
48th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2010-932
4-7 January 2010, Orlando, Florida

Copyright 2010 by the American Institute of Aeronautics and Astronautics, Inc. - The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

Development of a User Interface for a
Regression Analysis Software Tool

N. Ulbrich∗ and T. Volden∗∗

Jacobs Technology Inc., Moffett Field, California 94035–1000

An easy–to–use user interface was implemented in a highly automated
regression analysis tool. The user interface was developed from the start to
run on computers that use the Windows, Macintosh, Linux, or UNIX operat-
ing system. Many user interface features were specifically designed such that a
novice or inexperienced user can apply the regression analysis tool with confi-
dence. Therefore, the user interface’s design minimizes interactive input from
the user. In addition, reasonable default combinations are assigned to those
analysis settings that influence the outcome of the regression analysis. These
default combinations will lead to a successful regression analysis result for most
experimental data sets. The user interface comes in two versions. The text user
interface version is used for the ongoing development of the regression analysis
tool. The official release of the regression analysis tool, on the other hand, has
a graphical user interface that is more efficient to use. This graphical user in-
terface displays all input file names, output file names, and analysis settings for
a specific software application mode on a single screen which makes it easier to
generate reliable analysis results and to perform input parameter studies. An
object–oriented approach was used for the development of the graphical user
interface. This choice keeps future software maintenance costs to a reasonable
limit. Examples of both the text user interface and graphical user interface are
discussed in order to illustrate the user interface’s overall design approach.

I. Introduction

A highly automated regression analysis software tool was developed at Ames Research Center during
the past 5 years that uses optimized regression models for the analysis of multivariate experimental data
sets (see Refs. [1] and [2] for more detail). The tool is called BALFIT. It was originally intended for the
processing of wind tunnel strain–gage balance data sets (Ref. [3]). Since 2007, however, it is also applicable
to general multivariate global regression analysis problems.

One of the goals for the development of the regression analysis software tool was to support users of
the most popular desktop systems. Therefore, an implementation language had to be selected for BALFIT’s
development that is supported on multiple operating systems running on different processor architectures.
In addition, the chosen implementation language needed a library of state–of–the–art numerical analysis rou-
tines and built–in graphical visualization capability in order to speed–up the development of BALFIT. Sev-
eral implementation languages satisfy these requirements. The authors chose the Interactive Data Language
(IDL) for the development of BALFIT because of their familiarity with the language and the availability of
the free “IDL Virtual Machine” which greatly simplifies the distribution of compiled code to a larger group
of users (see Ref. [4] for a description of IDL).

The BALFIT software package itself consists of three major modules: (i) an analysis module, (ii) a Text
User Interface (TUI) module, and (iii) a Graphical User Interface (GUI) module. Each module’s design
has features that make it possible to analyze experimental data quickly and reliably. Three features were
implemented in the analysis module, i.e., BALFIT’s compute engine, in support of this goal: (i) a regression

∗ Aerodynamicist; Jacobs Technology Inc.∗∗ Computer Engineer; Jacobs Technology Inc.

1
American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20100024310 2019-08-30T10:05:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10554379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model optimization algorithm (see Ref. [1]), (ii) a simplified data input file format, and (iii) an automated
analysis report generation feature. Both versions of BALFIT’s user interface, i.e., the TUI and the GUI,
allow the user to interact with the analysis module. They assign (i) input file names, (ii) output file names,
and (iii) analysis settings for a specific analysis task. Reasonable default combinations of the analysis settings
are used in both the TUI and the GUI that make it possible for a novice or inexperienced user to generate
regression models of the given experimental data that meet strict statistical quality requirements.

Differences between the TUI and the GUI exist because they were developed for different purposes. The
TUI primarily supports the ongoing development of the analysis module. The GUI, on the other hand, is
intended for the efficient use of BALFIT in a production environment. Table 1 below lists advantages and
disadvantages of the two versions of BALFIT’s user interface.

Table 1: Comparison of TUI and GUI (advantage =⇒ [+], disadvantage =⇒ [−])

ATTRIBUTE TUI GUI

DEVELOPMENT EFFORT [+] [−]
MAINTENANCE [+] [−]
EASE–OF–USE [−] [+]

RUN–TIME ENVIRONMENT COSTS [−] [+]

BALFIT may be run on an analysis computer using either the TUI or the GUI version of the executable.
The TUI version can only be run using the “IDL Development Environment,” i.e., a licensed version of the
IDL software. It is written in sequential logic and can easily be modified. The GUI version, on the other
hand, can be run using a free runtime utility called “IDL Virtual Machine.” Therefore, the GUI version does
not require a licensed version of the IDL software package. Overall, the GUI is easier to use than the TUI. It
was developed (i) to provide a modern interface to the user and (ii) to minimize software distribution costs.

A first version of the GUI was completed in 2006 (see Ref.[5]). Significant improvements of the analysis
module were made since that time. Now, the analysis module supports classical regression analysis as well
as wind tunnel strain–gage balance data analysis applications. Therefore, it became necessary to completely
revise the original version of the GUI. It was also decided to rewrite the GUI using an object–oriented
approach. This improvement will make it easier to maintain the software in the future.

In the next section of the paper the architecture of the BALFIT application is reviewed. Then, key
features of the TUI and the GUI are discussed.

II. Model–View–Controller Architecture

The BALFIT application uses the so–called “Model–View–Controller” (MVC) architecture. The MVC
architecture is a design pattern that simplifies application development and maintenance (see Ref. [6] and
[7] for more detail). The goal of the MVC design pattern is to separate the application object (Model) from
the way it is represented to the user (View) and from the way in which the user controls it (Controller).
It achieves this by splitting the application into the three logical components shown in Fig. 1a. The three
components are described as follows:

Model – A model represents an application’s data and contains the logic for accessing and manipulating
that data. In BALFIT, the model component is the analysis module. It contains all logic related to performing
regression analysis tasks and provides an interface for the other components.

View – The view controls the “look and feel” of the application and provides facilities (i) to collect data
from the user and (ii) to display messages from the model (analysis module).

Controller – The controller is responsible for intercepting and translating user input into actions to be
performed by the model (analysis module). Together, the View and the Controller define the “user interface”
that the user sees when using the BALFIT application (see Fig. 1b).

The MVC architecture supports multiple views of the same model and provides efficient modularity
which allows development of components to proceed in parallel. These features have allowed both a TUI
and GUI to be developed independently. In addition, this architecture simplifies growth which has allowed

2
American Institute of Aeronautics and Astronautics

BALFIT to be extended to support both classical regression analysis and strain–gage balance data analysis
tasks. Each analysis task in BALFIT is implemented in a separate View and Controller object which is
tailored specifically for the task. This arrangement makes it possible to add analysis tasks to the GUI
without concern for affecting other analysis tasks.

Figure 2 shows the actual implementation of the MVC architecture in BALFIT. BALFIT’s user interface
module and the analysis module are depicted. The user interface module, i.e., the TUI or the GUI, is used
to select (i) the regression analysis type, (ii) the analysis task (by assigning the software application mode),
(iii) the analysis settings, and (iv) the input and output file names. These selections are sent to the analysis
module. The user interface module also displays all diagnostic or error messages that it receives from the
analysis module. The analysis module is BALFIT’s data processing and compute engine. It processes the
input files, performs the data analysis as specified by the selected analysis settings, and creates output files
that contain the results of the analysis. One of the output files, i.e., the analysis report, is prepared in
PostScript format. It may be converted to the more convenient Portable Document Format (PDF) using a
PostScript–To–PDF converter like GhostScript or Adobe Acrobat Distiller.

BALFIT supports two regression analysis types: (i) classical regression analysis and (ii) strain–gage
balance data analysis. The first analysis type allows the user to solve regression analysis problems of general
multivariate experimental data sets. The second analysis type performs the regression analysis of wind
tunnel strain–gage balance calibration data by applying an iterative technique that is used in the aerospace
testing community. Three software application modes are supported if classical regression analysis is chosen
(see Fig. 3a). Seven software application modes are supported if strain–gage balance data analysis is chosen
(see Fig.3b). Each software application mode uses different analysis settings that influence the final result
of the data analysis task. A combination of default assignments of these analysis settings was selected such
that a good analysis result for most experimental data sets can be obtained. – In the next two sections of
the paper key elements of both the TUI and the GUI are discussed in greater detail.

III. Text User Interface (TUI)

The basic layout of BALFIT’s TUI goes back to 2004 when the development of BALFIT first started.
The TUI is the prototype of BALFIT’s user interface. It is primarily used (i) to develop features of the
analysis module and (ii) to test different combinations of analysis settings that influence the outcome of
the data analysis. The TUI uses simple sequential logic. Therefore, it can easily be modified if changes
in the analysis module cause changes in the user interface. All user interaction with the TUI is done in a
“question–and–answer” like fashion. First, a selection (an input or output file name or an analysis setting)
is made. Then, the user is asked to confirm the selection. These steps have to be repeated for every input
that is needed for a selected software application mode.

Many combinations of analysis settings for each software application mode were tested using the TUI in
order to find specific combinations of default settings for the user interface that will lead to a good analysis
result for each analysis task. This “expert” knowledge is hidden in the user interface’s combination of default
analysis settings. It makes it easier for an inexperienced user to produce good analysis results without getting
lost in the large number of possible setting combinations. The default choice for a specific analysis setting
is the first option that is presented to the user in the user interface.

A single software application mode has been chosen to illustrate the layout of both the TUI and the
GUI screen. It is the “Data Reduction Matrix Calculation” mode that is needed for the regression analysis
of strain–gage balance data (see also Fig. 3b). Figure 4 shows the typical layout of the TUI screen for
this example. In the TUI every input file name, analysis setting, and output file name must be selected in
sequential order. Hidden connections between different analysis settings and the contents of certain input
files may exist. The TUI’s logic takes these connections into account and will only request input for those
analysis settings that have not yet implicitly been assigned. This feature prevents the user from accidently
selecting incompatible analysis settings that may lead to confusing analysis results.

IV. Graphical User Interface (GUI)

The official release of BALFIT has a GUI that is more efficient to use and has lower runtime environment

3
American Institute of Aeronautics and Astronautics

costs than the TUI. As an example, Fig. 5a shows the overall layout of the GUI for the software application
mode that was used for the discussion of the TUI (see also Fig. 4). Several design patterns were used in
the GUI in order to improve its usability. A total of six so–called “interaction design patterns” were applied
during the development of the GUI (see Refs. [8], and [9] for a detailed description of these patterns). They
can be described as follows:

Sovereign Posture – The GUI is setup such that BALFIT dominates the screen. It occupies the user’s
full attention and allows all controls for a task to be seen at once.

Stack of Working Surfaces – Analysis tasks for each regression analysis type are arranged as a set of
tabbed pages. This approach makes every task easily visible and gives each task space for its controls.

Status Display – A panel is shared by all tasks that provides space for the application to display status
messages.

Form – All inputs, settings, and outputs for each task are arranged on a single screen, allowing the user
to see every setting needed to perform the task at a glance.

Small Set of Values – Every user–controlled setting has choices presented like the old–fashioned auto-
mobile radio buttons. This setup allows the user to simultaneously see all choices and select only one.

Go Back to a Safe Place – This feature of BALFIT allows the user to return to a set of known analysis
settings. The user does this operation using the “Reset Options” button.

In contrast to the TUI, which uses a “question–and–answer” based workflow, the GUI’s workflow is
designed to be much simpler. It is modeled on the familiar task of “filling out” and “submitting” a form.
The user merely selects an analysis task by clicking on the corresponding tab. This action brings the task’s
form to the foreground. The form is arranged with required inputs at the top, various analysis settings in
the middle, and outputs towards the bottom. The user simply supplies inputs and values for all settings and,
after completion, submits the form by clicking on the “GO” button. This action signals the analysis module
(i) to perform the requested task and (ii) to display its report in another window using a helper application.
During the task execution, feedback is provided from the analysis module to the GUI’s status display at the
bottom of the application window.

Most challenges associated with the deployment of a cross–platform application like BALFIT were
addressed by simply selecting IDL for its development. Some operating system related problems, however,
still remained to be solved. These problems were addressed by separating details of the runtime environment
differences from the compiled application. Then, operating system dependent parameters can simply be read
from a Preferences File and a GUI Properties File. This basic concept is depicted in Fig. 5b. The usefulness
of this approach can easily be illustrated using a few examples:

Preferences File – BALFIT produces reports in the PostScript language. These reports must be viewed
using a “helper” application. The helper application may either view the PostScript file directly (e.g., using
Ghostview or GSview), or translate it to PDF. The resulting PDF file may be viewed with the Acrobat Reader
application. Once a report is generated, BALFIT executes the helper application which displays the report.
Each desktop system can potentially use different applications to perform these functions. BALFIT allows
the helper application to be specified in the Preferences File that is read at application start. This makes it
possible to specify this detail independent of the compiled application, and allows a user to choose the helper
application(s) based on their preference. The Preferences File is also a convenient place to store the path to
the user’s working directory, so that the application can “remember” where the user was last working and
resume in this directory at startup.

GUI Properties File – The GUI’s presentation is dependent on the user’s screen resolution and the
fonts available. These details vary from installation to installation. BALFIT uses a GUI Properties File to
hold font name and size information that allows these properties to be specified separate from the compiled
application.

In some cases, there are interactions between different analysis settings or between a single analysis
setting and the contents of an input file. BALFIT automatically takes care of these dependencies in order to
keep things simple for the user. In a TUI, these interactions are easy to handle since the user interface logic
is sequential and the order of setting specification is predictable. A GUI, on the other hand, is event–driven,
making the order of specification impossible to predict. BALFIT’s GUI design models the dependency
between settings explicitly using a “behaviorial design pattern” called mediator (cf. Ref. [7]). This design
pattern makes it possible to clearly define relationships between settings and to enforce logic that controls

4
American Institute of Aeronautics and Astronautics

how the settings behave independent of the order of specification. In addition, this design pattern simplifies
maintenance, since the interaction between settings is defined in one place and not spread throughout the
application’s logic.

Figures 6a and 6b provide an example of how BALFIT handles the dependency between two settings.
The settings are called “Write Regression Coefficient Matrix to file” and “Output File, Regression Coefficient
Matrix.” In Fig. 6a, the setting “Write Regression Coefficient Matrix to file” is set to “no”, meaning that a
regression coefficient matrix will not be written to a file. Because of this, the widget allowing an output file
name to be specified is disabled. In Fig. 6b, the user has changed the setting “Write Regression Coefficient
Matrix to file” to “yes”, meaning that a regression coefficient matrix file should be written. BALFIT responds
by executing logic that makes the “Output File, Regression Coefficient Matrix” setting active, allowing this
file name to be specified.

V. Documentation of User Interface Selections

In regression analysis, like in any scientific analysis, it is of critical importance to record all steps and
selections that were made in order to obtain the final analysis result. Only this approach makes it possible for
a researcher to know how a specific analysis result was obtained if it has to be revisited at a future point in
time. Therefore, all final user interface selections (input file names, output file names, and analysis settings)
assigned in both the TUI and the GUI are automatically saved and reported on the analysis settings page
of BALFIT’s analysis report. The information shown on this page directly links the final analysis results to
selections that were made in the user interface at the time the regression analysis was performed. Figure 7
shows the contents of the analysis settings page from the analysis report file for the two user interface
examples that are depicted in Fig. 4 and Fig. 5a.

VI. Summary and Conclusions

A user interface was implemented in a highly automated regression analysis tool called BALFIT. The
user interface was developed so that the analysis tool’s executable can be run on multiple operating systems.
The user interface comes in two versions. The TUI version is easy to modify and maintain. Therefore, it is
primarily used for the ongoing development of BALFIT’s analysis module. The official release of BALFIT,
on the other hand, has a GUI. The GUI is easier to use than the TUI. In addition, the GUI has lower runtime
environment costs enabling an efficient distribution of the software to a larger group of users.

BALFIT was developed from the start as a tool that makes it possible for an inexperienced user to
obtain regression analysis results for multivariate experimental data sets with confidence. Key features of
BALFIT’s modules make it possible to achieve this goal. The analysis module uses an optimization process to
identify a regression model that meets strict statistical quality requirements. The user interfaces recommend
default analysis setting combinations that yield good analysis results. Finally, the GUI’s ease–of–use and the
fact that all final user interface selections are saved and displayed in the analysis report file make it easier
to generate repeatable, reliable, and well documented analysis results.

VII. Acknowledgements

The authors would like to thank Jon Bader of NASA Ames Research Center for his critical and construc-
tive review of the final manuscript. The work reported in this paper was partially supported by NASA’s Aero-
nautic Test Program and the Wind Tunnel Division at Ames Research Center under contract NNA09DB39C.

VIII. References

1Ulbrich, N., “Regression Model Optimization for the Analysis of Experimental Data,” AIAA 2009–1344,
paper presented at the 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, January 2009.

2Ulbrich, N. and Volden, T., “Regression Analysis of Experimental Data Using an Improved Math
Model Search Algorithm,” AIAA 2008–0833, paper presented at the 46th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, Nevada, January 2008.

5
American Institute of Aeronautics and Astronautics

3Ulbrich, N. and Volden, T., “Strain–Gage Balance Calibration Analysis Using Automatically Selected
Math Models,” AIAA 2005–4084, paper presented at the 41st AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, Tucson, Arizona, July 2005.

4Research Systems, Inc., “IDL User’s Guide,” Interactive Data Language, Version 6.1, Boulder, Col-
orado, July 2004.

5Ulbrich, N. and Volden, T., “Development of a New Software Tool for Balance Calibration Analysis,”
AIAA 2006-3434, paper presented at the 25th AIAA Aerodynamic Measurement Technology and Ground
Testing Conference, San Francisco, California, June 2006.

6Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattern–Oriented Software
Architecture – A System of Patterns, 1st ed., Vol. 1, Wiley Series in Software Design Patterns, John Wiley
& Sons Ltd., Chichester, New York, 1996, pp.125–143.

7Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object–
Oriented Software, 1st ed., Addison Wesley Professional Computing Series, Addison Wesley Longman, Inc.,
Reading, Massachusetts, 13th printing, 1997.

8Tidwell, J., Designing Interfaces: Patterns for Effective Interaction Design, 1st ed., O’Reilly Media,
Inc., Sebastopol, California, 2005.

9Cooper, A., About Face: The Essentials of User Interface Design, 1st ed., IDG Books Worldwide, Inc.,
An International Data Group Company, Foster City, California, 1995.

6
American Institute of Aeronautics and Astronautics

View Selection

User Gestures

State

Change

Request

State State

Information

Controller

Model

View

Fig. 1a Description of the “Model–View–Contoller” (MVC) architecture (see also Ref. [7], pp.4–6).

Model

(Analysis Module)

Parameter

Change

Status

Notification

View / Controller

(User Interface Module)

Fig. 1b The connection between the MVC architecture and replacable user interfaces.

7
American Institute of Aeronautics and Astronautics

Analysis Module

 (1) Input File Processing

 (2) Data Analysis

 (3) Output File Preparation

Parameter

Change

Status

Notification

User Interface Module

(TUI or GUI)

 (1) Regression Analysis Type Selection

 (2) Software Application Mode Selection

 (3) Analysis Setting Selection

 (4) Input & Output File Name Assignment

Input Files
Output Files

(Text Format)

Output File

(Analysis Report in PostScript Format)

PostScript-To-PDF Converter

(e.g., GhostScript, Adobe Acrobat Distiller)

Output File

(Analysis Report in PDF Format)

Fig. 2 Implementation of the MVC architecture in BALFIT.

8
American Institute of Aeronautics and Astronautics

SOFTWARE APPLICATION MODES:

1. REGRESSION COEFFICIENT MATRIX CALCULATION

2. CANDIDATE MATH MODEL SEARCH

3. RESPONSE CALCULATION

REGRESSION ANALYSIS TYPE 1
“CLASSICAL REGRESSION ANALYSIS”

(RESPONSES FITTED AS A FUNCTION OF INDEPENDENT VARIABLES)

Fig. 3a Software application mode choices for classical regression analysis applications.

SOFTWARE APPLICATION MODES:

1. DATA REDUCTION MATRIX CALCULATION

2. CANDIDATE MATH MODEL SEARCH

3. CHECK LOAD PROCESSING

4. LOAD ENVELOPE ANALYSIS

5. LOAD CALCULATION

6. GAGE OUTPUT CALCULATION

7. MATRIX CONVERSION

REGRESSION ANALYSIS TYPE 2
“STRAIN-GAGE BALANCE DATA ANALYSIS”

(RESPONSES = STRAIN-GAGE OUTPUTS ; INDEPENDENT VARIABLES = LOADS)

Fig. 3b Software application mode choices for wind tunnel balance data analysis applications.

9
American Institute of Aeronautics and Astronautics

Fig. 4 Example of text user interface screen for “Data Reduction Matrix Calculation” mode.

10
American Institute of Aeronautics and Astronautics

Fig. 5a Example of graphical user interface screen for “Data Reduction Matrix Calculation” mode.

Graphical User Interface (GUI)Preferences GUI Properties

Fig. 5b Management of installation specific graphical user interface characteristics.

11
American Institute of Aeronautics and Astronautics

Fig. 6a Example of an interaction between settings of the graphical user interface screen (situation 1).

12
American Institute of Aeronautics and Astronautics

Fig. 6b Example of an interaction between settings of the graphical user interface screen (situation 2).

13
American Institute of Aeronautics and Astronautics

Fig. 7 Example of analysis settings page from report file for “Data Reduction Matrix Calculation” mode.

14
American Institute of Aeronautics and Astronautics

