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ABSTRACT 
Three procedures to guide selection of an efficient modal basis in a nonlinear random 
response analysis are examined.  One method is based only on proper orthogonal 
decomposition, while the other two additionally involve smooth orthogonal decomposition.  
Acoustic random response problems are employed to assess the performance of the three 
modal basis selection approaches.  A thermally post-buckled beam exhibiting snap-through 
behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure 
are used as numerical test articles.  The results of the three reduced-order analyses are 
compared with the results of the computationally taxing simulation in the physical degrees of 
freedom.  For the cases considered, all three methods are shown to produce modal bases 
resulting in accurate and computationally efficient reduced-order nonlinear simulations. 

LIST OF ACRONYMS 

DoF Degree-of-freedom    EPF Estimated POM frequency 
LNM Linear normal mode    MAC Modal assurance criterion 
MAP Modal amplitude participation  MEP Modal energy participation 
POD Proper orthogonal decomposition  POM Proper orthogonal mode 
POV Proper orthogonal value   SOM Smooth orthogonal mode 
SOD Smooth orthogonal decomposition  SOV Smooth orthogonal value 
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1. INTRODUCTION 
Nonlinear random response analysis of large structural components in physical degrees of 
freedom (DoFs) can be associated with a prohibitive computational cost.  Reduced-order 
modeling has been shown to be a viable alternative for a range of loading and response 
conditions [1-8].  For a typical aerospace structure having complex geometry and loading 
conditions (combined mechanical, thermal, acoustic, and pressure), selection of basis 
functions through which the reduced-order system is formed is usually not intuitive.  
Therefore, a rigorous modal basis selection procedure resulting in a computationally efficient 
and accurate reduced-order simulation is required.  As part of that procedure, a system 
identification procedure must be performed and a criterion for modal basis selection must be 
established. 

Recently, Rizzi and Przekop offered a modal basis procedure and successfully 
demonstrated it on 1-D and 2-D thin-walled structures [9-11].  Because the identification 
procedure utilized displacement response data in a proper orthogonal decomposition (POD) 
analysis, the modal basis selection criterion relied solely on proper orthogonal mode (POM) 
amplitudes.  However, different DoF types (e.g. transverse or in-plane displacements) often 
times exhibit significantly different response magnitudes, so the selection process had to be 
performed independently for each DoF type to avoid discriminating against important 
response components having small amplitudes.  This procedure for selecting POMs is 
subsequently referred to as the modal amplitude participation (MAP) procedure.  Finally, 
since POMs are load dependent, linear normal modes (LNMs) were related to the POMs to 
form a robust, load independent modal basis. 

A modified approach to mitigate the need to process individual DoFs types separately in 
the basis selection process was subsequently presented by Guo and Przekop [12].  It 
additionally included velocity response data in the identification process by means of the 
smooth orthogonal decomposition (SOD) analysis [13].  Through this enhancement, estimated 
frequencies corresponding to POMs became available.  This permitted a measure of the modal 
energy corresponding to a particular POM to be computed and used in the selection process.  
The process through which modal energy is used for selecting POMs is subsequently referred 
to as the modal energy participation (MEP) procedure.  Consequently, in the MEP approach, 
different DoF types were handled together and small displacement amplitude responses were 
not discriminated against if their corresponding energy was high.  The MEP procedure was 
successfully tested by comparing the reduced-order analysis results with those obtained from 
full-order simulations in physical DoFs.  However, since the MAP procedure was tested using 
a general reduced-order approach retaining all the DoFs [9-11], and the MEP procedure was 
tested using a reduced-order method variation that statically condenses the in-plane behavior 
into transverse equations [12], a direct comparison of the effectiveness of the two procedures 
was not possible.  Introduction of the SOD enhancement to the identification process enabled 
one additional alternative for modal basis selection not previously considered.  The approach 
retains POMs within some specified frequency bandwidth based on their estimated POM 
frequencies (EPF).  As in the MAP approach, LNMs are used to form the basis from the 
selected POMs in both the MEP and EPF approaches. 

The objectives of this study are twofold.  The first is to evaluate the modal bases derived 
using the MAP, MEP and EPF approaches.  The second is to compare reduced-order analysis 
results, obtained with the same reduced-order approach, using the three different bases with 
results from a full-order simulation.  The 1-D and 2-D structures previously investigated 
[9-11] will serve as the example cases. 
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2. FORMULATION 

In this section, the three components required for an accurate and computationally efficient 
reduced-order analysis are outlined.  They are system identification, modal basis selection, 
and nonlinear modal reduction and simulation. 

2.1  System identification 
When physical DoFs are chosen to characterize a response, two data sets can be formed as an 
accumulation of n instantaneous displacement and velocity fields to produce a displacement 
snapshot matrix  and a velocity snapshot matrix , respectively.  Both matrices contain the 
same selected set of N DoFs resulting in their sizes being n × N.  The sample rate and spatial 
resolution of the snapshot matrices must be sufficient to resolve the system’s temporal and 
spatial characteristics of interest.  The displacement and velocity correlation matrices  and 

, respectively, both of size N × N are formed as 
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An eigenanalysis of the displacement correlation matrix  is next performed, i.e., XR
 
  (3) XR - λI p = 0⎡ ⎤⎣ ⎦
 
to obtain the POM matrix  and the diagonal proper orthogonal value (POV) 
matrix, , both of size N × N [14].  Note that an alternative means of obtaining similar 
quantities is via singular value decomposition [15].  Another eigenanalysis can be performed 
to obtain the smooth orthogonal mode (SOM) matrix 

[P p p ... p= 1 2 N

λ

[ ]S s s ... s= 1 2 N  and the diagonal 
smooth orthogonal value (SOV) matrix, , both of size N × N [13] γ
 
 γV XR R s 0− =⎡ ⎤⎣ ⎦  . (4) 
 
Here the smooth orthogonal values  are the squared natural frequencies of the SOMs.  
Solution of the eigenanalysis 

γ
(4), however, does not directly give the sought after estimated 

POM frequencies.  Chelidze and Zhou [13] and Farooq and Feeny [16] independently showed 
that natural frequencies corresponding to the j-th SOM can also be estimated from a Rayleigh 
quotient-like relationship as  
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They further showed that for an undamped linear free vibration problem  
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  (6) -TΦ = S
 
where  is a linear modal matrix.  Since any vibrating system, even a nonlinear one, can be 
expressed as a superposition of POMs p, Eq. 

Φ
(6) can be used to make the following 

approximation  
 
 TS P−≅  . (7) 
 
Substitution of Eq. (7) into Eq. (5) is performed to obtain the desired estimated POM 
frequencies, without the need of solving Eq. (4) directly. 

2.2  Modal basis selection 
Three approaches (MAP, MEP and EPF) are offered for selecting the basis required in the 
reduced-order analysis.  In each approach, a set of POMs is first identified followed by a 
procedure to associate each POM with one or more LNMs.  The EPF approach uses Eqs. (5) 
and (7) to select a set of POMs within some desired frequency band.  The MAP selects POMs 
using a modal amplitude participation factor [9-11], while the MEP approach uses a modal 
energy participation factor as described below. 

Feeny and Liang [17] showed that for lightly damped randomly excited systems and large 
but finite number of simulation time steps n, the POVs approximate the mean square values of 
modal coordinates, q, i.e., 
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Note that the number of simulation time steps is typically greater than the number of time 
steps used in the correlation matrices for system identification.  Assume that a measure of the 
instantaneous modal kinetic energy associated with the j-th POM can be represented as 
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The mean modal kinetic energy over n simulation time steps becomes 
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Substituting Eq. (9) into Eq. (10) yields 
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Further substituting Eqs. (5) and (8) into Eq. (11) yields the mean modal kinetic energy in 
terms of the POVs and their estimated squared frequencies as 
 
 j j je γ λ≅  . (12) 
 
The contribution of each POM to the overall dynamic response is given by 
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where χ j  is the j-th POM modal energy participation factor.  The sum of all POM modal 
energy participation factors is unity.  When the dominant M POMs are selected, their 
cumulative participation, υ , can be expressed as 
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Retention of only M selected POMs reduces the size of P to M x N.  Note that Eqs. (13) and 
(14) can be also used to obtain the MAP approaches’ modal amplitude participation factor and 
cumulative participation [9-11], respectively, when the POVs jλ  are used in place of the mean 
modal kinetic energy.  Unlike the MEP approach which requires only a single criterion for 
either Eq. (13) of (14),  the MAP approach requires as many criteria as there are DoF types 
used in the system identification, e.g. one cutoff value for the transverse displacement and one 
value for the in-plane displacement.  For both the MAP or MEP approaches, a set of POMs 
may be selected based on the modal participation factor, the cumulative participation, or some 
combination thereof. 

The final step in the modal basis selection process follows the selection of POMs via one 
or more of the above approaches.  As previously indicated, the direct use of POMs as the 
basis functions is not preferred as they are specific to the loading under which they were 
determined and, consequently, applicability of such a basis to alternative loading conditions 
may be limited.  Instead, a more robust load-independent basis, formed from LNMs Φ  which 
resemble the M selected POMs, is sought.  To do so, the expansion coefficient matrix  is 
first produced by crossing the transpose of the LNM matrix and the matrix of the selected 
POMs 

expC

  . (15) ≅ -T
expC Φ P

 
Each column of  corresponds to a particular POM and provides the coefficients required 
for LNM superposition.  Since the POMs are not normalized, each column of coefficients is 
individually normalized such that its maximum value is unity.  In this manner, a single cut-off 
value can be specified for all POMs.  The cut-off value selection is arbitrary, but previous 
experience proved that a value of 0.5 gives reasonable results [9-10].  The end result of the 
basis selection process is a set of L selected LNMs, L N, for use in the nonlinear modal 
reduction.  Note, that an alternative approach for correlating the selected POMs with the 
LNMs utilizing the modal assurance criterion (MAC) was explored by the authors in the past 
[11]. 

expC

2.3 Nonlinear modal reduction and simulation 
Since the modal reduction utilizing the indirect approach employing a nonlinear stiffness 
evaluation procedure was detailed by the authors in several recent publications [1, 9-11, 18], 
only an abbreviated description is presented herein.  The equations of motion of the nonlinear 
full-order system in physical DoFs may be written as 
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  (16) NLMx( ) + Cx( ) + f (x( )) = f( )�� �t t t t
 
where M and C are the system mass and damping matrices, x is the displacement response 
vector and f is the force excitation vector, respectively.  The nonlinear restoring force  is a 
vector function, which generally includes the linear, quadratic, and cubic stiffness terms.  By 
applying the modal coordinate transformation 

NLf

 
 ( ) ( )t =x Φq t

t

 (17) 
 
to Eq. (16), a modal equation of motion can be written as 
 
  (18) NLMq( ) + Cq( ) + f (q ( ),q ( ),…,q ( )) = f( )� � �� �� � 1 2 Lt t t t t
 

where q=[ ]T is a generalized coordinate vector and  is the set of L selected 
LNMs.  For mass-normalized eigenvectors, 

1 2, , ,… Lq q q Φ

 

 2ΦT TM = MΦ = I C =Φ CΦ = ζ ω⎡ ⎦ ��
r r⎡ ⎦  (19) 

 
and rω  are the undamped natural frequencies and rζ  are the viscous damping factors.  The 
modal excitation force is . Tf = Φ f�

Since the nonlinear restoring force  is generally not known in the context of a 
commercial finite element (FE) program, an indirect means of evaluating the nonlinear 
stiffness is required.  Different combinations of scaled LNMs can be used to form a set of 
prescribed displacement fields.  Using a nonlinear FE static analysis, nonlinear restoring 
forces  can be computed in physical DoFs and transformed to the generalized coordinates 
as   The r-th nonlinear modal restoring force can be written as a summation of 
modal linear, quadratic, and cubic stiffness components as 

NLf

NLf
f = Φ .T

NL NLf�

 1 2
1 1 1

( , , , ) 1,2, ,
= = = = = =
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f q q q d q a q q b q q q r L      (20) 

 
Since the left-hand-side of the Eq. (20) is known, as are the assumed scaling factors q on its 
right-hand-side, solution of a simple algebraic system of equations is only needed to arrive at 
the linear d, quadratic a, and cubic b modal stiffness coefficients.  Eq. (18) is numerically 
integrated using a 4th order Runge-Kutta scheme and physical displacements are obtained 
through the inverse modal coordinate transform. 

3. APPLICATION EXAMPLES 
The beam, arch, and plate structures previously considered [9-11] serve as example cases.  
Identified POMs, their corresponding frequencies, modal energy participation factors, and 
results of POM projections on a set of LNMs are used to compare the three modal basis 
selection methods.  Transverse and in-plane displacement power spectral densities (PSDs) are 
used to assess the quality of the resulting reduced-order simulations vis-à-vis full-order 
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simulations.  ABAQUS/Explicit v6.9 [19] and the ABAQUS-based RANSTEP code [18] 
were used in the study to produce full-order and reduced-order solutions, respectively. 

3.1 Beam example 
The aluminum planar beam structure employed in this study is the same as previously 
investigated by the authors [11].  The following material properties were used: Young’s 
modulus E = 73.11 GPa, shear modulus G = 27.59 GPa, mass density ρ = 2763 kg/m3, and 
coefficient of thermal expansion α = 22.32 x 10-6 1/ºC.  A 2% critical damping, corresponding 
to the first symmetric transverse displacement LNM, was prescribed.  The beam measured 
0.4572 m in length with a cross-section of 25.4 mm wide by 2.286 mm high.  The FE beam 
model was discretized using 144 ABAQUS two node B21 elements, each measuring 
3.175 mm in length.  The B21 element features three DoFs per node; one rotational DoF and 
two translational (transverse and in-plane) DoFs.  Hence the beam FE model contained a total 
of 435 DoFs.  Both beam ends were clamped, i.e., all three DoFs at the two end nodes were 
constrained. 

The random load was modeled as truncated white noise [20] with the cut-off frequency of 
1500 Hz.  The loading had an overall sound pressure level (OASPL) of 170 dB referenced to 
20 µPa.  In addition, a uniform temperature increment of 19.44 ºC was applied.  This 
temperature increment was approximately 5.3 times the critical buckling temperature of 
3.67 ºC and resulted in two symmetric thermally post-buckled equilibrium positions.  Since 
the temperature increase was relatively small, the material properties were considered to be 
temperature-independent.  Under the prescribed combination of temperature and acoustic 
loadings, the beam was known to respond in a persistent snap-through fashion [11]. 

The total duration of the simulation used to perform the system identification was 2.1384 s 
from which the initial transient of 0.5 s was removed to ensure that a developed response was 
applied in the procedure.  With the sampling rate at 50 µs, 32,768-point displacement and 
velocity snapshots were used.  The reduced-order simulation results that follow utilize five 
ensemble averages, giving a total response duration of 8.192 s after removal of the initial 
transients from each ensemble.  A 32,768-point fast Fourier transform (FFT) was used to 
compute the response PSDs, giving a frequency resolution of 0.61 Hz. 

Based on the previous studies conducted using the MAP approach and LNMs identification 
using MAC values of 0.5 or greater, 17 LNMs were found sufficient to accurately capture the 
beam response [11].  Therefore, to ensure a meaningful comparison of the results from the 
three methods, 17 LNMs were also selected using the MEP and EPF procedures.  Had the 
intent of this study been other than to compare the three modal selection procedures, a 
different criterion could have been used.  For example, a certain cumulative participation cut-
off level can be established for the MEP approach.  Similarly, for the EPF method, a certain 
cut-off bandwidth can be prescribed. 

3.1.1 Beam example results 
In the following, the snapshot and correlation matrices were formed using the two 
translational DoF types only.  Section 3.1.1.1 considers the effect of adding the rotational DoF 
type.  The results of the system identification and basis selection processes using the MEP and 
the EPF methods are presented in Table 1.  POM ordering numbers, their corresponding 
frequencies, modal energy participation factors, and identified LNMs are indicated.  While the 
total set of linear modal basis includes 429 vectors, i.e., the number of active DoFs in the 
system, the POMs were projected only on a subset of the first 84 LNMs present below 
100 kHz.  The 17 entries in Table 1 above the dashed red line correspond to the selection of 

036 
 



 

POMs and their corresponding LNMs using the MEP method.  The 17 shaded entries 
correspond to the POMs and LNMs determined by the EPF method.  It is seen that the 
difference between the two approaches is relatively minor, with LNMs 8 and 9 selected by the 
MEP method being replaced with LNMs 54 and 58 selected by the EPF method. 

The results of the two new procedures are summarized and compared with the original 
MAP approach in Table 2.  Here a breakdown is provided between low frequency transverse 
LNMs and high frequency in-plane LNMs.  It is seen that the EPF and MAP procedures result 
in the same basis selection. 

POM 
Number 

Estimated 
Frequency, Hz 

Modal Energy 
Participation, % 

Identified LNM 

290 111.5 45.49 1 
289 204.9 16.84 2 
288 358.0 15.42 3 
286 799.4 8.86 5 
287 532.5 7.76 4 
284 1440 2.54 7 
285 1103 2.35 6 
281 1816 0.31 8 
280 2246 0.29 9 
283 427.0 0.060 15 
282 514.2 0.028 22 
279 632.5 0.011 28 
278 545.0 0.008 33 
277 622.1 0.0033 38 
276 651.0 0.0027 42 
273 904.5 0.0015 47 
275 714.5 0.0012 51 
271 1107 0.00058 58 
270 1245 0.00045 54 

Table 1. Selected POMs, their estimated frequencies, modal participation factors, and 
corresponding LNMs for a beam structure under combined 19.44 ºC and 170 dB loading. 

Transverse LNMs  In-plane LNMs 
LNM 

Number 
Frequency 

(Hz) 
MAP 

(7T + 10I)* 
EPF 

(7T + 10I) 
MEP 

(9T + 8I) 
LNM 

Number 
Frequency 

(Hz) 
MAP 

(7T + 10I) 
EPF 

(7T + 10I) 
MEP 

(9T + 8I) 

1 57.82 + + + 15 5,625 + + + 
2 159.34 + + + 22 11,250 + + + 
3 312.29 + + + 28 16,874 + + + 
4 516.05 + + + 33 22,495 + + + 
5 770.56 + + + 38 28,114 + + + 
6 1075.7 + + + 42 33,729 + + + 
7 1431.3 + + + 47 39,340 + + + 
8 1837.3   + 51 44,947 + + + 
9 2293.3   + 54 50,548 + +  

* Number of transverse (T) and in-plane (I) LNMs 58 56,144 + +  

Table 2. Selected eigenanalysis and basis selection results for a beam structure under 
combined 19.44 ºC and 170 dB loading. 

The results of the reduced-order simulations obtained with the three selection procedures 
as well as the results of the full-order simulation are presented in Figure 1 and Figure 2 for 
transverse and in-plane displacements, respectively.  It is seen that both reduced-order 
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solutions compare very favorably with the full-order solution and that no particular reduced-
order solution seems to provide a more accurate result than the other. 
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Figure 1. Transverse displacement PSD at  
the quarter span location. 

Figure 2. In-plane displacement PSD at 
the quarter span location. 

3.1.1.1 Expanded input degrees-of-freedom 
In general, several factors may influence the choice of DoF types which are included in the 
basis selection procedure.  In the preceding section, only two of three element DoF types, 
namely the translational DoF types, were included in the correlation matrices because this 
subset of DoF types was proven sufficient in the MAP approach [9-11].  To verify this 
observation for the two new procedures, the basis selection was repeated using correlation 
matrices consisting of all three (two translational and one rotational) DoF types.  Irrespective 
of the number of DoF types included in the correlation matrices, the POMs themselves always 
consist of all three DoF types. 

A comparison of POM shapes and estimated frequencies is first presented.  The two POMs 
with the largest modal energy participation factors, POM numbers 290 and 289, were 
computed using correlation matrices consisting of two and three DoF types.  These POMS 
have the lowest estimated frequencies and are presented in Figure 3 and Figure 4.  It is seen 
that both transverse and in-plane displacement fields match well and also that the frequency 
estimates are within 10% of each other. 

Because the reduced-order analysis uses LNMs as the basis and not POMs directly, the 
effect of the additional DoF type on the set of LNMs identified is next considered.  The 
inclusion of all three DoF types in the correlation matrices increases the total number of 
POMs from 290 to 435.  As shown in Table 3 for the EPF approach, this increase does not 
change the number of POMs in the examined low frequency bandwidth and only slightly 
affects their ordering (compare the frequency ordering of POM numbers 283 and 282 versus 
POM numbers 422 and 420).  However, while the corresponding LNMs were largely 
unaffected, two POMs (410 and 407) were sufficiently changed such that the number of 
LNMs identified with each increased from 1 to 2.  This would increase the size of the modal 
basis by 1 (LNM 62) if the frequency bandwidth were to remain fixed.  Alternatively, keeping 
the size of the modal basis fixed at 17 would drop LNM 7 associated with POM number 429. 

  With regard to the MEP method, inclusion of three DoF types resulted in a basis very 
similar (1-9, 15, 22, 28, 33, 38, 42, 47, and 54) to that obtained with two DoF types.  Only 
one LNM differed, namely LNM 51 versus 54.  This is not surprising as the modal energy 
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participation factors associated with the POMs are extremely low, 0.0012 and 0.00045%, see 
Table 1.  When the modal energy participation factors are so low, small differences in the 
POM ordering are not unexpected.  In summary, it may be concluded that POM shapes and 
frequency estimates are not significantly affected by the addition of the rotational DoF type in 
the correlation matrices, and that any such differences have a minor effect on the derived 
modal basis.  From a practical standpoint, it allows all DoF types to be used in the correlation 
matrices without the burden of partitioning the snapshot matrices. 
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Figure 3. POM number 290 – transverse and 
in-plane normalized displacements. 

Figure 4. POM number 289 – transverse and 
in-plane normalized displacements. 

3.1.1.2 Comparison of estimated POM and natural frequencies 
Additional insight into the relationship between POMs and LNMs can be made through 
examination of the estimated POM frequencies and LNM frequencies in Table 3.  In the 
following, the results from only the two DoF type identification procedure will be considered 
for brevity.  For the transverse behavior, the range of the estimated POM frequencies (111.5-
1440 Hz) is comparable to the range of frequencies for the corresponding LNM frequencies 1-
7.  Since the response is nonlinear, it is expected that estimated POM frequencies will be 
different than the LNM frequencies obtained from a stress-free eigenanalysis.  It is observed, 
for example, that POM number 290 has an estimated frequency of 111.5 Hz while the 
corresponding fundamental LNM occurs at the frequency of 57.78 Hz.  The 93.0% increase of 
the estimated POM frequency over the fundamental is indicative of a spring-hardening type of 
nonlinearity.  This nonlinear behavior is also evident in the transverse displacement PSD in 
Figure 1, which shows the frequency of the dominant peak to be that of POM number 290, the 
dominant modal energy contributor, see Table 1.  It is also noted in Table 3 that the relative 
difference between the estimated POM frequency and the corresponding LNM frequency 
diminishes with increasing frequency.  For example, the estimated frequency of POM number 
289 is only 28.7% greater than the LNM 2 frequency.  For POM number 288 and LNM 3, this 
difference further diminishes to 14.7%, while the highest frequency transverse LNM number 
7 virtually matches the frequency of its corresponding POM number 284. 

Significantly different conclusions are drawn based on the in-plane behavior.  It is seen 
that while the natural frequencies of the in-plane LNMs presented in Table 3 range from 
5.62 kHz (LNM 15) to 56.1 kHz (LNM 58), the corresponding POMs have estimated 
frequencies between 427.0 Hz and 1245 Hz, i.e., one to two orders of magnitude lower.  The 
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physical significance of this observation is that the in-plane LNMs are indirectly excited 
through their nonlinear coupling with the transverse LNMs.  From the analysis procedure 
perspective, however, this is of no significance because the modal expansion procedure that 
associates LNMs with POMs is a curve fitting process that does not take into account modal 
frequencies.  Hence, because the frequency of the associated LNM may be much higher than 
its estimated POM frequency, the eigenanalysis identifying LNMs must be conducted for a 
greater frequency range than the estimated POM frequency range. 

2 DoF Types  3 DoF Types  LNM 
POM 

Number 
Estimated 

Frequency (Hz) 
 POM 

Number 
Estimated 

Frequency (Hz) 
 Number Frequency (HZ) 

* Associated With 3 DoF Type Only 
290 111.5  435 122.8  1  57.78 
289 204.9  434 212.2  2 159.2 
288 358.0  433 369.3  3 312.1 
283 427.0  422 498.9  15 5,621 
282 514.2  420 486.0  22 11,243 
287 532.5  432 534.2  4 515.7 
278 545.0  417 561.2  33 22,480 
277 622.1  418 613.9  28 16,862 
279 632.5  415 623.9  38 28,095 
276 651.0  414 651.3  42 33,706 
275 714.5  411 718.1  51 44,917 
286 799.4  431 799.5  5 770.0 
273 904.5  410 905.0  47 (54*) 39,314 (50,514*) 
285 1103  430 1103  6 1075 
271 1107  409 1158  58 56,106 
270 1245  407 1372  54 (62*) 50,514 (61,691*) 
284 1440  429 1440  7 1430 

Table 3. Comparison of the EPF selection procedure using 2 and 3 DoF types. 

3.2 Arch example 
The shallowly curved arch structure employed in this study was the same as previously 
studied by the authors [11].  The same aluminum material properties used in the beam study 
case were applied, including 2% critical damping coefficient corresponding to the first 
symmetric LNM.  The projected length and the cross section dimensions of the arch matched 
the dimensions of the beam.  A constant radius of arch curvature was 2.06 m.  The same 
element size and type, as well as the boundary conditions, were used in the arch FE model as 
the beam.  The random load was again modeled as a truncated white noise with the cut-off 
frequency of 1500 Hz.  The loading was applied as a distributed vertical force with a root-
mean-square (RMS) magnitude of 114.3 N/m.  Under the prescribed excitation, the arch is 
known to respond in an auto-parametric fashion [11].  The total duration of the simulation 
used to perform the system identification and to produce displacement PSD results matched 
the values used in the beam study case.  Based on the previous studies conducted using the 
MAP approach and LNMs identification using MAC values of 0.5 or greater, 13 LNMs were 
found sufficient to accurately capture the arch response [11].  Therefore, 13 LNMs were also 
selected through the MEP and EPF procedures to ensure a meaningful comparison of results. 
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3.2.1 Arch example results 
In the following, the snapshot and correlation matrices were again formed using the two 
translational DoF types only.  The results of the system identification and basis selection 
process through the MEP and the EPF methods are presented in Table 4.  POMs ordering 
numbers, their corresponding frequencies, modal energy participation factors, and identified 
LNMs are indicated.  While the total set of LNMs includes 429 vectors, the POMs were 
projected only on a subset of the first 84 LNMs present below 100 kHz.  The entries in Table 
4 above the dashed red line correspond to the selection of POMs and their corresponding 
LNMs resulting from the MEP procedure.  The shaded entries correspond to the POMs and 
LNMs determined by the EPF approach.  It is seen that the difference between the two 
approaches are more significant than for the beam case previously discussed.  Table 4 also 
shows that the identified POMs do not resemble LNMs as closely as was observed in the 
beam case, as several POMs are represented by more than one LNM.  Specifically note that 
POM number 277 is represented by four LNMs.  Since only 13 LNMs are to be included in 
the solution, only the most closely correlated LNM with POM number 277, i.e., LNM 51, was 
included.  LNMs 11, 33, 42, and all modes below the dashed red line were not included in the 
MEP reduced-order system. 

POM 
Number 

Estimated 
Frequency, Hz 

Modal Energy 
Participation, % 

Identified LNMs 

290 334.0 41.43 2, 3 
288 273.0 21.58 2 
287 769.6 20.06 5 
289 191.4 11.10 1 
285 1408 3.60 7 
286 505.2 2.13 4 
284 942.1 0.07 6 
281 1667 0.02 9, 22 
282 865.0 0.01 9, 22 
283 588.5 0.007 15 
280 1376 0.0033 8 
278 1015 0.00078 28 
277 1155 0.00064 11, 33, 42, 51 
279 506.9 0.00039 33, 42 
276 718.0 0.00019 38 
275 800.7 0.00015 33, 42, 51, 58 
272 799.0 0.00006 58 

Table 4. Selected POMs, their estimated frequencies, modal participation factors, and 
corresponding LNMs for a shallow arch under 114.3 N/m distributed loading. 

The breakdown of selected LNMs by DoF type (transverse and in-plane) is provided in 
Table 5 for the three basis selection methods.  Here the in-plane DoF type is defined in 
curvilinear coordinates.  Consistent with the beam example, it is seen that the MEP approach 
tends to favor more transverse and fewer in-plane LNMs in the basis compared to the other 
two approaches.  As in the beam example, the number of transverse LNMs and the number of 
in-plane LNMs are the same for the MAP and EPF approaches.  Of those numbers, the two 
approaches differ by only one transverse LNM and one in-plane LNM. 

Results from the reduced-order simulations obtained with the three selection procedures 
and those from the full-order are presented in Figure 5 and Figure 6 for transverse and in-
plane displacements, respectively.  It is seen that all three reduced-order solutions compare 
very favorably with the full-order solution.  No particular reduced-order solution seems to 
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provide appreciably more accurate results than the other.  Because the EPF procedure does 
not include LNM 6 in its basis, it fails to capture the third peak in the transverse displacement 
PSD (Figure 5).  This is an artifact of restricting the number of LNMs to 13.  Had the criterion 
for the EPF procedure been to include all POMs within the excitation bandwidth, then LNM 6 
would have been included in the basis. 

Transverse LNMs  In-plane LNMs 
LNM 

Number 
Frequency 

(Hz) 
MAP 

(6T + 7I) 
EPF 

(6T + 7I) 
MEP 

(9T + 4I) 
 LNM 

Number 
Frequency 

(Hz) 
MAP 

(6T + 7I) 
EPF 

(6T + 7I) 
MEP 

(9T + 4I) 

1 158.25 + + +  15 5,624 + + + 
2 258.17 + + +  22 11,225 + + + 
3 400.41 + + +  28 16,831 +  + 
4 513.19 + + +  33 22,437 + +  
5 773.72 + + +  38 28,039 + +  
6 1070.1   +  42 33,638 + +  
7 1426.0 +  +  51 44,826 + + + 
8 1828.0   +  58 55,991  +  
9 2282.7  + +       

Table 5. Selected eigenanalysis and basis selection results for an arch structure under 
114.3 N/m loading. 
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Figure 5. Transverse displacement PSD at the 
mid-span location. 

Figure 6. In-plane displacement PSD at the 
mid-span location. 

3.3 Plate example 

Finally, the two new modal basis selection procedures were applied to a substantially larger 
two-dimensional plate structure [9].  The plate dimensions were 0.3556 m by 0.2540 m with a 
thickness of 1.016 mm.  The FE model was constructed using 8960 S4R four node elements, 
each measuring 3.175 mm by 3.175 mm.  The S4R element features six DoFs per node, thus 
the plate model contained the total of 54,918 DoFs, or two orders of magnitude more than the 
beam or arch models.  The plate was clamped on all four edges with all six DoFs constrained.  
Since the inclusion of the rotational DoF type did not significantly alter the result in the beam 
case, as evidenced in section 3.1.1.1, the plate procedure was based on the three translational 
DoF types only, i.e., one transverse and two in-plane. 

036 
 



 

The random acoustic load was modeled as truncated white noise with a cut-off frequency 
of 1024 Hz and OASPL of 154 dB.  The total duration of the simulation used to perform 
system identification was 1.0 s, from which the initial transient of 0.5 s was removed to 
provide a developed response.  With a sampling rate of 50 µs, 10,000 displacement and 
velocity snapshots were formed.  The number of snapshots was lower than that used in the 
beam and arch cases because no instabilities (snap-through or auto-parametric response) were 
identified.  Consequently, the simulation results presented are based on a shorter simulation 
time using a single 2.1384 s ensemble.  When the initial transient of 0.5 s was removed, this 
left 1.6384 s of fully developed response.  A 16,384-point FFT was used to compute the 
PSDs, giving a frequency resolution of 1.22 Hz.  Based on the previous studies conducted 
with the MAP and the LNM expansion procedure using a coefficient cut-off of 0.5, 35 LNMs 
were found sufficient to accurately capture the plate response [9]. 

3.3.1 Plate example results 
While the total set of LNMs included over 50,000 vectors, the POMs were projected only on a 
subset of the first 1279 LNMs present below 50 kHz.  The results are summarized in Table 6. 

Transverse LNMs  In-plane LNMs 
LNM 

Number 
Frequency 

(Hz) 
MAP 

(16T + 19I) 
EPF 

(18T + 17I) 
MEP 

(32T + 3I) 
 LNM 

Number 
Frequency 

(Hz) 
MAP 

(16T + 19I) 
EPF 

(18T + 17I) 
MEP 

(32T + 3I) 

1 109.3 + + +  391 15,603 + + + 
4 290.2 + + +  520 20,448 + + + 
8 494.1 + + +  558 21,917 + + + 

11 641.7 + + +  634 24,902 + +  
12 657.7 + + +  708 27,912 + +  
19 991.1 + + +  785 30,812 + +  
22 1156.0 + + +  834 32,736 + +  
23 1194.0 + + +  862 33,667 + +  
28 1352.9 + + +  895 34,639 + +  
30 1493.5 + + +  991 38,971 +   
35 1675.5 + + +  1012 39,515 + +  
40 1833.3 + + +  1098 42,830 + +  
46 2162.0 + + +  1099 42,945 + +  
47 2165.9 + + +  1136 44,300 +   
48 2212.5 + + +  1173 45,876 + +  
53 2369.4  + +  1179 46,078 + +  
59 2675.8 + + +  1206 47,085 + +  
60 2686.2  + +  1234 48,405 + +  
62 2822.8   +  1257 49,158 + +  
68 2999.5   +       
72 3166.4   +       
81 3557.6   +       
83 3649.4   +       
85 3686.9   +       
86 3712.9   +       
90 3812.9   +       
92 4005.8   +       
93 4025.7   +       

105 4498.8   +       
111 4647.0   +       
116 4870.4   +       

Table 6. Selected eigenanalysis and basis selection results for a plate structure under 
154 dB loading. 
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It is seen that, consistent with the beam and arch examples, the MEP approach tends to 
favor more transverse and fewer in-plane LNMs in the basis compared to the other two 
approaches.  The MAP and EPF approaches result in much similar sets of basis, consistent 
with the beam and arch examples.  The bases identified by those two approaches differ only 
by four out of 35 LNMs. 

Like the arch example, the results of the modal expansion (details not presented for 
brevity) indicate that POMs with low modal energy participation factors tend to decompose 
into more LNMs than those with higher participations.  At the same time the low modal 
energy participation factor POMs tend to be dominated by the in-plane behavior. 

Reduced-order simulation results obtained with the three selection procedures and full-
order simulations are presented in Figure 7 and Figure 8 for transverse and in-plane 
displacements, respectively.  It is seen that all three reduced-order solutions compare 
favorably with the full-order solution.  While the MEP solution, with its basis heavily 
weighted with transverse LNMs, is somewhat better at capturing the transverse response (see 
third broad peak in Figure 7), it is less successful in capturing the in-plane response than the 
other two methods, see Figure 8.  Hence, for a fixed modal basis size, there may be a trade-off 
between the number of transverse versus in-plane LNMs, and the accuracy of the transverse 
versus in-plane solutions. 
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Figure 7. Transverse displacement PSD at the 
quarter-quarter span location. 

Figure 8. In-plane (in the shorter plane 
dimension) displacement PSD at the quarter-

quarter span location. 

4. CONCLUDING REMARKS 
Three modal basis selection approaches were investigated and corresponding reduced-order 
analyses results were compared with a full-order simulation in physical DoFs.  All three 
approaches yielded results which compared favorably with the full-order simulation.  The 
previously developed MAP approach required only displacement response data for its system 
identification procedure and was based solely on POD analysis.  The two new approaches, 
MEP and EPF, required both displacement and velocity response data for their system 
identification procedures and utilized both POD and SOD analyses.  Therefore, the MAP 
approach required a smaller set of response data, but involved separation of DoFs types.  The 
other two approaches allowed all DoF types simultaneously, but required a larger input data 
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set.  The latter can be mitigated by obtaining the velocities through differentiating 
displacements, rather than acquiring and storing them explicitly, as was done in the present 
work. 

For the cases considered, it was also found that the translational displacement data set 
produced modal bases comparable to those obtained when both translational and rotational 
DoF types were used in the MEP and EPF procedures.  The EPF approach produced modal 
bases closely aligned with the MAP approach, i.e., relatively balanced between the number of 
transverse and in-plane LNMs, while the MEP approach tended to result in modal bases more 
heavily weighted with transverse LNMs than in-plane LNMs.  Further investigation of the 
two new approaches is needed for mixed-element FE models, e.g. thin-walled panels with 
substructure, as well as for structures exhibiting stronger transverse to in-plane coupling, e.g. 
structures with greater curvature  
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