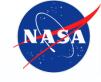
National Aeronautics and Space Administration

Lead-free Electronics Impact for Space Electronics

Michael J. Sampson, Co-Manager, NASA Electronic Parts and Packaging Program (NEPP) 301-614-6233 michael.j.sampson@nasa.gov


http://nepp.nasa.gov

Overview

- Background
- Technical Implications
- Challenges
- Whiskers
- Tin Pest
- NASA Pb-free Policy
- Issues Encountered
- Mitigation Strategies Conclusions

Background

- The European Regulations known as RoHS, the Restrictions on the use of Hazardous Substances, were adopted in February of 2003 and took effect on July 1, 2006
- Amongst other materials, RoHS severely restricted the use of lead (Pb) in electronics in items sold within the European Union
- Although RoHS is European, it has affected the world market, most commercial electronic items are now advertised as Pb-free
- The US is not directly covered by RoHS and neither are space applications, even in Europe

NASA

The Technical Implications

- Pb is used as a constituent in solder alloys used to connect and attach electronic parts to printed wiring boards (PWBs)
- Similar Pb bearing alloys are electroplated or hot dipped onto the terminations of electronic parts to protect the terminations and make them solderable
- Changing to Pb-free solders and termination finishes has introduced significant technical challenges into the supply chain
- Tin/lead (Sn/Pb) alloys have been the solders of choice for electronics for more than 50 years
- Pb-free solder alloys are available but there is not a plug-in replacement for 60/40 or 63/37 (Sn/Pb) alloys, which have been the industry workhorses

The Challenges

Pb-free solder alloys:

- Most are multi-element, 3 or more metals
- The most popular alloys are based on Tin (Sn) Silver (Ag) and Copper (Cu) and are known as SAC
- Many SAC based alloys are available with subtle differences in composition, intended to produce properties similar to or better than Sn/Pb
- Physical properties of most SAC alloys are cause for concern
- Pb-free termination finishes:
 - Again there is no one replacement for Sn/Pb
 - Tin is the preferred choice for high volume commercial but tin is prone to "whiskering"
 - Tin Pest formation can be a problem below 13°C
 - Gold can be a good if expensive choice for space applications, when available, and if properly handled to avoid embrittlement form Sn/Au intermetallic formation

Tin Whiskers Are Real

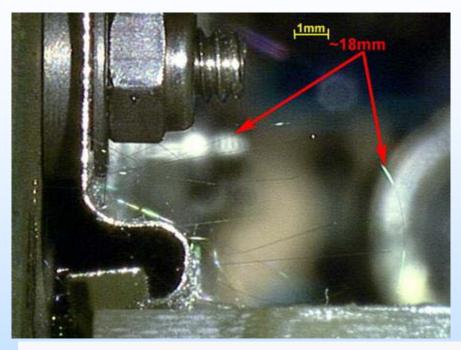
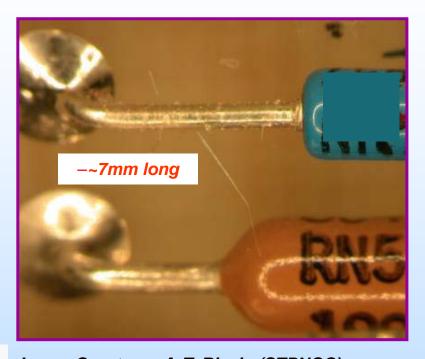



Photo Credit: James D. Stewart,

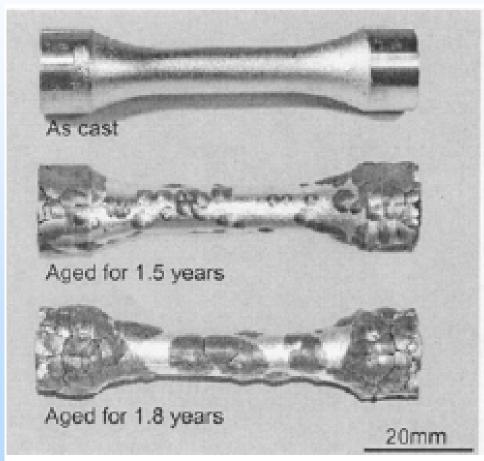
M&P Failure Analysis Laboratory

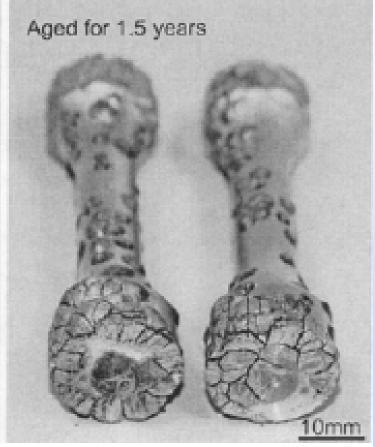
The Boeing Company Logistics Depot

Space Shuttle OV105 Card Guide

-Image Courtesy of: T. Riccio (STPNOC)-Nuclear Power Plant Electronics, Diode Leads

-Trend Observed - The Older the Hardware, the Longer the Whiskers. In Both Cases, the Hardware is ~20 years old


All These Sn-X Alloy Systems Have at Least One Documented Case of Whisker Growth



 Sn Lots of Data – Significant Whisker Tendencies Sn-Pb Lots of Data – Greatly Reduced Whisker Tendencies Sn-Ag Minimal data – "Maybe" High Temp Application Makes Worse Sn-Au Few Experiences Citing Whiskers Sn-Al 1 Study – Lots of whiskers Sn-Bi Minimal data Sn-Cu Some data – suggests increased whisker tendency Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency 	Alloy System		y System	Empirical Evidence for Whisker Tendencies			
 Sn-Ag Minimal data – "Maybe" High Temp Application Makes Worse Sn-Au Few Experiences Citing Whiskers Sn-Al 1 Study – Lots of whiskers Sn-Bi Minimal data Sn-Cu Some data – suggests increased whisker tendency Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Ce = Cerium Al = Aluminum Au = Gold Bi = Bismuth Mn = Manganese		1.	Sn Lots of D		ata – Significant Whisker Tendencies		
 Sn-Au Few Experiences Citing Whiskers Sn-Al 1 Study – Lots of whiskers Sn-Bi Minimal data Sn-Cu Some data – suggests increased whisker tendency Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Ce = Cerium Al = Aluminum Au = Gold Bi = Bismuth Mn = Manganese		2.	Sn-Pb Lots of D		ata – Greatly Reduced Whisker Tendencies		
 Sn-Al 1 Study – Lots of whiskers Sn-Bi Minimal data Sn-Cu Some data – suggests increased whisker tendency Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Cu = Copper Key: Ag = Silver Cu = Copper 		3.	Sn-Ag	Minimal d	ata – "Maybe" High Temp Application Makes Worse		
 6. Sn-Bi Minimal data 7. Sn-Cu Some data – suggests increased whisker tendency 8. Sn-Lu Only 1 Study – Significant Whisker Tendency 9. Sn-Mn Only 1 Study – Significant Whisker Tendency 10. Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications 11. Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain 12. Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Cu = Copper Lu = Lutetium Mn = Manganese 		4.	Sn-Au	Few Experiences Citing Whiskers			
 Sn-Cu Some data – suggests increased whisker tendency Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Cu = Copper Lu = Lutetium Mn = Manganese 		5.	Sn-Al	1 Study – Lots of whiskers			
 Sn-Lu Only 1 Study – Significant Whisker Tendency Sn-Mn Only 1 Study – Significant Whisker Tendency Sn-Sb-X Few Observations – Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Cu = Copper Lu = Lutetium Mn = Manganese		6.	Sn-Bi	Minimal data			
 9. Sn-Mn Only 1 Study – Significant Whisker Tendency 10. Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications 11. Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain 12. Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Ce = Cerium Cu = Copper Lu = Lutetium Mn = Manganese 		7.	Sn-Cu	Some data – suggests increased whisker tendency			
 Sn-Sb-X Few Observations –Film Caps & High Temp Solder Applications Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver AI = Aluminum Au = Gold Bi = Bismuth Ce = Cerium Cu = Copper Lu = Lutetium Mn = Manganese 		8.	Sn-Lu	Only 1 Study – Significant Whisker Tendency			
 11. Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain 12. Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: Ag = Silver Al = Aluminum Au = Gold Bi = Bismuth Ce = Cerium Cu = Copper Lu = Lutetium Mn = Manganese 		9.	Sn-Mn	Only 1 Study – Significant Whisker Tendency			
12. Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency Key: $Ag = Silver$ $AI = Aluminum$ $Au = Gold$ $Bi = Bismuth$ $Ce = Cerium$ $Cu = Copper$ $Lu = Lutetium$ $Mn = Manganese$		10.	Sn-Sb-X	Sb-X Few Observations –Film Caps & High Temp Solder Application			
Key: $Ag = Silver$ $Al = Aluminum$ $Au = Gold$ $Bi = Bismuth$ $Ce = Cerium$ $Cu = Copper$ $Lu = Lutetium$ $Mn = Manganese$		11.	. Sn-Ag-Cu Minimal Data – 1 Field Concern Not in Public Domain				nain
Ce = Cerium $Cu = Copper$ $Lu = Lutetium$ $Mn = Manganese$		12.	Sn-Ag-Cu-Ce Only 2 Studies – Significant Whisker Tendency				
		Key:	Ce = Ceriui	m	Cu = Copper	Lu = Lutetium	Bi = Bismuth Mn = Manganese

Tin Pest

The NASA Pb-free Policy

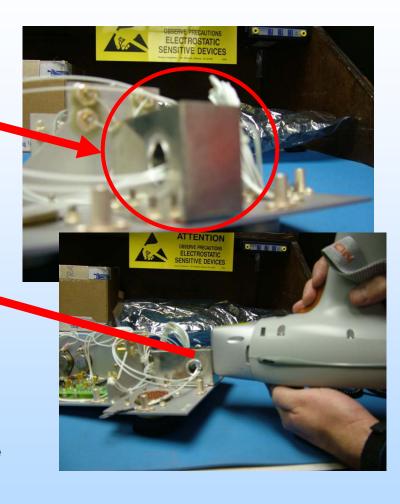
- Policy is contained in NPD 8730.2, NASA Parts Policy, 11/3/08
- Requires traditional tin-lead solders except when justified by technical need (eg. high melt point)
 - Approved GEIA-STD-0005-1 plan to define rules and controls
 - SAC and other "new" alloys require exceptional rationale
- Require all tin-based platings and protective finishes to have
 ≥ 3% Pb content (No pure tin) unless :
 - A persuasive rationale is provided
 - Tin whisker (and tin pest when applicable) mitigation strategy is supported by data and approved by NASA
 - GEIA-STD-0005-2, "Control Level 2C" = tin ID'd by part number, maybe
 Level 2B (ID by part type) for higher risk apps.

BUT implementation will not be that simple

So What is Pure Tin?

- Some Specifications and Standards Say <97% Tin
 - NASA wants the other 3% minimum to always be Pb
- Measurement methods are not "pin-point" accurate
 - Only chemical methods give 1 decimal place %
 - XRF studies show significant equipment variation
- Granular structure of tin-lead can lead to large variations in apparent composition when illuminated with a small spot size (EDS)
 - Checking multiple sights and averaging can overcome this but might then fail to detect genuine tin rich areas
- Calibration standards are needed
- JEDEC JC13.1 has developed a standard Pb measurement test method JESD213 for XRF
- A similar test method is needed for EDS but numerous technical and practical issues to be overcome

Issues Encountered

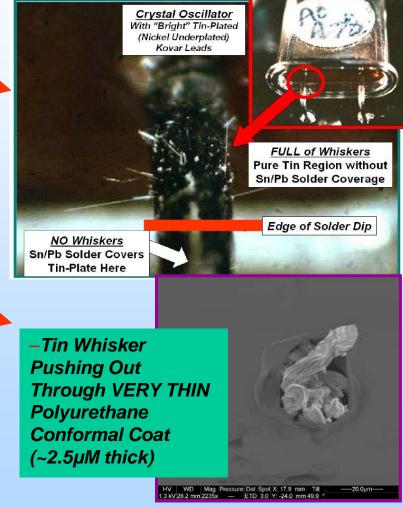


- Parts built with tin-based Pb-free solders for years
 - Example High Temp Solders (Sn-Ag, Sn-Sb, etc.)
 - Acceptance at part level risks precedence for board level
 - Can require mitigation for external uses BUT internal to a part?
 - We know little about whisker risk from these alloys
 - Tin pest risk is low for most
- Incoming Surveillance for Prohibited Materials is NOT "Plug and Play"
 - Standard Reference Materials are Needed
 - Equipment selection is critical (Navy "XRF shootout")
 - XRF can be quick but EDS needed to resolve marginal results
 - EDS is costly and difficult, tends to resolve tin or lead but not both simultaneously
 - Operator Training is ESSENTIAL!!!
 - GIDEP documents B6K-P-07-01 and LL-U-07-024

Analysis Tools are NOT "Plug and Play"

- Component: Current Sensor
 - "Pure Tin" Final Finish
 - Nickel Underplate
 - Brass Package (Cu-Zn)
- Portable XRF Analysis Results
 - Sn 9.05%
 - Ni 23.68%
 - Cu 52.88%
 - Zn 12.20%
- XRF penetrated to the base metal
- Inadequate Training Resulted in
 - Contractor Incorrectly "Accepting" a Pure Tin Plated Component

-Test Standards, Reference Material Standards And Training are NEEDED


Pure Tin Mitigation Strategies

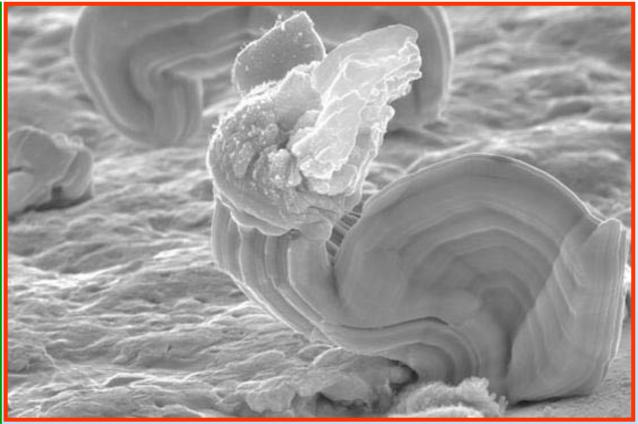
NASA


 GEIA-STD-0005-2, Level 2C requires >1 mitigation strategy for a good reason:

- Hot Sn/Pb solder dip
- Nickel underplate
 - Seems to suppress
 - Not always effective
- Conformal Coat
 - Cannot cover everywhere
 - Don't want it under some parts
 - Holes and thin spots
- Annealing
 - May have some benefit if done soon after plating
- Reflow ?
- Dings and scratches can undo annealing and reflow benefits

Much More Work Needed

Conclusions



- NASA and other Aerospace enterprises can afford to wait to go Pb-free for solders
 - Let high volume commercial business debug the processes and select the solders
- More immediate action must be taken to avoid whisker surprises (and pest)
 - Any use of commercial parts risks exposure to pure tin termination finishes
- A Lead-Free Control Plan is needed even if the intent is to stay with leaded solder
 - The supplier documents the controls and mitigations they will use to meet the customer's requirements
- All spaceflight entities need a Pb-free policy

Tin and Other Metal Whiskers Website: http://nepp.nasa.gov/whisker/

Cute Whiskers

"Not So" Cute Whiskers

http://nepp.nasa.gov