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In order to support the anytime abort requirements of a manned mission to the Moon,
the vehicle abort capabilities for the translunar and circumlunar phases of the mission
must be studied. Depending on the location of the abort maneuver, the maximum return
time to Earth and the available propellant, two di�erent kinds of return trajectories can
be calculated: direct and �y-by. This paper presents a new method to compute these
return trajectories in a deterministic and fast way without using numerical optimizers.
Since no simpli�cations of the gravity model are required, the resulting trajectories are
very accurate and can be used for both mission design and operations. This technique has
been extensively used to evaluate the abort capabilities of the Orion/Altair vehicles in the
Constellation program for the translunar phase of the mission.

I. Introduction

A
bort return trajectories play an important role in the performance of a vehicle designed for manned
missions. For a given nominal mission, di�erent abort scenarios can be presented. In this paper, we will

cover those scenarios related to the on-orbit performance part and only for Earth to Moon transfers. The
main goal will be to calculate abort return trajectories, given the vehicle state and some Entry Interface (EI)
constraints, in a fast and accurate way. In order to evaluate the performance of the vehicle, abort trajectories
will have to be calculated along the nominal trajectory at di�erent times. In Figure 1, we can see two di�erent
abort scenarios for a typical manned mission to the Moon: (a) the abort maneuver is implemented before
the Lunar-Orbit-Insertion maneuver (LOI) and (b) the abort maneuver is implemented after a failed LOI.
In both cases two strategies can be implemented: a direct return and a Moon �yby. Choosing a direct or
�yby return will depend on the abort scenario, distance to the Moon and operational constraints.

In this paper, a method to compute high-�delity feasible solutions to the abort return problem is de-
scribed. The �rst part of the paper summarizes the two techniques used to compute the return trajectories:
Pseudostate theory developed by S. Wilson5,7 and the optimal EI targeter developed by this author.4 The
second part discusses how to integrate these two techniques to calculate abort return trajectories in the
translunar and circumlunar phases for the direct and �y-by cases. A discussion about the optimality of the
obtained return trajectories, when di�erent entry interface constraints are present, is also included. Finally,
some numerical examples and comparisons to the results obtained by numerical optimization are described.

II. Pseudostate theory review

In this section, a brief description of the main results and algorithms of Pseudostate Theory (PT) for
Earth-Moon transfers is presented. For a complete explanation of PT and its applications see Refs.5,7. In
general, in PT a three-body trajectory is approximated by two osculating conics at the beginning and at the
end of the propagation (see Figure 2). For the abort problem we are trying to solve, we have an initial state
around the Moon and a �nal state at the Earth EI:

initial state (Moon-centered inertial coordinate frame): tI , rI ,vI

�nal state (Earth-centered inertial coordinate frame): tEI ,REI ,VEI
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(a)

(b)

Figure 1. Abort trajectory scenario examples for cases: (a) pre-lunar-orbit-insertion abort and (b) post-lunar-
orbit-insertion abort. Nominal Earth to Moon trajectory (red), abort return trajectories (black) and Earth
trajectory (blue).
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Figure 2. Pseudostate propagation for Earth-Moon transfers. Actual trajectory (red). Primary and secondary
conics (solid black).

The goal is to obtain an approximation of the EI state resulting from the propagation of the initial state
under the actual gravitational �eld (function Propagate):

(REI ,VEI) = Propagate (rI , vI , tI , tEI)

The two osculating conics at the above points are:

secondary conic: (tS, rS ,vS) = Conic2distance (rI , vI , rS , µI) (1)

primary conic: (REI ,VEI) = Conic (R∗∗
I , V∗∗

I , tEI − tI , µE) (2)

The secondary conic propagates the initial Moon-centered inertial state to a distance rS (function
Conic2distance) using the gravitational constant µI . This distance rS is de�ned by the pseudostate sphere
radius. For an Earth-Moon transfer rS is about 24 times the radius of the Earth. From the propagation of
the secondary conic we obtain (tS, rS ,vS), the time and state where the trajectory pierces the pseudostate
sphere. The primary conic propagates the primary Earth-centered pseudostate (tI , R∗∗

I , V∗∗
I ) up to the

EI point (function Conic) using the gravitational constant µE . These two conics are related through two
pseudostates: secondary (r∗I ,v

∗
I ) and primary (R∗∗

I , V∗∗
I ) by

v∗
I = vS (3)

r∗I = rS + (tI − tS) vS (4)

R∗∗
I = Rm + r∗I + δ∗I (5)

V∗∗
I = Vm + v∗

I + δ̇
∗
I (6)

where:

(Rm,Vm): Moon position and velocity at tI in Earth-centered inertial coordinates(
δ∗I , δ̇

∗
I

)
: calibration vectors. To take into account high-order gravitational �elds and

third-body perturbations (e.g. from the SUN).
The propagation process is as follows:

1. Use Eq. 1 to obtain (tS, rS ,vS).
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2. Use Eqs. 3, 4, 5 and 6 to obtain the two pseudostates: (r∗I ,v
∗
I ) and (R∗∗

I , V∗∗
I )

3. Use Eq. 2 to obtain (REI ,VEI)

Note that for propagation-only purposes, no calibration is performed and therefore: δ∗I = δ̇
∗
I = 0.

A. Three-body Lambert problem

We can modify the propagation algorithm described in the previous section to de�ne a three-body targeting
algorithm. Given an initial position and time relative to the secondary body (tI , rI) and a �nal postion
relative to the primary body (tE ,RE), we need to calculate the initial and �nal velocities (vI ,VE). We also
need to know the gravitational constants associated with the primary µE and secondary µI bodies together
with the size of the pseudostate sphere associated with the secondary body rS . In Algorithm 1, we can see
a pseudocode version of the proposed procedure. Initially, the secondary pseudostate position and the two
calibration vectors are set to zero (line 1 in the algorithm). After that, the pseudostate loop is executed (lines
2 to 15). This loop can be divided into two parts: pseudostate propagation (lines 3 to 9) and calibration
(lines 10 to 14).

In line 3, the current estimate of the primary pseudostate position vector is computed from the Moon
position at the initial time, the secondary pseudostate and the calibration position vector. In line 4, the
primary conic is calculated by solving the Lambert problem from the primary pseudostate position vector
R∗∗

I to the �nal Earth position vector RE for a transfer time tE − tI . In line 5, the velocity of the secondary
pseudostate is calculated v∗

I . From Eq. (3), this is also the velocity at the end of the secondary conic. In
line 6, the secondary conic will be calculated. For that, the INRFV problem will be solved (see section B).
Once the secondary conic is calculated, we can now get the position vector of the secondary pseudostate r∗I
from Eq. (4). Finally, we will iterate until the value of r∗I has converged with an speci�ed tolerance (line 9).
Once the pseudostate propagation part has converged, the calibration part of the algorithm will be executed
(lines 10 to 14). In line 10, a numerical propagation of the initial state: tI , rI ,vI until time tE is performed.
This numerical propagation will incorporate high-order gravity models, third-body perturbations, etc. In
general, it will be performed by one or several calls to ODE solvers. If after numerically propagating the
solution, the �nal state R

′

E is close to the target RE within some tolerance, the solution has been found
and the algorithm exits (line 11). Otherwise, the primary pseudostate vectors R∗∗

I , V∗∗
I will be obtained by

propagating a conic backward in time from the numerically propagated �nal state R
′

E ,V
′

E (line 12). Using

Eqs. (5) and (6), we can now calculate the calibration vectors δ∗I and δ̇
∗
I (lines 13 and 14).

B. The INRFV problem

The problem we are trying to solve can be de�ned as (see Figure 3): given an initial position vector r1
and �nal velocity v2 at some distance r2, calculate the initial velocity v1 (for a complete description of the
solution to this problem see Ref.6). For the abort problem we are solving in this paper, we will assume that
r2 = rS (pseudostate sphere radius) and r2 > r1. From Figure 3, we can de�ne the angle between r1 and v2

as:
ψ = θ + β2

cosψ = r̂T1 v̂2

sinψ = ±
√

1− cos2 ψ (7)

This problem requires the solution of a quatic equation:

A2x4 + 2ABx3 +
(
B2 + C − 2A

)
x2 − 2Bx+ 1− C = 0 (8)

where:

A =
r22v

2
2

µr1
, B =

(
1− r2v

2
2

µ

)
sinψ, C = cos2 ψ, x = sinβ2

We can solve this quartic equation analytically. For this work the routine PA05AD from HSL2 has been
used. The formulation of Eq. (8) introduces extraneous solutions, in order to eliminate them we have used
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Algorithm 1 Pseudostate three-body Lambert problem

Given: tI , tE , rI , RE , rS , µE and µI

Obtain: vI and VE

Initialization

1: r∗I = δ∗I = δ̇
∗
I = 0

Pseudostate loop

2: do

3: R∗∗
I = Rm + r∗I + δ∗I

4: (V∗∗
I ,VE) = Lambert (R∗∗

I , RE , tE − tI , µE)

5: v∗
I = V∗∗

I −Vm − δ̇
∗
I

6: (vI , rS , tS) = INRFV (rI , v∗
I , rS , µI)

7: r∗
′

I = r∗I
8: r∗I = rS + (tI − tS) v∗

I

9: if

∣∣∣r∗I − r∗
′

I

∣∣∣ > tolerance cycle

Calibration

10:
(
R

′

E ,V
′

E

)
= Propagate (rI , vI , tI , tE)

11: if

∣∣∣RE −R
′

E

∣∣∣ < tolerance exit

12: (R∗∗
I , V∗∗

I ) = Conic
(
R

′

E ,V
′

E , tI − tE , µE

)
13: δ∗I = R∗∗

I −Rm − r∗I
14: δ̇

∗
I = V∗∗

I −Vm − v∗
I

15: end do

the following criteria (see Ref.6 for a complete explanation): If cosψ > 0 ⇔ rT1v2 > 0, sinβ2 is the smaller
of the real positive solutions. If cosψ < 0 ⇔ rT1v2 < 0, sinβ2 is the larger of the real positive solutions.
Once sinβ2 has been found we can compute v1 and r2 as follows:

ĉ =
r̂1 × v̂2

sinψ
(9)

θ = atan2(sinψ, cosψ)− sinβ2

r2 = r2 [cos θr̂1 + sin θ (ĉ× r̂1)]

v1 =

√
v2 − 2

µ

r2
+ 2

µ

r1
p =

(r2v2 sinβ2)
2

µ

f = 1− r2 (1− cosθ)
p

g =
r2r1 sin θ
√
µp

v1 =
r2 − fr1

g

One �nal note about the problem. The sign of sinψ can be chosen arbitrarily (see Eq. (7)). Therefore
there are two antiparallel choices for the direction of the angular momentum (see Eq. (9)). In one case r1
will be located after periapse (see Figure 3 solid red line) and in the second case r1 will be located before
periapse (see Figure 3 dashed red line). This is important for the abort problem we are trying to solve
because just by changing the direction of the angular momentum we can specify the abort solutions to do a
Moon �yby or not (direct return). In Figure 1, we can see that in both scenarios: cases (a) and (b), we can
always �nd a direct and a Moon �yby return.
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Figure 3. INRFV problem de�nition. Depending on the sign of sinψ two di�erent solutions can be obtained
(red solid and red dashed curves).

III. Three-body abort targeting problem

In this section, the three-body problem formulated in Algorithm 1 will be modi�ed so it can be used as a
targeting algorithm for abort problems. The main di�erence between the proposed abort-targeting algorithm
and Algorithm 1 is the use of a di�erent method to calculate the primary conic. Instead of using a Lambert
arc for this algorithm, an optimal two-body abort targeting algorithm developed by the author4 will be used.
In general, this algorithm will solve the following problem: Given an initial state (t,R,V), a transfer time
∆t to Entry Interface (EI) and a gravitational constant µ, calculate an optimal impulsive maneuver ∆V
such that at EI the following constraints are satis�ed:

equality constraints: rEI , γEI EI radius and �ight-path-angle.

inequality constraints: λEI , LEI , AzEI EI longitude, latitude and azimuth.

As described in Ref.4, this targeting algorithm has some properties that makes it suitable for the problem
we are trying to solve in this paper. In general, the algorithm is non-iterative (an iteration procedure is used
when the EI velocity with respect to the ∆t is calculated but this is done only once) and it provides a global
optimal solution and feasibility information about the problem.

The three-body abort targeting algorithm (see Algorithm 2) is very similar to the one in Algorithm 1.
Therefore, only the di�erences between them will be described. Whereas the Lambert routine only needs
the position vectors at the beginning and at the end of the arc, the optimal abort algorithm described in
this section will need a complete state at the initial time and some constraints at EI. In order to compute
the full primary pseudostate (tI , R∗∗

I , V∗∗
I ) , the secondary pseudostate will have to be de�ned �rst. In line

2 of Algorithm 2, the secondary pseudostate is initialized and in line 6, the primary pseudostate velocity is
calculated. In lines 7 and 8, the primary conic is calculated such that it satis�es the EI constraits speci�ed:
rEI , γEI at the least or rEI , γEI and some inequality constraints on λEI , LEI , AzEI . The computation of
the primary conic and the calibration section of the algorithm (from line 9 to 19) are identical to the ones
in Algorithm 1. One �nal di�erence between both targeting algorithms is that as Algorithm 2 converges

to the solution ∆V ∗∗
I → 0, whereas previously only

∣∣∣r∗I − r∗
′

I

∣∣∣ → 0 and
∣∣∣REI −R

′

EI

∣∣∣ → 0. Finally, the

initialization of the secondary pseudostate r∗I ,v
∗
I in lines 1 and 2 is not unique. Through numerical tests

it was shown that r∗I = 0, v∗
I = vI performs well in the type of problems solved in this paper. It is also

worth mentioning that as suggested in Ref.5, the use of a pre-periapse pseudostate instead of using always
the post-periapse one (as in Algorithm 2) can reduce the number of iterations. In numerical results we have
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Algorithm 2 Three-body abort targeting problem

Given: tI , tEI , rI , vI , rEI , γEI , rS , µE and µI

Obtain: ∆vI and EI conditions

Initialization

1: r∗I = 0
2: v∗

I = vI

3: δ∗I = δ̇
∗
I = 0

Pseudostate loop

4: do

5: R∗∗
I = Rm + r∗I + δ∗I

6: V∗∗
I = Vm + v∗

I + δ̇
∗
I

7: (∆V∗∗
I , REI , VEI) = Abort (R∗∗

I , V∗∗
I , rEI , γEI, tEI − tI , µE)

8: V∗∗
I ← V∗∗

I + ∆V∗∗
I

9: v∗
I = V∗∗

I −Vm − δ̇
∗
I

10:
(
v

′

I , rS , tS

)
= INRFV (rI , v∗

I , rS , µI)

11: r∗
′

I = r∗I
12: r∗I = rS + (tI − tS) v∗

I

13: if

∣∣∣r∗I − r∗
′

I

∣∣∣ > tolerance cycle

Calibration

14:
(
R

′

EI ,V
′

EI

)
= Propagate (rI , vI , tI , tEI)

15: if

∣∣∣REI −R
′

EI

∣∣∣ < tolerance exit

16: (R∗∗
I , V∗∗

I ) = Conic
(
R

′

EI ,V
′

EI , tI − tEI , µE

)
17: δ∗I = R∗∗

I −Rm − r∗I
18: δ̇

∗
I = V∗∗

I −Vm − v∗
I

19: end do

20: ∆vI = v
′

I − vI

seen that the pre-periapse pseudostate reduces the number of iterations in cases where the trajectory is just
entering the pseudostate sphere. Once the trajectory is inside the pseudostate sphere both pseudostates (pre
and post-periapse) perform similarly for the cases evaluated in this work.

IV. Optimality of the solutions

In this section, we will discuss the optimality of the solutions for the three-body and two-body targeting
algorithms described above. The three-body version of the algorithm, which includes calls to the two-body
algorithm, will be used when the pseudostate conditions apply. That is when the vehicle is inside the
pseudostate sphere. Otherwise, the two-body version will be used. One di�erence in the performance of
both algorithms is that the three-body version will generate high-�delity solutions. Since the three-body
version incorporates a calibration phase where actual trajectories are calculated, the �nal answer is always
a return trajectory numerically integrated with high-order gravity �elds, third-body perturbation, central-
body switching, etc. The two-body version does not contain any calibration and only two-body equations
are used. Therefore no high-�delity trajectory is obtained.
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A. Optimality of the optimal two-body abort targeting algorithm

When the vehicle is located outside the pseudostate sphere, the optimal two-body abort algorithm will be
used (see line 7 in Algorithm 2 and also in Ref.4). In this section, we will compare the ∆v associated with the
abort maneuvers obtained with the two-body version of the algorithm to the ones obtained using a numerical
optimizer. The index used for the performance evaluation of the targeter is:

relative error = 100
|∆vtar −∆v∗|

∆v∗

where ∆vtar is the solution obtained using the two-body targeting algorithm and ∆v∗ is the solution
obtained by the numerical optimizer.

The numerically optimized solution will be computed taking into account high-order gravity models,
perturbations, etc. The gravity model used in all the examples consists of an 8x8 Earth and includes
the Moon and the Sun as point masses. The Copernicus1,3 trajectory optimization tool has been used to
numerically optimize the initial guess provided by the targeter. For a given nominal trajectory, di�erent
impulsive abort maneuvers are calculated for di�erent Abort Times (AT) and Return Times (RT). AT is the
time elapsed from the Trans-Lunar-Injection maneuver (TLI) to the abort maneuver time. RT is the time
elapsed from the abort maneuver time to EI. As for the EI constraints, two cases are considered: (a) equality
constraints in the EI radius and �ight-path angle and (b) same as in case (a) plus inequality constraints in the
EI azimuth. In Figure 4, we can see that the relative error between the actual ∆v and the one calculated by
the targeting algorithm is always less than 1% for the cases examined. Whereas the relative error increases
when RT increases (this is due to the fact that the trajectory is a�ected by third-body perturbations as RT
increases), the relative error due to di�erent ATs is not as relevant as the one produced by changing RT. This
is due to the fact that the ∆v magnitude decreases when AT increases (the vehicle is getting further from
the Earth) and therefore the relative error remain the same, although the absolute error increases. In Figure
4 we can see the magnitude of the initial position vector for di�erent ATs. Given the two-body nature of the
algorithm, it is expected that its performance deteriorates with this distance (i.e. when ATs increases).

When comparing both cases in Figure 4, we can also see that in case (b) the relative error between
di�erent ATs is closer than in case (a). Adding the azimuth constraint reduces the number of possible
solutions and therefore the trajectories obtained by the two-body targeter and the numerical optimizer are
closer.

The computational time for this routine is 0.11 ms in average. Given that the routine is mainly analytical,
adding more constraints to the problem does not substantially increase the computational time.

B. Optimality of the optimal three-body abort targeting algorithm

As in the previous section, the optimality of the three-body version of the algorithm has been tested against
numerically optimized solutions. For a given nominal trajectory to the Moon, several ATs and RTs have been
evaluated. The process consisted of generating a feasible solution for several ATs and RTs by Algorithm 2 and
use this solution as the initial guess for the numerically optimized trajectory. The trajectory is propagated
using two di�erent segments centered at the Moon and at the Earth. The gravity model used for the
computation of the solutions is:

• Moon-centered segment: 8x8 Moon, Earth and Sun point masses.

• Earth-centered segment: 8x8 Earth, Moon and Sun point masses.

The performance is evaluated based on three parameters: relative and absolute error in ∆v and CPU factor:

relative error = 100
∆vtar −∆v∗

∆v∗

absolute error = ∆vtar −∆v∗

CPU factor =
CPUtimeoptimizer

CPUtimepseudostate

where ∆vtar and ∆v∗ are de�ned as in the previous section, CPUtimeoptimizer is the time it takes for Coper-
nicus to �nd the optimal solution (the overhead associated with Copernicus initialization is not included)
and CPUtimepseudostate is the time it takes for Algorithm 2 to �nd the solution.
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(a)

(b)

Figure 4. Comparison between the high-�delity numerically optimized solution and the two-body solution
for three di�erent ATs and several RTs. The results are expressed in error ∆v percentage. (a) EI radius
and �ight-path angle equality constraints. (b) EI radius, �ight-path angle equality constraints and inequality
constraints in the EI azimuth [30o, 60o].

9 of 14

American Institute of Aeronautics and Astronautics



A summary of the test cases evaluated is in Table 1. This table also shows the CPU times associated
with Algorithm 2 for each of the test cases. We can use the CPU time in this table together with the CPU
factor presented in all the �gures (for example, see Figure 5) to compute the average CPU time associated
with the numerically optimized solution.

From the results in Figures 5, 6 and 7, we can conclude that the trajectories generated by Algorithm 2
are simply feasible trajectories. Although, the calculation of the primary conic is done in an optimal way,
this does not guarantee the optimality of the solution. The maximum deviation in ∆v found in the examples
is about 20% for �yby cases and 6% for direct return cases. But the time it takes for the optimizer to �nd
the solution is several times the time it takes for Algorithm 2 (see Figures 5, 6 and 7 to examine speci�c
cases).

It is interesting to note that when the number of constraints in the problem increases (reducing the
number of possible trajectories) the solutions obtained by Algorithm 2 are closer to the ones obtained by the
optimizer. A similar e�ect was shown in the previous case for the two-body version of the abort targeter. As
an example, when the EI Azimuth is constrained as in cases 5 and 6 in Table 1, the maximum relative error
is reduced to less than 2% (see Figure 7). In Table 1, we can also see that adding constraints to Algorithm
2 does not a�ect substantially the CPU time. This is due to the fact that all the EI constraints are handled
in the computation of the primary conic and this is done analytically in a process with no iterations.

Table 1. 3-Body Targeter (Algorithm 2) Computational Time Performance

Case ALTDEI γEI AzEI Flyby AT=65h AT=75h AT=85h

1 ! ! # # mean 0.34 s 0.19 s 0.18s

std 0.27 s 0.05 s 0.03 s

2 ! ! # ! mean 0.23 s 0.15 s 0.16 s

std 0.03 s 0.01 s 0.01 s

3 ! ! [30o, 60o] # mean 0.20 s 0.19 s 0.18 s

std 0.07 s 0.07 s 0.06 s

4 ! ! [30o, 60o] ! mean 0.31 s 0.17 s 0.17 s

std 0.03 s 0.015 s 0.01 s

5 ! ! [44o, 46o] # mean 0.2 s 0.19 s 0.19 s

std 0.07 s 0.06 s 0.05 s

6 ! ! [44o, 46o] ! mean 0.29 s 0.18 s 0.18 s

std 0.03 s 0.02 s 0.01 s

V. Conclusions

Generating an optimal abort return trajectory for Earth to Moon transfers can be computationally
expensive when considering realistic EI constraints and high-order gravity models at the Earth and Moon
together with third-body perturbations. The use of an initial guess generator can reduce substantially
the computational time. In this paper, a two-body and three-body abort targeting algorithms have been
presented. They can both be used as initial guess generators for numerical optimizers. We have shown
that their computational time is several orders of magnitude less than the ones associated with numerical
optimizers. We have also discussed the optimality of the solutions found by both targeters. We have
concluded that whereas the two-body version of the targeter produces solutions close to the optimal (even
for cases not close to the Earth), the three-body version of the algorithm generates only good feasible
solutions. Depending on how constrained the problem is, those solutions can be very close to the optimal
too (see Figure 7). The main advantages of the proposed algorithms are:

• They can produce feasible solutions in a reasonable amount of time: 0.11 ms for the two-body version
and 0.5s for the three-body version. It is worth mentioning that the three-body version incorporates
calibration, which increases the computational time but at the same time allows the generation of
high-�delity feasible solutions (including realistic EI constraints and gravity �elds).

10 of 14

American Institute of Aeronautics and Astronautics



(a)

(b)

Figure 5. Performance evaluation of the Three-body targeter for Cases 1 (top) and 2 (bottom) in Table 1.
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(a)

(b)

Figure 6. Performance evaluation of the Three-body targeter for Cases 1 (top) and 2 (bottom) in Table 1
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(a)

(b)

Figure 7. Performance evaluation of the Three-body targeter for Cases 1 (top) and 2 (bottom) in Table 1
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• The type of solution (�yby or direct) can be speci�ed. Whereas numerical optimizers might pick the
optimal one of the two approaches, these algorithms allow the user to evaluate a speci�c one.

• They can be easily modi�ed to solve some similar one-impulse return trajectory problems. Although
not shown in this paper, Algorithm 2 has been also used to calculate one-impulse trans-Earth-injection,
partial-TLI and partial-LOI abort return trajectories with similar performance to the one described
above. Hardly no modi�cations were needed to handle these additional problems.
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