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Development and Application of Agglomerated
Multigrid Methods for Complex Geometries
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‘We report progress in the development of agglomerated multigrid techniques for fully un-
structured grids in three dimensions, building upon two previous studies focused on efficiently
solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated
multigrid technique for 3D complex geometries, incorporating the following key developments:
consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and
line-agglomeration /relaxation using prismatic-cell discretizations in the highly-stretched grid
regions. A significant speed-up in computer time is demonstrated for a model diffusion prob-
lem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic
complex geometries.

I. Introduction

Multigrid techniques [1] are used to accelerate convergence of current Reynolds-Averaged Navier-Stokes
(RANS) solvers for both steady and unsteady flow solutions, particularly for structured-grid applications.
Mavriplis et al. [2,3,4,5] pioneered agglomerated multigrid methods for large-scale unstructured-grid applica-
tions. During the present development, a serious convergence degradation in some of the state-of-the-art multi-
grid algorithms was observed on highly-refined grids. To investigate and overcome the difficulty, we critically
studied agglomerated multigrid techniques [6,7] for two- and three-dimensional isotropic and highly-stretched
grids and developed techniques to achieve grid-independent convergence for a model equation representing lam-
inar diffusion in the incompressible limit. It was found in Ref. [6] that it is essential for grid-independent
convergence to use consistent coarse-grid discretizations. In the later Ref. [7], it was found that the use of pris-
matic cells and line-agglomeration /relaxation is essential for grid-independent convergence on fully-coarsened
highly-stretched grids. In this paper, we extend and demonstrate these techniques for practical problems:
inviscid and viscous flows over complex geometries.

The paper is organized as follows. Finite-volume discretizations employed for target grids are described.
Details of the hierarchical agglomeration scheme are described. Elements of the multigrid algorithm are then
described, including discretizations on coarse grids. Multigrid results for complex geometries are shown for a
model diffusion equation, the Euler equations, and the RANS equations. The final section contains conclusions
and recommendations for future work.
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Figure 1. Illustration of a node-centered median-dual control volume

(shaded). Dual faces connect edge midpoints with primal cell centroids.
Numbers 0-4 denote grid nodes.

II. Discretization

The discretization method is a finite-volume discretization (FVD) centered at nodes. It is based on the
integral form of governing equations of interest:

%(]—"oﬁ)dF://sdQ, (1)
Q

r

where F is a flux tensor, s is a source term, ) is a control volume with boundary I', and fi is the outward
unit normal vector. For the model diffusion (Laplace) equation, the boundary conditions are taken as Dirich-
let, i.e., specified from a known exact solution over the computational boundary. Tests are performed for a
constant manufactured solution, U(xz,y,z) = 10.0, with a randomly perturbed initial solution. For inviscid
flow problems, the governing equations are the FEuler equations. Boundary conditions are a slip-wall condition
and inflow/outflow conditions on open boundaries. For viscous flow problems, the governing equations are the
RANS equations with the Spalart-Allmaras one-equation model [8]. Boundary conditions are non-slip condi-
tion on walls and inflow/outflow conditions on open boundaries. The source term, s, is zero except for the
turbulence-model equation (see Ref. [8]).

The general FVD approach requires partitioning the domain into a set of non-overlapping control volumes
and numerically implementing Equation (1) over each control volume. Node-centered schemes define solution
values at the mesh nodes. In 3D, the primal cells are tetrahedra, prisms, hexahedra, or pyramids. The median-
dual partition [9,10] used to generate control volumes is illustrated in Figure 1 for 2D. These non-overlapping
control volumes cover the entire computational domain and compose a mesh that is dual to the primal mesh.

The main target discretization of interest for the model diffusion equation and the viscous terms of the RANS
equations is obtained by the Green-Gauss scheme [11,12], which is the most widely-used viscous discretization
for node-centered schemes and is equivalent to a Galerkin finite-element discretization for pure tetrahedral grids.
For mixed-element cells, edge-based contributions are used to increase the h-ellipticity of the operator [11,12].
The inviscid terms are discretized by a standard edge-based method with unweighted least-squares gradient
reconstruction and Roe’s approximate Riemann solver [13]. Limiters are not used for the problems considered
in this paper. The convection terms of the turbulence equation are discretized with first-order accuracy.

III. Agglomeration Scheme

As described in the previous papers [6,7], the grids are agglomerated within a topology-preserving framework,
in which hierarchies are assigned based on connections to the computational boundaries. Corners are identified
as grid points with three or more boundary-condition-type closures (or three or more boundary slope disconti-
nuities). Ridges are identified as grid points with two boundary-condition-type closures (or two boundary slope
discontinuities). Valleys are identified as grid points with a single boundary-condition-type closure. Interiors
are identified as grid points without any boundary condition. The agglomerations proceed hierarchically from
seeds within the topologies — first corners, then ridges, then valleys, and finally interiors. Rules are enforced
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Hierarchy of Agglomeration Hierarchy of Added Volume Agglomeration Admissibility

corner any disallowed
ridge interior disallowed
ridge valley disallowed
ridge ridge conditional
valley interior disallowed
valley valley conditional
interior interior allowed

Table 1. Admissible agglomerations.
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Figure 3. Typical implicit line-agglomeration showing

Figure 2. Trailing-edge area of a 3D wing agglomerated a curved solid body surface on the left and a symme-
by the hierarchical scheme. Primal grid is shown by thin try plane on the right. The projection of the line-
lines; agglomerated grid is shown by thick lines. agglomerations can be seen on the symmetry plane.

to maintain the boundary condition types of the finer grid within the agglomerated grid. Candidate volumes
to be agglomerated are vetted against the hierarchy of the currently agglomerated volumes. In this work, we

use the rules summarized in Table 1.

In order to enable a valid non-degenerate stencil for linear prolongation

and least-squares gradients near boundaries [7], the rules reflect less agglomerations near boundaries than in
the interior. Corners are never agglomerated, ridges are agglomerated only with ridges, and valleys are agglom-
erated only with valleys. A typical boundary agglomeration generated by the above rules is shown in Figure 2.
The conditional entries denote that further inspection of the connectivity of the topology must be considered
before agglomeration is allowed. For example, a ridge can be agglomerated into an existing ridge agglomeration
if the two boundary conditions associated with each ridge are the same. For valleys or interiors, all available
neighbors are collected and then agglomerated one by one in the order of larger number of edge-connections to
a current agglomeration until the maximum threshold of agglomerated nodes (4 for valleys; 8 for interiors) is
reached. The prolongation operator P; is modified to prolong only from hierarchies equal or above the hierarchy
of the prolonged point. Hierarchies on each agglomerated grid are inherited from the finer grid.

For the results reported in this paper, we employ agglomeration scheme IT described in previous papers [6,7].
It has been modified to deal with viscous meshes using implicit-line agglomeration. It performs the agglomeration

in the following sequence:

1. Agglomerate viscous boundaries (bottom of implicit lines).

2. Agglomerate prismatic layers through the implicit lines (implicit-line agglomeration).

3. Agglomerate the rest of the boundaries.
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4. Agglomerate the interior.

The second step is a line-agglomeration step where volumes are agglomerated along implicit lines starting from
the volume directly above the boundary volume. Specifically, we first agglomerate volumes corresponding to
the second and third entries in the implicit-line lists associated with each of the fine-grid volumes contained in
a boundary agglomerate. The line agglomeration continues to the end of the shortest line among the lines asso-
ciated with the boundary agglomerate. This line-agglomeration process preserves the boundary agglomerates.
Figure 3 illustrates typical implicit line-agglomerattion near a curved solid body. The implicit line-agglomeration
preserves the line structure of the fine grid on coarse grids, so that line-relaxations can be performed on all grids
to address the grid anisotropy. If no implicit lines are defined, typical for inviscid grids, the first two steps are
skipped.

In each boundary agglomeration (steps 1 and 3), agglomeration begins with corners, creates a front list
defined by collecting volumes adjacent to the agglomerated corners, and proceeds to agglomerate volumes in the
list (while updating the list as agglomeration proceeds) in the order of ridges and valleys. During the process,
a volume is selected from among those in the same hierarchy that has the least number of non-agglomerated
neighbors, thereby reducing the occurrences of agglomerations with small numbers of volumes. A heap data-
structure is utilized to efficiently select such a volume. The agglomeration continues until the front list becomes
empty. Finally, for both valleys and interiors, agglomerations containing only a few volumes (typically one) are
combined with other agglomerations.

Figures 4 and 5 show primal grids and agglomerations for the F6 wing-body combination and the DPW-W2
[14] grids. These grids are viscous grids; the primal grid has prismatic viscous layers around the body and the
wing. Coarsening ratios are indicated by r, (k = 1,2,3,4) in the parenthesis. Line agglomeration was applied
in these regions. Figures 6, 7, and 8 show primal grids and agglomerations for a wing-body combination, a
wing-flap combination, and a 3D wing with a blunt trailing edge — all are pure-tetrahedral inviscid grids.

IV. Multigrid

Elements of the multigrid algorithm are presented in this section. In this study, we do not explore various
algorithmic options, relying on the methods that proved effective from the previous studies.

IV.A. Multigrid V-Cycle

The multigrid method is based on the full-approximation scheme (FAS) [1,15] where a coarse-grid problem is
solved /relaxed for the solution approximation. A correction, computed as the difference between the restricted
fine-grid solution and the coarse-grid solution, is prolonged to the finer grid to update the fine-grid solution.
The two-grid FAS is applied recursively through multiple coarse grids to define a V-cycle. A V-cycle, denoted
as V(v1, 1), uses vy relaxations performed at each grid before proceeding to the coarser grid and v, relaxations
after coarse-grid correction. On the coarsest grid, relaxations are performed to bring two orders of magnitude
residual reduction or until the maximum number of relaxations, 10, is reached.

IV.B. Inter-Grid Operators

The control volumes of each agglomerated grid are found by summing control volumes of a finer grid. An
operator that performs the summation is given by a conservative agglomeration operator, Ry, which acts on
fine-grid control volumes and maps them onto the corresponding coarse-grid control-volumes. Any agglomerated
grid can be defined, therefore, in terms of Ry as

Q° = Ry, (2)

where superscripts ¢ and f denote entities on coarser and finer grids, respectively. On the agglomerated grids,
the control volumes become geometrically more complex than their primal counterparts and the details of the
control-volume boundaries are not retained. The directed area of a coarse-grid face separating two agglomerated
control volumes, if required, is found by lumping the directed areas of the corresponding finer-grid faces and is
assigned to the virtual edge connecting the centers of the agglomerated control volumes.

Residuals on the fine grid, R7, corresponding to the integral equation (1) are restricted to the coarse grid
by the conservative agglomeration operator, Ry, as

R = Ry, (3)
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Inviscid Viscous

Primal grid  Second-order edge-based reconstruction Green-Gauss

Coarse grids  First-order edge-based reconstruction  Face-Tangent Avg-LSQ

Table 2. Summary of discretizations.

where R¢ denotes the fine-grid residual restricted to the coarse grid.
The fine-grid solution approximation, U7, is restricted as

Ro(UQY)
Us = Qe (4)
where U§ denotes the fine-grid solution approximation restricted to the coarse grid. The restricted approximation
is then used to define the forcing term to the coarse-grid problem as well as to compute the correction, (§U)¢:

(OU)* =U* - Uy, ()

where U¢ is the coarse-grid solution approximation obtained directly from the coarse-grid problem.
The correction to the finer grid is prolonged typically through the prolongation operator, P, that is exact
for linear functions, as
(6U)! = P1(sU)". (6)

The operator P; is constructed locally using linear interpolation from a tetrahedra defined on the coarse grid.
The geometrical shape is anchored at the coarser-grid location of the agglomerate that contains the given finer
control volume. Other nearby points are found by the adjacency graph. An enclosing simplex is sought that
avoids prolongation with non-convex weights and, in situations where multiple geometrical shapes are found,
the first one encountered is used. Where no enclosing simplex is found, the simplex with minimal non-convex
weights is used.

IV.C. Coarse-Grid Discretizations

For the model equation and the viscous term in the RANS equations, two classes of coarse-grid discretizations
were previously studied [6,7]: the Average-Least-Squares (Ave-LSQ) and the edge-terms-only (ETO) schemes.
The Avg-LSQ scheme is a consistent discretization that uses the average of the dual-volume LSQ gradients to
determine a gradient at the face, which is augmented with the edge-based directional contribution to determine
the gradient used in the flux. There are two variants of the Avg-LSQ scheme. One uses the average-least-
squares gradients in the direction normal to the edge (edge-normal gradient construction). The other uses the
average-least-squares gradients along the face (face-tangent gradient construction).

The ETO discretizations are obtained from the Avg-LSQ schemes by taking the limit of zero Avg-LSQ
gradients. The ETO schemes are often cited as a thin-layer discretization in the literature [2,3,4]; they are
positive schemes but are not consistent (i.e., the discrete solutions do not converge to the exact continuous
solution with consistent grid refinement) unless the grid is orthogonal [13,16]. As shown in the previous
papers [6,7], ETO schemes lead to deterioration of the multigrid convergence for refined grids, and therefore
are not considered in this paper. For practical applications, the face-tangent Avg-LSQ scheme was found to be
more robust than the edge-normal Avg-LSQ scheme. It provides superior diagonal dominance in the resulting
discretization [6,7]. In this study, therefore, we employ the face-tangent Avg-LSQ scheme as a coarse-grid
discretization for the model equation and the viscous term. For excessively-skewed grids (over 90°), which
can arise on agglomerated grids, the scheme exhibits unstable behavior. For such cases, we simply ignore
contributions associated with edges with an excessive skewness angle. The Galerkin coarse-grid operator [1],
which was considered in a previous study, is not considered here since the method was found to be grid-dependent
and slowed down the multigrid convergence for refined grids [6]. For inviscid discretization, we employ a first-
order edge-based discretization on coarse grids. Table 2 shows a summary of discretizations used.
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IV.D. Relaxations

Relaxation schemes are based on the implicit formulation:

(Q + aﬁ:*) U = —R(U), (7)

AT OU

where AT is a pseudo-time step, %—IE is an exact/approximate Jacobian, and §U is the change to be applied to the
solution U after a certain number of relaxations on the linear system (linear-sweeps). The RANS equations are
relaxed in a loosely-coupled formulation, updating the turbulence variables after the mean-flow variables at each
relaxation. An exact linearization has been implemented for the viscous (diffusion) terms discretized with the
Green-Gauss scheme on a target grid, enabling a robust multicolor Gauss-Seidel relaxation. On coarse grids, the
Avg-LSQ scheme has a larger stencil and its exact linearization has not been implemented; instead relaxation of
the Avg-LSQ scheme relies on an approximate linearization, which consists of edge terms only. For the inviscid
terms in the mean-flow relaxation, a defect correction approach is used in which the linearization consists of
first-order contributions only. For inviscid applications, an exact linearization of the first-order discretization is
used. Typically in single-grid FUN3D RANS applications, the first-order Jacobian corresponding to Van Leer’s
flux-vector splitting is used. We use the same approach in the multigrid. In single-grid applications, Jacobians
are updated after every relaxation. In multigrid applications, Jacobians are evaluated at the beginning of the
cycle and frozen during the cycle.

Before each nonlinear update, v, sweeps of the multi-color Gauss-Seidel scheme are performed through the
entire domain, followed by v; line-implicit sweeps in stretched regions when solving model diffusion or RANS
equations. In the line-implicit sweep, unknowns associated with each line are swept simultaneously by inverting
a block tridiagonal matrix [7]. For a single-grid iteration, v, = v, = 15 for the mean-flow relaxation and
v, = v = 10 for the turbulence relaxation. For a multigrid relaxation, v, = v; = 5 for both the mean flow
and turbulence relaxations. Note that the number of linear-sweeps in multigrid relaxation are much less than
the typical number in single-grid iteration. For the model diffusion equation, only one sweep is performed per
relaxation v, = 1; = 1 with the exact Jacobian computed only once at the beginning of the entire calculation.

IV.E. Cost of Multigrid V-Cycle

All of the computations in the paper use FAS multigrid. For the linear model diffusion equation, the computer
time required by an FAS cycle is larger than the time required by the corresponding correction scheme (CS)
cycle. To estimate relative cost of multigrid cycles in comparison with single-grid iterations, the cost of a
nonlinear residual evaluation, a sweep of the linearized relaxation equation (7), and a Jacobian evaluation needs
to be taken into account. Suppose that a linear sweep and a Jacobian evaluation cost o and J times a nonlinear
residual evaluation, respectively. Then, the cost of a single-grid iteration, SG relative to the cost of a nonlinear
residual evaluation is given by

W =1+ 0v5¢ +J, (8)

where the superscript SG denotes single-grid iterations and v, = v, + 1. On the other hand, a multigrid
cycle involves v + v5 nonlinear relaxations, a nonlinear residual evaluation before restriction, and a Jacobian
evaluation per cycle. A residual evaluation on coarser grids is also required to form the FAS forcing term. The
cost of a multigrid cycle, MG, relative to the cost of a fine-grid nonlinear residual evaluation is given by

WME =C (1 +wm)(1+ov9)+1+J]+C -1, (9)

where vM

pl G)

& is the number of linear sweeps (typically less than Vpsl , and C' is a coarse-grid factor,

11 1
C=1+—+—+
rLoTir2 o Tirar3

(10)

Here, 7y, is the agglomeration ratio of the k-th agglomerated grid. The cost of one V-cycle relative to a single-grid
iteration is therefore given by

WMG
W%G ~ WsaG - (11)

Comparing CPU times for an inviscid case, we found ¢ = 0.16 and J = 2 for an exact mean-flow linearization.

Then, Equation (11) gives, for example, WL = 1.8 for a 5-level V/(2,1) cycle with typical values, V{EIG = 15,
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V% & = 5 and the coarsening ratio of 8. Hence, a typical multigrid V'(2,1) cycle costs 1.8 single-grid iterations.

As will be shown later, the above estimate is also accurate for RANS calculations.

For the model diffusion equation, the same formula applies as it is implemented in the same FAS framework.
A major difference, however, lies in the Jacobian evaluation. The Jacobian is constant for the linear problem:;
thus it is computed only once and never updated. Therefore, the cost of the Jacobian evaluation can be ignored.
For example, assuming typical values, l/]flG =1, Vé\f G =1 and the coarsening ratio of 8, we obtain Wé\/éc =8.0
from Equation (11) for a 5-level V(3,3) cycle.

V. Results for Complex Geometries

All calculations presented in this paper were performed with a single processor. Parallelization of the
multigrid algorithm is currently underway.

V.A. Model Diffusion Equation

The multigrid method was applied on grids generated for two practical geometries: the F6 wing-body and the
DPW-W2 wing-alone cases [14]. Both grids are tetrahedral, but prisms are used in a highly-stretched viscous
layer near the solid boundary. Pyramidal cells are also present around the transitional region. For these cases,
a 5-level V(3,3) multigrid cycle is applied and compared with single-grid iterations. The CFL number is set to
infinity. For the F6 wing-body grid (1,121,301 nodes), the grids and convergence results are shown in Figure 4.
The speed-up factor is nearly 44 in CPU time. A similar result was obtained for the DPW-W2 grid ( 1,893,661
nodes) as shown in Figure 5. The speed-up factor is nearly 24 in this case. The cost of one V-cycle computed
according to Equation (11) with actual coarsening ratios is shown for each case in the first column of Table 4.
It shows that one V-cycle costs nearly 8 single-grid relaxations. The second column is an expected speed-up
factor based on the number of single-grid iterations (Ngg), the number of multigrid cycles (Nyg), and the
factor WALE:

Nsa
—_— 12
NyuaWEEe (12)
The third column is the actual speed-up factor computed as a ratio of the total single-grid CPU time to the
total multigrid CPU time. The table shows that the expected speed-up is 50 percent larger than the actual
speed-up so some refinement of the relative work breakdown is needed.

V.B. Inviscid Flows

The multigrid method was applied to three inviscid cases: low-speed subsonic flows over a wing-body configu-
ration, a wing-flap configuration, and a NACA15 wing with a blunt trailing edge. Table 3 shows a summary
of grid sizes and parameters. Nyqm;, denotes the number of first iterations/cycles over which the CFL number
is ramped from 10 to 200 for single-grid/multigrid calculations. The multigrid V(2,1) cycle was employed for
these cases.

Grid Size (nodes) Inflow Mach number Angle of Attack Nygmp
Wing-Body 1,012,189 0.3 0° 10
Wing-Flap 1,184,650 0.3 20 10

NACA15 Wing 2,039,914 0.3 2° 100

Table 3. Summary of grid sizes and parameters for the inviscid cases.

Figure 6 shows the grids and convergence results for the wing-body configuration case. As Figure 6(f)
shows, the multigrid converges (to machine zero) 5 times faster in CPU time than the single-grid iterations.
The convergence results for the wing-flap configuration is given in Figure 7(f). It shows that the multigrid
converges (to machine zero) nearly 2 times faster in CPU time than the single-grid iterations. For the NACA15
wing case, the solution does not fully converge in either single-grid or multigrid computations apparently due
to an unsteady behavior near the blunt trailing edge. However, as shown in Figure 7(f), the multigrid drives
the residual more rapidly down to the level of 1072 than the single-grid iteration.
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Cost of V-cycle Expected Speed-up Actual Speed-up

Grid Flow Model V-cycle

(WS (Equation (12)) (Using actual CPU time)

F6WB Diffusion ~ V(3,3) 8.3 62.7 43.5

DPW-W2 Diffusion  V/(3,3) 8.3 35.1 23.8

Wing-Body Inviscid V(2,1) 1.8 5.2 5.2

Wing-Flap Inviscid V(2,1) 1.8 2.0 1.9

NACA15 Wing Inviscid V(2,1) 1.8 2.9 2.8

F6WDB RANS V(2,1) 1.8 4.8 5.0

Table 4. Cost of V-cycle relative to a single-grid iteration and speed-up factor.

In all three cases, the ratio of the number of multigrid cycles to the number of single-grid iterations is about
twice the speed-up factor in terms of the CPU time. It implies that the cost of one multigrid V(2,1) cycle
is almost equivalent to the cost of two single-grid iterations. These results are in good agreement with the
estimates in Section IV.E. The cost of one V-cycle computed according to Equation (11) is shown for each case
in the first column of Table 4. The cost of one V-cycle is 1.8 of the single-grid iteration cost for all cases. The
entries in the second and third columns agree well with each other.

V.C. Turbulent Flows (RANS)

We applied the multigrid algorithm to a RANS simulation on the F6 wing-body grid shown in Figure 4. The
inflow Mach number is 0.3, the angle of attack is 1 degree, and the Reynolds number is 2.5 million. For this case,
a prolongation operator that is exact for a constant function is used. The P; prolongation operator encountered
a difficulty on a boundary for this particular configuration, and it is currently under investigation. The CFL
number is not ramped in this case, but set to 200 for the mean-flow equations and 30 for the turbulence equation.

Convergence results are shown in Figure 9. As can be seen, the multigrid achieved four orders of reduction
in the residual 5 times faster in CPU time than the single-grid iteration. For this case, neither the multigrid nor
single-grid method fully converges seemingly due to a separation near the wing-body junction. Four orders of
magnitude reduction is just about how far a single-grid is run in practice for this particular configuration. The
comparison of the number of cycles with the number of single-grid relaxations in the figure imply, again, that
the CPU time for one multigrid V(2,1) cycle is approximately equivalent to the CPU time for two single-grid
iterations. As shown in Table 4, one multigrid V-cycle actually costs 1.8 single-grid iterations.

VI. Concluding Remarks

An agglomerated multigrid algorithm has been applied to inviscid and viscous flows over complex geometries.
A robust fully-coarsened hierarchical agglomeration scheme was described for highly-stretched viscous grids,
incorporating consistent viscous discretization on coarse grids. Results for practical simulations show that
impressive speed-ups are achieved for realistic flows over complex geometries.

Parallelization of the developed multigrid algorithm is currently underway to expand the applicability of
the developed technique to larger-scale computations and to demonstrate grid-independent convergence of the
developed multigrid algorithm.
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.5).

(c) Level 3: coarse grid (r2 = 6.2). (d) Level 4: coarse grid (r3 = 5.5).
4r
== Multigrid V(3,3): 36 cycles, 0.7 hours
o} Single Grid: 18707 relaxations, 29.7 hours
or

Log1 0 ( Residual )

o 5 15 20 25 30
CPU Time (hour)
(e) Level 5: coarse grid (r4 = 4.6). (f) Convergence history: residual versus CPU time.

Figure 4. Grids and convergence of the model diffusion equation for the F6 wing-body combination.

10 of 15

American Institute of Aeronautics and Astronautics



(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.3).

(c) Level 3: coarse grid (r2 = 5.8). (d) Level 4: coarse grid (r3 = 5.3).
4r
== Multigrid V(3,3): 26 cycles, 0.9 hours
5 Single Grid: 7578 relaxations, 21.8 hours
0

Log1 0 ( Residual )

o 5 10 15 20 25
CPU Time (hour)
(e) Level 5: coarse grid (rq = 4.7). (f) Convergence history: residual versus CPU time.

Figure 5. Grids and convergence of the model diffusion equation for the DPW-W2 case
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 7.0).
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(c) Level 3: coarse grid (r2 = 6.8). (d) Level 4: coarse grid (r3 = 6.2).

== Multigrid V(2,1): 50 cycles, 43 minutes
— Single Grid: 472 relaxations, 222 minutes

Log1 0 ( Residual )

_1 \ \ \ : ;
60 50 100 150 200 250
CPU Time (minute)
(e) Level 5: coarse grid (r4 = 4.9). (f) Convergence history: residual versus CPU time.

Figure 6. Grids and convergence for the wing-body inviscid case.
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(d) Level 4: coarse grid (r3 = 4.4).

—6r

; - = Multigrid V(2,1): 66 cycles, 67 minutes
7b N Single Grid: 236 relaxations, 127 minutes
-8
9}

-10r

Loglo ( Residual )
|

-12F
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—14}
-5t ‘
N
_l6 \ \ \ \ : \ \
0 20 40 60 80 100 120 140
CPU Time (minute)
(e) Level 5: coarse grid (r4 = 3.8). (f) Convergence history: residual versus CPU time.

Figure 7. Grids and convergence for the wing-flap inviscid case.
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.3).

(c) Level 3: coarse grid (r2 = 5.6). (d) Level 4: coarse grid (r3 = 4.3).

== Multigrid V(2,1): 23 cycles, 42 minutes
Single Grid: 122 relaxations, 116 minutes

Log1 0 ( Residual )
4L
wn

8k
_8.5 L
—9F
95 ‘ ‘ ‘ ‘ ‘ |
0 20 40 60 80 100 120
CPU Time (minute)
(e) Level 5: coarse grid (r4 = 3.3). (f) Convergence history: residual versus CPU time.

Figure 8. Grids and convergence for the NACA15-wing inviscid case.
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Figure 9. Residual versus CPU time for the F6 wing-body case (RANS).
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