts are common in terrestrial alkaline volcanic rocks and indicate that the

magmas rose rapidly from depth without pause. Possibly, the xenocrysts in an C,	 may

similarly indicate that the parent magmas rose rapidly, entraining pieces of country rock along

the way. The vesicular nature of D'Orbigny and Sahara 99555 indicate that volatile species were

present in the magmas, and these would promote rapid eruption on an asteroid-size parent body

(e.g. see Wilson and Keil, 1997).

D'Orbigny is very different in texture, modal mineralogy and/or mineral composition

from Angra dos Reis and LEW 86010. Angra dos Reis is an almost mono-mineralogic rock,
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composed of >90% clinopyroxene, with an equilibrated texture, and plagioclase has not been

found in thin section (Prinz et al., 1977). LEW 86010 has a modal mineralogy similar to that of

D'Orbigny (compare McKay et al., 1988a; Mikouchi and McKay, 2001), but its texture is more

equilibrated (McKay et al., 1988a). Mineral compositions in Angra dos Reis and LEW 86010

are distinct from those of D'Orbigny. Comparing the most magnesian phases in each meteorite,

clinopyroxenes are more magnesian, kirschsteinites are more magnesian and calcic, and olivines

are more ferroan in the former two meteorites than in D'Orbigny (Fig. 2).

Geochemistry of D'Orbigny and Sahara 99555, and Angrite Petrogenesis

Mittlefehldt and Lindstrom (1990) pointed out that the three angrites known at that time

had super-chondritic Ca/Al ratios, and were distinct from basaltic eucrites in that regard. Figure

13 shows CI-normalized Sm/Eu vs. Ca/AI for angrites compared to basaltic eucrites. Excluding

Angra dos Reis, all angrites have (Ca/Al)c l —1.5 and (Sm/Eu)c l —1.0. In contrast, basaltic

eucntes have (Ca/Al)c l —1.0 and (Sm/Eu)c l —0.8-1.7. Mittlefehldt and Lindstrom (1990) argued

that the high Ca/Al ratio of angrites was not due to plagioclase fractionation because the

(Ca/Alk, ratio of anorthite (0.7) is too close to unity to efficiently fraction the Ca/Al of a melt,

while the Sm/Eu ratio should be substantially fractionated by plagioclase. Figure 13 empirically

demonstrates this. The basaltic eucrite suite has experienced plagioclase fractionation (e.g. see

Mittlefehldt et al., 1998; Stolper, 1977), yet shows little variation in Ca/Al but substantial

variation in Sm/Eu. In contrast, all angrites, excluding Angra dos Reis, show a narrow range in

Sm/Eu indicating that plagioclase fractionation was not a significant factor in angnte genesis.

Summarizing geochemical, petrologic and experimental results on angrites, Mittlefehldt

and Lindstrom (1990) concluded that residual aluminous spinel in the source regions of angrites
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was the most probable cause for the elevated Ca/Al in angrites. Experimental support for this

was found by Jurewicz et al. (1993), who showed that partial melting of CM and CV chondrites

under foZ conditions appropriate for angrite genesis did yield melts with Ca/Al ratios like those of

angrites, and that aluminous spinel was a residual phase in all experiments. The addition of two

new angrites, A-881371 (Warren et al., 1995; Yanai, 1994) and D'Orbigny confirm that angrites

(excluding Angra dos Reis) have uniform and elevated Ca/Al ratios consistent with buffering by

aluminous spinel.

Mittlefehldt and Lindstrom (1990) suggested that the difference in major and trace

element contents of LEW 86010 and LEW 87051 was consistent with simple olivine control, that

is, with either gain or loss of olivine from a common magma. With additional angrites and more

information on the older samples we can revisit this hypothesis. Figure 14 shows Sm vs. mg #

and Sc vs. mg# for angrites. We have plotted A-881371 and LEW 87051 both as measured for

bulk rocks (Mittlefehldt and Lindstrom, 1990; Warren et al., 1995; Yanai, 1994), and using the

estimated groundmass compositions (Prinz and Weisberg, 1995) with Sm and Sc estimated here

assuming olivine xenocrysts are Sm- and Sc-free. Samarium and Sc are incompatible elements,

so their concentrations should increase as melt mg# decreases due to fractional crystallization of

olivine (schematically shown in Fig. 14, arrows labeled fc). In the angrite suite, we see the

opposite trend; Sm and Sc decrease as mg# decreases for LEW 86010, LEW 87051 groundmass

and D'Orbigny. Potentially, A-881371 groundmass could be related to either LEW 87051

groundmass or D'Orbigny by olivine removal from A-881371. Based on trace element

variations in angrite clinopyroxenes, Floss et al. (2000) concluded that LEW 86010 crystallized

from a distinctly different magma from the other angrites they studied.
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Based on cosmochemical and phase equilibria arguments, and experimental studies,

olivine is expected to be the major residual mafic silicate after partial melting in the angrite

parent body (e.g., Jurewicz et al., 1993; Longhi 1999; McKay et al., 1988; Mittlefehldt and

Lindstrom, 1990). Partial melting in which olivine is the major residual phase will result in a

trend of decreasing Sm and Sc with slightly increasing mg# (schematically shown in Fig. 14,

arrows labeled pm). In the angrite suite, D'Orbigny cannot be related to LEW 86010, LEW

87051 and A-881371 by simple partial melting. However, LEW 86010, LEW 87051 and A-

881371 could potentially represent a suite of increasing degree of partial melting, with LEW

86010 representing a melt derived by a smaller degree of melting than A-881371 (Fig. 14).

However, mineral compositions show that this is not the case. LEW 86010 contains

clinopyroxene cores with higher mg# than those in A-881371 (Fig. 2), and this is opposite what

would be expected if LEW 86010 represented a smaller degree of melting. Hence, we conclude

that there is not a simple partial melting-fractional crystallization scenario joining the angrites.

This is distinctly different from what is observed for the HED suite (Stolper, 1977).

Longhi (1999) has discussed the petrogenesis of the angrites using phase equilibria in the

CMAS+Fe system. The crystallization sequence in this system is complicated by shifting phase

relations as mg# changes during fractional crystallization. However, Longhi (1999) showed that

A-881371, LEW 86010 and LEW 87051 plot within the olivine+plagioclase field, indicating

these two phases are liquidus phases, consistent with petrography and limited experimental work

(McKay et al., 1988a,b; 1991; Mikouchi et al., 1996). Note that Longhi (1999) used the bulk A-

881371 and LEW 87051 compositions, not the estimated groundmass compositions, which are

closer to melt compositions. While spinel is not a liquidus phase in this case, Longhi (1999)
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pointed out that addition of Cr and Ti to the system would likely expand the stability field of

spinel.

A schematic phase diagram after Longhi (1999) relevant to angrite petrogenesis is shown

in Fig. 12. We have added D'Orbigny and the A-881371 and LEW 87051 groundmass

compositions, and our inferred crystallization path to the diagram. Like all other angrites except

Angra dos Reis, D'Orbigny plots within the olivine+plagioclase phase field, and crystallization

starts with these phases (arrow labeled 1). Hercynitic spinet may join the crystallization

sequence during this part of the path, but the textural and phase relations are not clear. At 2, the

crystallization sequence becomes olivine+plagioclase+clinopyroxene. If hercynitic spinel is not

already a liquidus phase, it joins the crystallization sequence at about this point. The phase

diagram suggests that at 3, the crystallizing assemblage becomes olivine+clinopyroxene+spinel,

followed at 4 by olivine+clinopyroxene+spinel+kirschsteinite. The textures of D'Orbigny

suggest rather that spinel reacts-out before 3 is reached, and that kirschsteinite temporarily

replaces olivine in the crystallization sequence at 4

Angra dos Reis — Odd Man Out

We have generally avoided discussing Angra dos Reis up to this point, for good reason.

Based on modal mineralogy (e.g. see Mittlefehldt et al., 1998) and bulk major and trace element

composition (Figs. 10, 11, 13, 14), Angra dos Reis is anomalous compared to all other angrites.

The irony of using it as the type example and namesake for the group is exquisite, and points out

the dangers of defining meteorite groups based on too few examples. Nevertheless, Angra dos

Reis is clearly closely related to the other angrites in oxygen-isotope composition and in its

unusual mineralogy (see Mittlefehldt et al., 1998). Mittlefehldt and Lindstrom (1990) suggested
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that either Angra dos Reis was formed from a distinctly different source region on the angrite

parent body, or on a separate parent body than LEW 86010 and LEW 87051. Longhi (1999) has

also concluded that Angra dos Reis requires a different source region.

The three newest angrites A-881371, D'Orbigny and Sahara 99555 serve to amplify the

anomalous character of Angra dos Reis relative to the group. Sioux County- and Sm-normalized

incompatible refractory lithophile element patterns for all angrites except Angra dos Reis are

very similar (Fig. 11), indicating a basic commonality in petrogenesis. Angra dos Reis shows

extreme fractionations in R Z+ , Al, Sc, La, Hf and U (Fig. 11) when compared to other angrites.

Longhi (1999) suggested that the difference in major element composition, and hence

crystallization paths, between Angra dos Reis and the other angrites might possibly explain at

least a portion of the difference in REE contents between them. He suggested that Angra dos

Reis was a cumulate containing trapped melt, and noted that clinopyroxene/melt partition

coefficients relevant to Angra dos Reis genesis might be up to twice as large as for the other

angrites. This would serve to reduce the disparity between Angra dos Reis and LEW 86010 REE

contents (Fig. 10). However, based on experimental partitioning studies (Gaetani and Grove,

1995), one would expect the aluminous clinopyroxenes to also have a much higher Sc

partitioning coefficient. Gaetani and Grove (1995) showed that Ce 3+ and Yb3+ clinopyroxene/

melt partition coefficients increased with increasing clinopyroxene CaAl^S1O 6 content, and that

the smaller Yb 3+ increased more than the larger Ce 3+ . It is plausible then that partitioning of the

smaller Sc 3+ should also substantially increase in aluminous clinopyroxenes. The low Sc/Sm

ratio for Angra dos Reis (Fig. 11, and see Mittlefehldt et al., 1998, Fig. 52b) is then difficult to

explain.

What's up with Angrites?
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The angrites, as basalts formed very early in solar system history on an asteroid-sized

body, share a basic formational history with the eucrites. However, there is a strong textural

dichotomy between these two groups. Most eucrites have been thermally metamorphosed, most

are breccias, and many show evidence for shock metamorphism (e.g. see Delaney et al., 1983;

Mittlefehldt et al., 1998; Takeda and Graham, 1991). We now have six angrites, three of

considerable size. The cosmic ray exposure ages of them are all different (Bischoff et al., 2000;

Eugster et al., 1991; Kurat et al., 2001a; Lugmair and Marti, 1977; Weigel et al., 1997))

indicating that multiple regions of the parent body surface were likely sampled. None of them

are breccias, none show evidence for shock metamorphism, and with the exceptions of Angra

dos Reis and LEW 86010, thermal metamorphism is not evident. In LEW 86010, thermal

metamorphism has equilibrated the compositions of olivine and kirschsteinite, but not that of

clinopyroxene (Mikouchi et al., 1996). In contrast, most eucrites have had their pyroxene

compositions substantially equilibrated by thermal metamorphism (Takeda and Graham, 1991).

This difference in thermal and impact metamorphism plausibly indicates that there is some

fundamental difference between the angrite and eucrite parent bodies.

Bogard (1995) has suggested that the large number of young, reset Ar-Ar ages among

lunar samples and eucrites is due to the inner-solar-system-wide late heavy bombardment, and

that the Ar-Ar ages will be reset only in large impacts, suggesting that these parent bodies were

relatively large. The surface rocks of these parent bodies thus became extensively brecciated and

shock-metamorphosed. If true, this might suggest that either the angrite parent body was small,

or that it formed in a region of the solar system less affected by the late heavy bombardment.

The latter seems unlikely as spacecraft observations show that solid surfaces in the inner solar

system from Mercury to the moons of Jupiter have suffered extensive impact modification.
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Chondrites are generally believed to be derived from smaller parent bodies, yet many of

them are brecciated and have suffered impact metamorphism (Brearley and Jones, 1998).

Bogard (1995) argued that the large number of very young ages (<1.5 Ga) for chondrites (mostly

ordinary chondrites) is consistent with their being derived on small parent bodies that were

susceptible to catastrophic disruption and age resetting. Only three of the angrites have had

formation ages determined, but they are all among the oldest objects in the solar system, and

there is no evidence for later disturbance in their ages (Lugmair and Galer, 1992; Lugmair and

Marti, 1977; Nyquist et al., 1994; Premo and Tatsumoto, 1995; Wasserburg et al., 1977) or in

their textures. Thus, angrites have followed an evolutionary history that appears fundamentally

different from that of the smaller asteroids that coughed-up chondrites.

Regardless, either scenario for explaining the pristine nature of angrites (small body,

special location) has implications for our understanding of the heat source that melted asteroids.

Most models suggest that the mechanism that heated meteorite parent bodies was either

heliocentric, or more efficacious on larger bodies (Wood and Pellas, 1991), and are therefore at

odds with the angrites having formed either on a small parent body, or on one outside the range

of the late-heavy bombardment. Thus, continued study of the angrites and comparison with

eucrites may bring the mysterious early solar- system heat source into sharper focus.

CONCLUSIONS

D'Orbigny is an unshocked, unmetamorphosed, vesicular igneous rock consisting of Al-

Ti-diopside-hedenbergite, Ca-rich olivine, subcalcic kirschsteinite, anorthite, hercynitic spinel,

ulvospinel, Fe sulfide, Ca-phosphate, a silico-phosphate phase, and an Fe-Ca-Al-Ti-silicate not

previously reported from angrites. The mafic silicates are extremely zoned, from mg# of 64

(olivine) and 58 (clinopyroxene) to essentially Mg-free rims. Details of zoning profiles in
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composite olivine-subcalcic kirschsteinite grains and in clinopyroxene grains show that brief

reversals in zoning occurred during crystallization. There appears to be no obvious mineralogic

control that can explain these reversals, and we suggest that they were caused by additions of

more primitive melt during the crystallization sequence. This could be either addition of new

magma from the parent body interior, or stirring of a heterogeneous magma as it flows. Hence,

although the textures and mineral compositions show that D'Orbigny represents a crystallized

melt composition, this melt may have been a hybrid composition.

The trace and select major element compositions of D'Orbigny and Sahara 99555 are

virtually identical; the first such case in the angrite suite. D'Orbigny is the most Fe-rich angrite,

with a bulk rock mg# of 32. Like all angrites, D'Orbigny has a fractionated Ca/Al ratio, and all

but Angra dos Reis have a chondritic Sm/Eu ratio. These indicate that plagioclase fractionation

did not play a significant role in angrite genesis, and that fractionation of aluminous spinel did.

There is no simple set of partial melting with or without fractional crystallization scenarios that

can explain the bulk rock and mineral core compositions in the angrite suite. Angra dos Reis

remains a very anomalous angrite, and there is no obvious, simple petrogenetic scheme that

relates it to the others.

The angrites somehow missed the thermal metamorphism, brecciation and shock

processes that affected the HED suite and ordinary chondrites. The reasons for this are obscure,

but we believe this possibly bespeaks a fundamentally different history for the angrite parent

body.
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Table 4. Representative average compositions of plagioclase, silico-phosphate, and unknown Fe-
Ca-AI-Ti-silicate.

plag silico-phosphate Fe-Ca-AI-Ti-silicate
n" 4 4 6 8 2 10 12 9
SiO 2 43.6 12.2 13.4 13.8 19.0 25.6 25.6 25.4
TiO2 - 1.42 1.64 1.61 1.61 8.77 9.39 9.25
Al2O3 36.2 0.27 0.41 0.45 2.11 10.5 10.3 10.5
Cr2O3 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FeO 0.65 4.99 5.45 5.94 9.51 41.2 41.0 41.1
MnO - 0.07 0.07 0.08 0.08 0.17 0.17 0.18
MgO 0.15 0.0 0.01 0.0 0.0 0.0 0.04 0.02
CaO 20.0 48.7 50.9 47.3 41.9 12.5 12.5 12.6
Na,O 0.02 - - - - - - -
K20 0.0 - - - - - - -
P20 5 - 29.7 24.5 28.1 21.9 0.08 0.08 0.07
sum 100.62 97.35 96.38 97.28 96.11 98.82 99.08 99.12

* Number of analyses averaged.
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Table 5. Major element composition and CIPW normative mineralogy of D'Orbigny
compared to literature data for angrites.*

D'Orbigny Angra LEW LEW Asuka
wr glass dos Reis 86010 87051 881371

SiO2 38.3 39.3 43.7 39.6 40.4 37.3
TiO2 0.88 0.78 2.05 1.15 0.73 0.88
Al 2O3 12.4 12.3 9.35 14.1 9.19 10.1
Cr2O3 0.0419 0.06 0.219 0.118 0.159 0.139
FeOT 24.8 24.8 9.4 18.5 19.0 24.0
MnO 0.28 0.27 0.10 0.20 0.24 0.20
M-0 6.56 7.1 10.8 7.0 19.4 14.8
CaO 15.1 15.2 22.9 17.5 10.8 12.5
Na2O 0.0172 - 0.0301 0.0211 0.0234 0.0216
P2O5 0.16 - 0.13 0.13 0.08 0.17
sum 98.54 99.81 98.68 98.32 100.02 100.11

molar Fe/Mn, 100*Mg/(Mg+Fe) and (Ca/Al)cl.

Fe/Mn 87 91 93 91 78 118
mg# 32.0 33.8 67.2 40.3 64.5 52.4
(Ca/Al)CI 1.54 1.56 3.09 1.57 1.48 1.56

C1PW norm

OI 37.6 13.1 28.2 52.5 55.3
Cs 5.64 9.67 6.80 1.97 8.27
Di 19.2 46.3 22.2 17.7 5.52
An 34.2 25.7 39.0 25.0 27.4
Ne 0.08 0.14 0.10 0.11 0.10
Cm 0.06 0.33 0.18 0.23 0.19
Il 1.69 3.94 2.22 1.38 1.67
Mt 1.22 0.46 0.91 0.92 1.16
Ap 0.38 0.30 0.31 0.19 0.39

* D'Orbigny - whole rock (wr), this work, major elements determined by fused-bead,
electron microprobe analysis; Cr 2O3 and Na2O by INAA (average of data in Table 6);
glass - average of glass patches, sphere, and glass with bubbles, Varela et at. (2001).
Angra dos Reis, LEW 86010 and LEW 87051 - Mittlefehldt and Lindstrom (1990),
major elements determined by fused-bead, electron microprobe analysis; Cr 2O3 and Na2O
by INAA. A-881371 - Yanai (1994), major elements by wet chemistry; Warren et al.
(1995) Cr2O3 and Na2O by INAA. CIPW norm calculated assuming molar Fe3+/Fe2,of
0.03.
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Sahara 99555

28.89
0.01639 ± 0.00025

44 ± 19
15.1 ± 0.5
50.7 ± 0.6

317 ± 3
23.73 ± 0.26
31.2 ± 0.4

<80
1.98 ± 0.10
1.2 ± 0.3

107 ± 21
nd
<0.05
45 ± 17

3.20 ± 0.04
8.41 ± 0.24

nd
2.107 0.028
0.829 ± 0.018
0.512 ± 0.023
2.12 ± 0.04
0.319 ± 0.009
1.80 ± 0.06

192 ± 16
360 ± 90
<4
<3

360	 ± 40
<210

53.34
0.01473 ± 0.00020

69 ± 15
15.0 ± 0.5
40.3 ± 0.4

262 ± 3
25.40 ± 0.28
33.0 ± 0.4
91 ± 15

0.53 ± 0.05
0.74 ± 0.21

142 ± 24
66 ± 19
<0.034
52 ± 7

3.76 ± 0.04
9.18 ± 0.24
5.4 ± 2.6
2.23 ± 0.03
0.876 ± 0.017
0.511 ± 0.018
2.13 ± 0.04
0.308 ± 0.007
1.48 ± 0.05

200 ± 14
nd
<2
<2

434 ± 29
116 ± 22

Table 6. Select major, minor and trace element contents of angrites D'Orbigny and Sahara 99555, and USGS
standard rock BHVO-1."

D'Orbi

55.88
0.01962 ± 0.00026

137# ± 10
17.8 ± 1.6
46.3 ± 0.5

311 ± 3
24.93 ± 0.27
34.7 ± 0.4
56 ± 15

0.52 ± 0.04
0.53 ± 0.21

126 ± 21
70 ± 18

0.057 ± 0.018
47 ± 18

3.56 ± 0.04
8.78 ± 0.26

nd
2.161 0.029
0.846 ± 0.016
0.534 ± 0.019
2.12 0.06
0.309 ± 0.013
1.63 ± 0.06

192 ± 13
180 ± 60
nd
69.7' ± 2.5

370 ± 40
<210

BHVO-1+
JSC	 lit.

2.300 2.26
4230 4320

11.0 11.4
31.3 31.8

292 289
10.9 11.0
45.0 45

120 121
0.54 0.4+

nd
390 403

160 179
0.16 0.16

125 139
15.22 15.8
37.8 39
28 25.2

6.05 6.2
2.06 2.06
0.95 0.96
1.98 2.02
0.274 0.291
4.61 4.38
1.13 1.23

nd
nd
nd

1.12 1.08
0.33 0.42

mass (mg)t
Na2O wt%
K	 µ g/g
CaO wt%
Sc	 µ g/g
Cr	 µ g/g
FeO wt%
Co	 µ g/g
Ni	 it g/g
As	 µ g/g
Se	 µg/g
Sr	 µg/g
Zr	 µ g/g
S 	 tt g/g
B 	 tt g/g
La	 µ g/g
Ce	 it g/g
Nd	 µ g/g
S 	 µ g/g
Eu	 µg/g
Tb	 Ag/g
Yb	 µg/LO"
Lu	 it g/g
Hf	 µ g/g
Ta	 ng/g
W	 ng/g
Ir	 ng/g
Au	 ng/g
Th	 ng/g
U	 ng/g

Determined by INAA. Uncertainties are f 16, upper limits are 26, nd is not determined.
t Mass of sample analyzed. The first D'Orbigny sample and Sahara 99555 are splits of homogenized powders of

larger samples. See text.
# High K value likely represents contamination by fine-grained terrestrial sediment. The second D'Orbigny sample

was cleaned in triply-distilled water in an ultrasonic bath before crushing for analysis. See text.
High Au value likely represents contamination during handling.

+ JSC - average of two analyses, lit. - Govindaraju (1994); As is an information only value.
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Figure 1. Photomicrographs of general textural features of D'Orbigny. An olivine-plagioclase
graphic intergrowth is just below label a. Opaque areas are mesostasis, except for the large,
rounded spinel in b. A vesicle occurs below the labeled olivine. Plane-polarized light; fields of
view 2.3x1.7 mm.
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Figure 2. Molar Ca-Mg-Fe triangular diagram of mafic silicates of D'Orbigny compared to
literature data for most magnesian compositions for Asuka 881371 (A88), Angra dos Reis
(AdoR), Lewis Cliff 86010 (L86) and LEW 87051 (L87). For A-881371 and LEW 87051,
olivine phenocryst data are shown. Open symbols (mixed) indicate analyses we believe
overlapped both olivine and subcalcic kirschsteinite. Literature data are from Crozaz and
McKay (1990), McKay, unpublished, Mikouchi et al. (1995, 1996), Prinz et al. (1977), Warren
and Davis (1995), Yanai (1994).
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Figure 3. Ca (mole%) vs. mg# for olivine and subca1cic kirschsteinite in D'Orbigny. Open
symbols (mixed) indicate analyses we believe overlapped both phases. Note distinct gap in
olivine compositions between about mg# 9 and 6.

38



Figure 4. Back-scattered electron image and Ca, Fe and Mg x-ray maps of rim zoning in a
composite olivine-subcalcic kirschsteinite grain. The dotted line shows the location of the
zoning profile given in Fig. 5. The x-ray maps in the right column have been enhanced to bring
out subtle details of the region between the homogeneous Mg-rich core and the first subcalcic
kirschsteinite (sk) band. Arrows in right column show remnant Ca- and Fe-rich olivine
enveloped by more Mg-rich overgrowths (reverse zoning in Fig. 5). Arrows in left column
highlight small, Ca-rich, Fe- and Mg-free inclusions (Ca-phosphate?).
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Figure 5. Zoning profile for olivine-subcalcic kirschsteinite grain shown in Fig. 4. Vertical lines
break-up the sequence into distinct regions. Note slight zoning reversal in the zoned olivine rim
region at —90-100 µm. Sk = subcalcic kirschstemite.
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Figure 6. Variation of Ca, Ti, Cr and Al-2*Ti-Cr, Ti with Mg (all in atoms per formula unit) for
clinopyroxene. Vertical bars show ranges in compositions for analyses with Mg of 0 apfu. The
wide range in Ca at Mg —0 is due to P-rich clinopyroxene in rim areas intergrown with silico-
phosphate. Note that some analyses are distinct in both Ti and A1 -2*Ti -Cr.
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Figure 9. Back-scattered electron images and element maps of euhedral hercynitic spinel grains
enclosed in clinopyroxene (left) and plagioclase (right). Note elemental zoning over a scale of a
few gm, and Cr-rich rims.
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Figure 10. Rare earth element diagram for angrites. D'Orbigny and Sahara 99555 — this work;
other angrites — Lugmair and Galer (1992), Ma et al. (1977), Mittlefehldt and Lindstrom (1990),
Nyquist et al. (1994) and Warren et al. (1995).
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Figure 12. Schematic phase diagram (after Longhi, 1999) and crystallization sequence for
D'Orbigny. A-881371 and LEW 87051 are plotted for both their bulk rock (Mittlefehldt and
Lindstrom, 1990; Yanai, 1994) and groundmass (gm — Prinz and Weisberg, 1995) compositions.
Schematic crystallization path (1-4) is described in the text.
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