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This paper presents an integrated flight dynamic modeling m#hod for flexible aircraft that captures cou-
pled physics effects due to inertial forces, aeroelastigit and propulsive forces that are normally present in
flight. The present approach formulates the coupled flight dpamics using a structural dynamic modeling
method that describes the elasticity of a flexible, twistedswept wing using an equivalent beam-rod model. The
structural dynamic model allows for three types of wing elasic motion: flapwise bending, chordwise bending,
and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration.
The structural deflections create an effective aeroelastiangle of attack that affects the rigid-body motion of
flexible aircraft. The aeroelastic effect contributes to aeodynamic damping forces that can influence aerody-
namic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to
couple with the wing elastic motion. The integrated flight dyhamics for a flexible aircraft are formulated by
including generalized coordinate variables associated wi the aeroelastic-propulsive forces and moments in
the standard state-space form for six degree-of-freedom fht dynamics. A computational structural model
for a generic transport aircraft has been created. The eigevalue analysis is performed to compute aeroelas-
tic frequencies and aerodynamic damping. The results will b used to construct an integrated flight dynamic
model of a flexible generic transport aircraft.

[. Introduction

Modern aircraft are increasingly designed to be highly nu&eeable in order to achieve high-performance mission
objectives. Toward this goal, aircraft designers have laatapting light-weight, flexible, high aspect ratio wings in
modern aircraft. Aircraft design concepts that take acagabf wing flexibility to increase maneuverability havetbee
investigated. By twisting a wing structure, an aerodynamicnent can be generated to enable an aircraft to execute a
maneuver in place of the use of traditional control surfaEes example, a rolling moment can be induced by twisting
the left and right wings in the opposite direction. Simyar pitching moment can be generated by twisting both
wings in the same direction. Wing twisting or warping for fligcontrol is not a new concept and was used in the
Wright Flyer in the 1903. The U.S. Air Force conducted theivecFlexible Wing program in the 1980’s and 1990’s to
explore potential use of leading edge slats and trailingedldgs to increase control effectiveness of F-16 aircraft fo
high speed maneuvetdn the recent years, the Active Aeroelastic Wing researolyiam also investigated a similar
technology to induce wing twist in order to improve roll marerability of F/A-18 aircraft

Structural deflections of lifting surfaces interact withr@dynamic forces to create aeroelastic coupling that can
affect aircraft performance. Understanding these effeatsmprove the prediction of aircraft flight dynamics and ca
provide insight into how to design a flight control systemttta@n reduce aeroelastic interactions with a rigid-body
flight controller. Generally, high aspect ratio lifting fares undergo a greater degree of structural deflectioms tha
low aspect ratio lifting surfaces. In general, a wing sectpossesses a lower stiffness than a horizontal stabilizer o
vertical stabilizer. As a result, its natural frequencyasmally present inside a flight control frequency bandwititt

*Research Scientist, Intelligent Systems Division, Mail5269-1, AIAA Associate Fellow
TAssistant Professor, Mechanical Engineering DepartrdtA Senior Member

10f23

American Institute of Aeronautics and Astronautics


https://core.ac.uk/display/10554297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

potentially can result in flight control interactions. Foaenple, when a pilot commands a roll maneuver, the aileron
deflections can cause one or more elastic modes of the wirgstie. The wing elastic modes can result in changes
to the intended aerodynamics of the wings, thereby potgntiausing undesired aircraft responses. Aeroservaelast
filtering is a traditional method for suppressing elastides but this usually comes at an expense in terms of reducing
the phase margin in a flight control systémif the phase margin is significantly reduced, aircraft reses may
become more sluggish to pilot commands. Consequently, avithhase lag in the control inputs, potential pilot-
induced oscillations (P10s) can occur. Numerous studige baen made to increase the understanding of the role of
aeroservoelasticity in the design of flight control systenist®

Aeroelasticity remains a fertile field of research in spitenany early contributions to this field dated back to the
1930's. In the early days of National Advisory Committee A@ronautics (NACA), numerous studies on aeroelas-
ticity by investigators, such as Theodorsen and Garrictt,rhade significant advances in this fiétd! Theodorsen’s
theory of unsteady aerodynamics still remains an esse¢atafor aeroelastic analysis. Recently, interests in ¢edip
flight-structural dynamics have seen a renewal. Due to filliyilbf modern aircraft structures, flight dynamic models
of rigid-body aircraft have limitations and cannot accahapredict behaviors of flexible aircraft when elastic made
participate in the rigid-body motion. Recently, some iigegtors have investigated theoretical approaches tol-deve
oping integrated flight dynamics with aeroelasticity. Skeaevelops an integrated flight dynamic model for a rep-
resentative High Altitude Long Endurance (HALE) vehiéfeMeirovitch and Tuzcu also develop another integrated
approach to flight dynamics of flexible aircraft1® In both of these approaches, detail inertial-aeroelastipulsive
force coupling in the governing structural dynamic padifflerential equations were not made available.

The purpose of this study is to produce a modeling capalidityntegrated flight dynamics of flexible aircraft
that can better predict some of the complex behaviors intftigie to multi-physics coupling. Some of the important
features in the present method are: inertial force coupding to aircraft rigid-body acceleration, bending-torsion
coupling due to wing pre-wist, aeroelastic-propulsiveeéocoupling due to engine mounting on flexible wing struc-
tures, and lastly an extension of Theodorsen'’s theory todlecchordwise bending in the aeroelastic angle of attack.
Through the use of generalized coordinates that reprekesticedeflections, the standard flight dynamic equations fo
six degree-of-freedom motion are modified to include effeftaeroelasticity and propulsive forces on flexible wings.

[I. Reference Frames

Fig. 1 - Aircraft Reference Frames

Figure 1 illustrates three orthogonal views of a typicat@ft. Several reference frames are introduced to faiglita
the rigid-body dynamic and structural dynamic analysishaf kifting surfaces. For example, the aircraft inertial
reference frame A is defined by unit vectais ap, andag fixed to the non-rotating earth. The aircraft body-fixed
reference frame B is defined by unit vectdrs by, andbs. The reference frames A and B are related by three
successive rotations: 1) the first rotation abagiby the heading anglgy that results in an intermediate reference
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frame A defined by unit vectors), a,, anda, (not shown), 2) the second rotation abaytby the pitch angled
that results in an intermediate reference framel&ined by unit vectorb’l, b/z, andb’3 (not shown), and 3) the third
rotation aboub’l by the bank angle that results in the reference frame B. This relationshiplmaxpressed as

a1 cosy —sing O cos6 0 sinf 1 0 0 by
a | = | sing cosy O 0 1 0 0 cosp -—sing bo
az 0 0 1 —sin@ 0 cos9 0 sing cosp bs
cosypcosfd —sinycosp+ cosysinBsing  singsing-+ cosy sind cose by
= | singcosd cosycosp+singsindsing  —cosysing+ sinysind cosp b (1)
—sin@ cosBsing cos6 cosp b3

The left wing elastic reference frame D is defined by unit ¥extly, d,, andds. The reference frames B and
D are related by three successive rotations: 1) the firstiootaboutbs by the elastic axis sweep ang3§ — A that
results in an intermediate reference framedBfined by unit vectorb"l, b2 andbé (not shown), 2) the second rotation
about negative, by the elastic axis dihedral andlethat results in an intermediate reference framel&ined by unit
vectorsd/l, d'2, andd'3 (not shown), and 3) the third rotation abmi'itby an anglat that results in the reference frame
D. This relationship can be expressed as

by —sinA  cosA O coss 0 —sinl 1 0 0 dy
b, | =] —cosA —sinA 0 0 1 0 0O -1 O do
bs 0 0 1 sinf 0 cod 0O 0 -1 ds
—sinAcoslT —cosA  —sinAsinl dy
= | —cosAcos  sinA cosAsinl ds (2)
sinlC 0 —cos ds

Generally, the effect of the dihedral angle can be significah full analysis with the dihedral angle can be
performed but can also result in a very complex analyticahidation. Thus, to simplify the analysis, the dihedral
effect is assumed to be negligible in this study. The righigmieference frame C can be established in a similar
manner. In the analysis, the aeroelastic effects on thdaysgehorizontal stabilizers, and vertical stabilizer ao¢
considered, but the analytical method can be formulatedriatyzing these lifting surfaces if necessary. In genaral,
whole aircraft analysis approach should be conducted tdge@ comprehensive assessment of the effect of flexibility
on aircraft stability. Such an analysis is feasible in therent framework as described in this study.

[ll. Elastic Analysis

In the subsequent analysis, the combined motion of the lefyws considered. The wing has a varying pre-
twist angley (x) common in many aircraft. Typically, the wing pre-twist a@ghries from being nose-up at the wing
root to nose-down at the wing tip. The nose-down pre-twishatwing tip is designed to delay stall onsets. Under
aerodynamic forces and moments, wing structural deflegfimmoduce strains in the wing structure. For high aspect
ratio wings, an equivalent beam approach can be used tozmnsiguctural deflections with a reasonable accuracy.
The equivalent beam approach is a typical formulation in yreeroelasticity studie®:'® Experimental validation
can show that equivalent beam approach is accurate for actagpio as low as 3:1. The internal structure of a wing
typically comprises a complex arrangement of load carrgipars and wing boxes. Nonetheless, the elastic behavior
of a wing can be captured by the use of equivalent stiffnesggsties. These properties can be derived from structural
certification testing that yields information about windldetion as a function of loading.

Consider an airfoil section on the left wing as shown in FiginPlergoing bending and twist deflections.
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Fig. 2 - Left Wing Reference Frame

Let (x,Y,2) be the coordinates of a point Q on the airfoil. Then

y | _ | cosy —siny n 3)
z siny  cosy 3
wheren and¢ are local airfoil coordinates, andis the wing section pre-twist angle, positive nose-down.
The axial or extensional deflection of a wing is generallywamall and therefore can usually be neglected M_et

andW be chordwise and flapwise bending displacements of poine§perctively, and le® be a torsional twist angle
about thex-axis, positive nose-down. Then, the rotation angle dubdctructural deformation can be expressed as

5(X,t) = Od; —Wd, + Vid3 (4)

where the subscriptsandt denote the partial derivatives ¥ W, and®.
Let (x1,y1,21) be the coordinates of point Q on the airfoil in the referemaenke D. Then the coordinatés,y1,z;)
are computed using the small angle approximatidh as

X1 (%,t) X 0 x (yd2+zd3).d; X— Wy —
yixt) | =| y+V |+ | dx(ydot2zd3).dy | =| y+V-—2z0 (5)
73 (x,t) z+W 0 x (ydy+zd3) .d3 z+W+yo

Differentiatingxs, y1, andz; with respect to yields

X1 x 1- Wi+ ZV/VX — MWy — yy,V\&
Yix | = —zy +Vx—Z0x—Yyy O (6)
Z1x yy +W+yOx—2zy ©

Neglecting the transverse shear effect, the longitudinairsis computed as

_dsp—ds s
= = _g—l )

sc= 1ty +2=/1+ 02 +2) (y)’ (8)
Stx= P8 VBt B = V1 24 2) (V) — DV — 22Wee 4 2(42 4 22) YO, ©)

Using the Taylor series expansion, it can be shown that fatlsrandb
1ta-Vv1itb _5-% a-b
VItb 142 2+b
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Therefore, the longitudinal strain is expressed as

—Wix — 2+ A)yo
g Sx g W zl\M‘X+(y+ ZV X (11)
& 14+3024+2) (V)
For a small wing twist angle, the longitudinal strain is further simplified as
€= —Wix— Mo+ (Y2 +2) ¥ Ox (12)
The moments are now computed as
/ ! 2 / I
My o] [ P+ (V+e) @rei(y) By By |[ o
My | = 0 +'/ Ee ~z dydz=E —Bay ly Iy W
M, 0 —y —Bgy S Vix
(13)
where the area moments of inertia and the bending-torsioplitg constant8;, By, andBg3 are defined as
Ik O O |l y¥¥+Z2 0 o0
0 ly Iy | = // 0 7 —yz |dydz (14)
0 Iy g 0 —yz ¥
B, . y2+22
B, | = / / V+A) |z | dydz (15)
Bs ' y

The strain analysis shows that for a pre-twisted wing theufieddeflection® andW are coupled to the torsional
deflection® via the slope of the wing pre-twist angle. This coupling igally not present in the Euler-Bernoulli beam
formulation, and can be significant if the telyrhis dominant as in highly twisted wings such as turbomackingtor
blades.

IV. Inertial Coupling

During a high-g maneuver, rigid-body acceleration of awcrait due to the Coriolis effect can generate inertial
forces on lifting surfaces. For highly flexible wings, theeitial forces can couple with the structural deflection.
In particular, if an aircraft experiences a very rapid raller, the inertial forces created by the roll acceleratian ca
cause natural frequencies to change due to the stiffnesstmdion of the roll acceleration. This is a well-known
phenomenon for rotary wing structures, whereby the ratatmntributes to the apparent structural stiffness which is
known as rotational stiffening. Generally, the roll motiohan aircraft has a greater rotational stiffening effeetrth
the pitch and yaw motions due to a larger moment arm, whidmeisMing span.

For the analysis, only the roll motion of an aircraft is calesed. The kinematic relationship is to be developed
to establish the velocity and acceleration due to rigidybaiicraft motion at a reference point on the wing. The
velocity establishes aeroelastic angle of attack thatésl tie develop aeroelastic forces and moments. Similary, th
acceleration establishes the inertial force coupling withwing elasticity.

A. Kinematics

Working in the left wing reference frame D, we define pointsPDand Q as the center of gravity of the aircraft, the
origin of the reference frame D of the left wing, and the refere point of a mass particle on the airfoil section as
shown in Fig. 2. Then the position vectors from O to P and frotm ® are defined as

O =r2Pb1+ 1 bz + 12 bg = Xpdy + ypd; + Zpd3 (16)
rPQ = xq (x,t)dy +y1 (x,t)d2+ 21 (x,t) d3 (17)
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where

Xp —sinA —cosA 0 roP
Yo | =| —cosA  sinA 0O v (18)
Zp 0 0 -1 roP

Using Kane's dynamical notations, the velocity of the ceofegravity, point O, and the angular velocity of the

aircraft are defined as
AVC = ub; +whb3 (29)

w® = pby = wd1 + wydz (20)

whereu andw are the axial and vertical velocity components at point Gpeetively;p is the roll rate; andu, andwy
are the angular rates in the reference frame D

o | | —sinA  —cosA
Wy —CcosA  sinA
The acceleration of the center of gravity and angular acatte of the aircraft are computed as
BgA/©

A

P
q:O] (21)

AP = —5 + 0% x AvC = by — pwb, + bz = agd; +aPd; + adds (22)
BdAw® | . .
AgB _ e pby = axdi + ayds (23)
wherea?, a)(,), anda? are the acceleration components at point O in the refereaoeefD
a? —sinA —cosA 0 u
a | =| —cosA sinA 0 —pw (24)
a2 0 0 -1 W

The velocity of point Q is contributed by the structural defilen and is computed as
DyrPQ
AVQ = AV 1 AP x (rOP 1 rPQ) 1 = vRdy +v2d, + vRds (25)

wherevg, v)(?, andv? are the velocity components in the left wing reference fr@me

W —usinA+ @y (zp +21) + X1t
W= —UcosA — ax(Zp +21) + Vit (26)
Ve —W ax (Yp + Y1) — @y (Xp 4 X1) + 21t

The acceleration of point Q is also contributed by the stmadtdeflection and is computed as

AaR = A0 + AaB x (rO 4+ rPQ) 1 Aw® x [AwB x (ro + rPQ)} + 5
=a2d; +aQdy +a2ds  (27)

whereaXQ, ag?, anda? are the acceleration components in the reference frame D

ay a + @y (20 +2) — WW+ way (Yp +Y) — Wf (Xp +X) ax
a) | = | a0—ix(zo+2) +ww—wZ(yp+y)+ @@y (xe+X) |+ | a (28)
& a2+ ix(yp+Y) — @, (% +%) — (W + &) (2 +2) a
anday, ay, anda; are the structural-deflection induced acceleration coreptsin the reference frame D
ax wy (W +Yy0) + wwy (V —20) — &&?(—WX—ZV\&) — Wit — Wt + 200y (W + y©r)
ay | = — 0 (W +YO) — 6 (V — 20) + axay (—YWi — W) + Vi — 20 — 260 (W + yOy)
a; @ (V —20) — @y (—Wx — M) — (02 + @f) (W +YO) +Wht + YOt + 200 (Mt — 20 ) — 200y (—YWae — M)

(29)
Itis observed that angular rates and accelerations ardesbwjith the structural deflection to give rise to additional
acceleration components on a wing structure.
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B. Inertial Forces and Moments

For simplicity, we assume that the neutral axis coincideb Wie elastic axis. This is a reasonable approximation
and good results have been obtained with this assumpticen\itte neutral axis is offset from the elastic axis, the

expressions for inertial forces and moments can be quitpExnThe offset between the neutral axis and elastic axis
is evaluated as

& | _1 / / Y | dydz= | © 30
l e | A S| 0 (30)
The inertial forces at the elastic center due to the stratteflection per unit length are then computed as
fi a® a + QW + WV + 2\
b= [[p] & |ayz=—pA|  a—aw - @V vk - 20 (31)
fi ad a5+ — (@l + @) W+ W + 20

wherea;, ay, anda; are the rigid-body acceleration components at the elastitec

a ap + @yzp — WW+ wayyp — @ (Xp +X)
& | = | a— ixzp + Ww— wyp + wxay, (Xp +X) (32)
a; a3 + ayp — @y (Xp +X) — (wf + o) zp

The inertial moments due to the structural deflection perlangth are now computed as

za - ya?
~[[p| =@ oy
yag
(a&ax/lyz—mjlzz)vﬁ(ax,lyz—wxmjl )Wx+( Wl + Wlzz) © — 1@t + 200y (— 12V + ly e )

(wy|zz+ Ul&wy|yz @+ (Lﬁ szx — |sz\&) Iz2Vigt + ly2Whet + 20%/'2261

V. Aeroelastic Analysis

The relative velocity of the air approaching a wing sectinoludes the contribution from the wing structural
deflection that results in changes in the local angle of kit&nce aerodynamic forces and moments are dependent
on the local angle of attack, the wing structural deflectidlh generate additional elastic forces and moments. The
local angle of attack depends on the relative approachingetocity as well as the rotation angéefrom Eq. (4).

The relative air velocity in turn also depends on a strud¢tdedlection induced velocity. The oscillation of the aitfo
results in an unsteady circulation. Kussner showed thatetaeity at the 34-chord point determines the circulation
force on an oscillating airfoit” This is in contrast to the lift due to circulation that actdre 1/4-chord point in a
steady motion.

-b/2 b/2

ac| BA| [T

AC = Aerodynamic Center
EA = Elastic Axis

Fig. 3 - Airfoil Coordinates

Referring to Fig. 3, we adopt the convention used in Theaatdsgheory of unsteady aerodynamics whereby the
chord of an airfoil has a lengthbZand the elastic center is located at a distanab from the mid-chord, where the
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parametea is between -1 and 1 aradis negative when the elastic center is forward of the midrdhehich is usually

the case for a conventional airftfill” . The local velocity is computed by evaluating the velocityoint Q in Eq.

(25) with the coordinates at the/8-chord pointyc = (3 —a) bcosy andzc = (3 —a) bsiny in the reference frame D

w —uSinA + @y (zp + 2c + W+ Yc®) — yeVx — zeWk
W | = —UCOSA\ — w (Zp +2c + W +YcO) +Vk — ZcO, (34)
3 —W+ w (Yp+Yc+V — 2c0) — wy (Xp + X — ycVx — ZcWy) + W + yc©O

In order to compute the aeroelastic forces and moments, dloeity must be transformed from the reference
frame D to the airfoil local coordinate reference frame d&iby(u,n, &) (see Fig. 2). Then the transformation can
be performed using three successive rotation matrix nligitiffon operations as

Vi 1 0 0 1 0 W 1 V% 0][Ww Vi AV
Vs |=|0 1 0Oty 0 1 0 || -W 1 Of[W =]V |+]A4y | (35
Vg 0 -0-y 1 W, 0 1 0 0 1][W¥ vi Av
wherevy;, vy, andv’g are rigid-body velocity components given by
Vi, —usinA+ wy (zp + zc)
vy | = —UCOSA — YW — ax (zp +2¢) (36)
Vg —W—+ yucosA + wy (Yp +Yyc) — wy (Xp +X)
andAvy;, Avy, andAv:; are the induced velocity components due to the structufdat®sn given by
Av;, Vv + WV + @y (W +Yc®) — yeVx — Wk
Avy | = —Wvj + OV — ax (W +ycO) +\h — 26 (37)
Avg —Wevj, — OV + (V= 2c0) — oy (—YeVi— ZeWh) + Wk + Yy

A. Aeroelastic Angle of Attack

Referring to Fig. 4, the local aeroelastic angle of attackhenairfoil section is due to the velocity componewﬁsand
vg and is computed as

(38)
Ve
Fig. 4 - Aeroelastic Angle of Attack
Let a* be a local rigid-body angle of attack. Theri is computed as
. Ve —wHyucoAtax(Ypt+yo) - @y e +Xx) | a wx(Yp+yc) —ay (e +X)  aax(ze+z)
a =—= ~ el —
Vi —Uucos\ — yw— ax (zp + Z¢) cosA ucosh\ UcogA
(39)
where we recognize that is the aircraft angle of attack which is defined as
w
_ v 40
o= (40)
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Let ae be the local elastic angle of attack. Thegis computed as

o nAVE Ve vy [y — OV + ax (V — 260) — ay (YW — ZW) + W+ ycO)
o— =

vi2 vi2
Vi [—vap +0V; — (W +ycO) +V — ZcOt] 1)
V;s]Z
Upon evaluation, we get
~ D) - _w@tz)]
Ge = [VX (cos/\ y) V\&} [tan/\ ucosA ©
~ax(V = 2c0) — @y (—ycVx— 2eWe) + W+ (Yo + a*zc) Ot + o ax (W +yc®) — a*U 42)
ucosA

Then, the local aeroelastic angle of attack is expressed as

Oc= 0"+ de (43)

The terma/, W, and®; contribute to aerodynamic damping forces which can be fsigmit in aeroelastic analysis.
If p= 0 andyis small, then the elastic angle of attack is approximatgiya¢to

W+ (3 —a)bOr — a*V

44
ucosA (44)

ae:VX( —y)tan/\—\/\&tan/\—@—

a
CosA
which agrees with the well-known Theodorsen’s result faraight wing withA = 0.7

B. Aeroelastic Forces and Pitching Moment

In unsteady aerodynamics, the lift force is comprised ofairenlatory and circulatory components. The non circu-
latory component is due to the apparent mass and inertiatefféhich are generated when the wing has a non-zero
acceleration. This acceleration causes the surroundimghath has a finite mass to generate inertial forces thategpo
the acceleration. The circulatory component is more ingydrfor wing sections. This is due to the vortical strength
of circulation that generates lift. In unsteady aerodyrentihe vortices are shed in the flow in a complex fashion.
Unsteady thin-airfoil theories developed by TheodorsehReters can be used to estimate the effect of unsteady shed
vorticity. The former theory is appropriate for classicaltér analysis while the latter is a finite-state theory dast
the time-domain and is appropriate for time-domain anaffsi

The total aeroelastic forces and pitch momenting at thdielesnter are the sum of the noncirculatory and circu-
latory components and are expressed as

fy fy fy
fa | = [+] f¢ (45)
me me m

where the superscripts n, andc denote aeroelastic, noncirculatory, and circulatorypeetvely.

1. Noncirculatory Forces and Pitching Moment

The noncirculatory unsteady forces are due to the apparenstas effect which is based on the acceleration of the air
mass enclosed by a circular cylinder whose diameter is tifi@laihord. These noncirculatory forces are computed
from the acceleration in the reference frame D acting at titeahord as

|

aZ(yvz)
— @ (W +Y0) — X (V — 20) + ey (—Wa — M) + Vot — 204 — 20 (W + YO )
ax (V —20) — @y (— Wi — M) — (f + f) (W +YB) +Wht + YOt + 20 (Mt — 20t ) — 2y (— W — W)
(46)

— | —h
NSI<SI

__pmm2l ay()za ‘| :_pOOH.bZX

X
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wherey = —abcosy, z= —absiny, andp. is the air density.
In addition, the structural rotation of the wing induces asdwash component

A\fg ~ —UCOSN\de (47)
whereu is the free-stream air speed, which generates a nonciocylfatrce acting at the 34-chord point equal to
0AvV; 9
n_ 2 ¢ 2 Qe
fg = —porib - = Poo TID ucos/\W (48)
The angular acceleration of the wing twist also induces &+tmsvn pitching moment at the mid-chord
1 d%a
o 4 €
= 2t = (49)
Hence, the total noncirculatory forces and pitching monag¢ttie elastic center are computed as
i f__)? — fPsiny
il | = fh+f ? cosy (50)
m; ytp —z8 + (3 —a) b + 1}
If p= 0 andyis small, the noncirculatory forces and pitching momentzgmaroximately equal to
£ Vit + yabOy + yucosh 2
1| = —pomd? W — ab®y — ucosA 28e (51)
2
m; —ab (W — ab®y — Wit) — (3 —a) bucos/\%—%bzﬁdt"z’e

Equation (51) is in agreement with the well-establishedltssn aeroelasticity’

2. Circulatory Aeroelastic Forces and Pitching Moment

The circulatory lift, drag, and pitching moment based onTtheodorsen’s theory are given by

q L CL CL,(I
o D | = pwbu?cogA Co +C(kK)ae | Cpa (52)
2bCn, 0

The 2-D section lift, drag, and pitching moment coeffici€dtsCp, andCy, due to the rigid-body angle of attack
are defined as

CL CLo+CLa0*+C 50
Co | =| Coo+Cpaa*+Cpg0a+ KCE (53)
Cm Cmac +Cns,0a

whered, is the aileron deflectiorK is the induced drag constant, a@gl ac is the quarter-chord pitching moment
coefficient which is positive nose up and independent of tiggenof attack.

The functiorC (k) is called the Theodorsen’s function which is a complex-gdifunction of the reduced frequency
parametek

bw
~ ucosA (54)
wherew is the flutter or aeroelastic mode frequency.
C (k) can also be expressed in terms of Hankel functions of thenskldad Hi2 (k) as
2
C(k) = H &) =F (k) —iG(k) (55)

Hy? (k) +iHS (k)
whereF (k) > 0 andG (k) > 0.
Whenk = 0, the airfoil motion is steady ar@(k) is real and unity. Ak increases, there is a phase lag introduced

as the magnitude @& (k) increases as shown in Figs. 4 and 5. The limiting valuds (& andG (k) are /2 and 0 as
k — 00,17
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The aerodynamic forces and moment on a 2-D wing sectiongatithe elastic center in the reference frame D

are determined by

as illustrated in Fig. 7.

fs q —Lsin(ac+y)+Dcos(ac+ )
=5 Lcos(ac+ y)+Dsin(ac+ ) (56)
me —M — ($ +a) b[Lcosac + Dsinac|

Fig. 7 - Airfoil Forces and Moment
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For a small elastic angle of attack, the circulatory unstestodynamic forces and moment are approximated as

fy Gy Cya
f¢ | = pwbu?cosA C, |+CKae| Cuq (57)
g 20C; 20Cx 4
whereC,, C;, andC, are the force and moment coefficients due to rigid-body agraahics
Cy —Csin(a*+y)+Cpcos(a* +vy)
C | = CLcos(a* +y)+Cpsin(a* +y) (58)
Cx ~Cm— (1 +2) [CLcosa* +Cpsina*]

andCy q, C, 4, andCy o are the derivatives of the force and moment coefficients wisipect to the angle of attack

Cya —(CLa +Cp)sin(a* +y)+ (Cp,a —Cr)cos(a* + )
Coa | =| (CLa+Cp)cos(a”+y)+(Cpa—Ci)sin(a*+y) (59)
Cxa —-(3+9) [(Ct’a-‘rC*D) cosa* + (Cp o —CL)sina*}

C. Aerodynamic Damping

Dynamic stability of a system is dependent on dissipativeds acting on it. The dissipative forces contribute posi-
tively to damping of the system. Dynamically stable systeeagiire positive damping. Aeroelastic forces give rise to
the aerodynamic damping mechanism that influences aerodgssability of an oscillating wing or a flight vehicle.
Positive aerodynamic damping results in aerodynamictdlyls operation. Conversely, negative aerodynamic damp-
ing causes flutters and self-excited vibrations. Fluttemuoiaries are defined by air speed at which the aerodynamic
damping crosses from a positive value to a negative value.

Consider the case when= 0 andy = 0, the damping forces are obtained from the noncirculatodycrculatory
components of the aeroelastic forces as

fy aVy tanA - Sa
fd | = pob’ucosA <CX;75A — W tanA — et> m + PubU?COSAC(K) e | Cpq
mg n(3—a—ay?)b 2bCyq

(60)
For a harmonic motion, the structural deflections may beesqed as
© Po(X) |
W | =] dw(x) | (61)
Vv Py (x)
wheredg, dy, anddy are the elastic mode shapes of the torsion, flapwise benaimthchordwise bending modes,
respectively.
Then, the elastic angle of attack may be expressed as
ae = (0r +ia) e (62)
wherea; anda; are the real and imaginary partsaf
(JCD(, tanA '
ar = W - (Dwtan/\ - CD@ (63)
o= —w CDW-‘F(%—a)bCDe—C{*CD\/ (64)
' ucosA
where the prime denotes derivative with respect to
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The damping forces and pitching moment are then obtainebeasrtaginary part of the circulatory aeroelastic
forces and pitching moment

f;? ) -y _ Cya
fd | = pwb’ucoshar wie™ T + PobU? oS A [-G (K) oy +F (K) ai]i€™ | Cpq (65)
g m(3-a-ay’)b 2Cyq

which can also be written as

fd —ny Cra
Y oV tanA G(k '
fd | = pob’ucosn (::)73/\ — W tanA — G)I) m - % Cra
mg n(%—a—ayz)b 2bcx,a
1 Sa
+ PobucosAF (k) [—W — (E — a) bG: + a*V Cra (66)
2bCy o

It should be noted that the sign of the aerodynamic dampimgflisenced by the sign o 4 +Cp. While Cp
is always positiveC, o can be negative when the airfoil is stalled. Therefore, ppassible that the aerodynamic
damping can become negative. If the overall damping whictudes structural damping that inherently exists in
the wing structure transitions from a positive value to aatieg value, the ensuing motion will be aerodynamically
unstable due to positive work inputs to the wing by the air &mample, the generalized damping coefficient for the
flapwise bending, by neglecting the te@p o — C_ and the contributions from chordwise bending and torsiosy m
be estimated as

_ PoUCOSAF (K) [ b(CLq +Cp) cosa* (x) [Pw (x))*dx
B 20 [ pA[dw (X)) dx
It is obvious that ifC, ; becomes negative then if it possible ffyy to be negative. The aerodynamic damping for

the torsion is more complex. In general, the aerodynamiqitagrfor the combined bending-torsion motion must be
analyzed by matrix analysis

dw (67)

VI. Gravity and Propulsive Forces and Moments

The gravity and propulsive forces are significant contiiffictive forces acting on the aircraft airframe. These
forces can influence structural deflections of a wing. Foh¥agpect ratio, flexible wings, gravity can significantly
offset wing bending deflections at low airspeed. Similaithg engine thrust force can also affect twist and bending
deflections of flexible wings.

A. Propulsive Forces and Moments

To deal with the propulsive force, we assume that the lefirengroduces a thrust vector aligned with thedirection

at the thrust center E in the rigid-body aircraft referenagfe B. Point E is assumed to be located relative to point P

atx = xg, Y =Yg, andz = z forward and below the elastic center of the wing section ertiference frame D. Since

the engine is mounted on a flexible wing, then the thrust cdhie dependent on the wing structural deflections.
Since the engine thrust is a concentrated force, it can eulated as a distributed force using the Dirac delta

function which is defined as

00 X=
5 (x—%0) = 0 (68)
0 ,X#Xo
such that for an arbitrary functian(x), then
[ 9008 (x ) dx =g 0 (69)
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Then, the distributed forces in the reference frame D dudédosmall structural rotation ang@eare computed
using three successive rotation matrix multiplicationragiens as

fe 1 0 O 1 0 W 1 VW O —sinA
iy | = O0(x—xg)T| 0 1 -0 0O 1 O Ve 1 O —COosA
fé 0 0 1 W, 0 1 0O 0 1 0
—sinA + VxcosA

~0(x—xg)T | —cosA—\VgsinA (70)
—Wsin/A — @cosA

whereT is the engine thrust.
The distributed thrust forces are transformed back intatteaft reference frame B as

fe —sinA  —cosA O —sinA +VxCcosA 1
fy | ®0(X—Xe)T | —cosA sinA 0 —cosA—VsinA | =o(x—xg)T —Vy
fé 0 0 -1 —W,sinA — ©cosA W sin/A + © cosA

(71)
The left engine thrust force can now be obtained by integnads

Tt = / 0 (Xx—xg) T [b1 — Vxba — (WkSiNnA + ©cosA) ba]dx = T [by — Vibz + (Wi SiNA + ©cosA) bg]X:XE (72)

It can be observed that the structural deflections at thestlwenter generate additional thrust force components
in the b,- andbs-directions. Thus, the coupled effect between the propeifisirce and structural deflections can be
significant if the wing is highly flexible and the engine thrisslarge.

The distributed moments due to the propulsive force in tfereace frame D are computed as

me Yefs —zfy (e — YeEWK) SinNA + (—zeVy — YEO) cosA
e | = —ze fe =5(x—xg)T Ze (Sin/A — Vi cosA) (73)
m —yefe Ve (Wi SINA + O cosN)

B. Gravity Forces and Moments

The gravity can exert significant forces and moments on a witte gravity forces include the weight of the wing
including fuel, and the engine weight. The distributed gyaforces can be expressed in the reference frame D as

J sin@sinA — cosf singcosA
fd | ~[PAg+d(x—xg)meg] | sinBcosA + cosdsingsinA (74)
J —cosf cosp

wherep is the mass density of the wing including fualis the cross sectional area, amd is the engine mass.

Assuming that the center of gravity of the wing and fuel caes with the elastic axis, and the center of gravity
of the engine coincides with the thrust center, then theibdiged moments due to gravity in the reference frame D are
computed as

my —Ye 0SB cos@ — Zg (COSA + cosB sin@sin/\)
mg | =& (Xx—Xe) Meg —Z¢ (sinBsinA — cosf sin@cosA) (75)
me —YE (Sin@sinA — cosA singcosA)

VIl. Coupled Structural Dynamic Equations

The equilibrium conditions describe the force and mometarme of all forces and moments acting on a wing.
The resulting force and moment equilibrium conditions averyby

9 FX fx 0
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My my FVk— RV 0
My [+ my |+] -FRWe+F |=]0 (77)
M, m, ~RVy+Fy 0

wherefy, fy, f, my, my, andm, are distributed forces and moments due to inertial, aestielgravity, and propulsive
effects

ox

f(XaY-,Z) f(I ,2) + f(x Y,2) + fg(yz) + f(?(yz) (78)
Mixy,2) :mlxyz +maxyz +mgxyz +mxyz) (79)

The shear forceB, andF, can be eliminated by solving the last two equations in Eq).(Réglecting nonlinear
terms, the equilibrium conditions can be written as

oM

M % 4+ my— mpVy+ MpWg = 0 (80)
M,  om, P x
o +W—fz+a—x(vvx/o fxda) —0 (81)
0°M, om, 7] X B
e nyra—X(vx/0 fxda) —0 82)

where the superscript * denotes rigid-body forces and maesnando is a dummy variable that replaces

The resulting equations are three structural dynamicalatifferential equations that relate the flapwise bending,
chordwise bending, and torsion with the coupled effectsenimdnsideration. The integral term involving the rigid-
body inertial forcef,;can be important if the inertial acceleration of the aircrafignificant. This term gives rise to
the rotational stiffening effect when the angular speedwiray structure is large.

A. Example

Consider a flight vehicle with non-twisted, unswept wings- 0, A = 0, on a horizontal flightg = 0, making a
constant roll ratgp maneuver. The rigid-body and elastic angles of attack frogs E39) and (42) reduce to

—p(Xp+X)
u

p_Zp_e_W-l-(%—a)b@t
u ucosA

Neglecting the chordwise bending motion and the dampingefarthen the structural dynamic equations for flap-
wise bending and torsion are

at=a+ (83)

(84)

3 1
—(GIOy), — PP?1 20 + Plo@it + PeTID? Ké —a+ 2a2> bOy + <§ - Za) V\h]

2 2 1 pPZp
— peb2U2COZAF (K)Cpq (§+a) (vvxTJre)

GS‘) Cra (3 + a) {V\h + (3 - a) b@n} = pbu?co$A2bC, (85)

3

X
(ElyyWieo) o + OA (Wt — p*W) + (p P21y Wi — Py Whgt -+ W /0 pAa;do)

X

+ P’ K% - Za) b + Z\Mt] + Pob cOF AF (K) Crq (V\&p—zp + e)

G(K)

1
— Pub®Cr [vm + (E - a) ben] = —pAa; + p.bu?co$ AC, — pAgcosp (86)
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For a quasi-steady-state motion when the wing respondsatato the inertial, aeroelastic, and propulsive forces
by setting all the partial time derivative terms to zero ia #bove equations, one obtains

—(GIBy), — PP?1z0 — pub?U?cog NC, 4 (% + a) (WX% + e) = Pobu? cog A2bCy (87)

"X
(ElyWio) . — PAP?W + (p P21y Wk + Wk /0 pAa;do) + Peobl? COS AC7 (vapTzP + e)
X

= pA(W+ pzp) + pebu? cog AC, — pAgcosp  (88)

B. Solution Methods

Structural dynamic problems can be solved by various coatipumial methods such as finite-element, finite-difference,
and Galerkin methods. Computational structural dynamablems are typically formulated in terms of the mass
matrix, stiffness matrix, and force vector in the forntof

[—w? (M'+M") — wG (k)H + (K*+K®)]U =F (89)

whereM! is an inertial mass matri#/" is an apparent mass matrix due to noncirculatory fork€ss a structural
stiffness matrixK® is an aeroelastic stiffness matrix due to circulatory fer€eis a force vectorH is a matrix due to
the phase lag resulting from vortex shedding, bnd a displacement vector. Due to the aeroelasticity, theiossH
andK°® are non-symmetric. Therefore, the eigenvalues of thiesysire generally complex.

Equation (89) is a generalized nonlinear eigenvalue proldae to the presence & (k) which is a nonlinear
function of w. Thus, the eigenvalue solution is an iterative process lsy fjuessing fok, and then solving an
generalized quadratic eigenvalue problemdpmvhich in turn is used to updake An alternate approach is to simply
ignore G (k) sinceG (k) is a small value. The eigenvalue problem then reverts toeafifiorm which can easily be
solved. WherG (k) is ignored, then the problem is classified as quasi-steady aeroelasticity.

There are two types of problems: 1) static aeroelasticity 2ndynamic aeroelasticity. The static aeroelasticity
describes physical effects that do not involve dynamicaasps of a wing structure such as divergence and control
reversal. The wing-deflected shape can influence the aenotiga of a vehicle. The static deflection can be large
if the wing structure is highly flexible. The static problemancbe formulated as a coupled fluid-structure interaction
problem. The vehicle is modeled by computational fluid dyitanCFD) method for aerodynamic calculations of
coefficients and derivatives. The results are used as irtfputse computational structural model to compute the
vehicle deflected shape. This shape is then used as the nettanghe CFD model and the process is repeated until
the solution converges.

The dynamic aeroelasticity describes flutter behaviorsteartsient responses of a wing structure that is subject
to wind gusts or instantaneous control surface deflecti@hgamic responses of the wing structure can affect the
overall vehicle control and stability. The solution of thgndmic problem can be solved by implementing the modal
decomposition method on the eigenvalue solution of the etatipnal structural dynamics. Elastic modes can be
described by a set of uncoupled, scalar second-orderdéiiffiait equations that can be readily analyzed.

For a symmetric aircraft configuration for which both winge aentical, two types of elastic modes are present.
Symmetric modes are those for which the structural deflestid both wings are in the same sense. Anti-symmetric
modes are those that exhibit structural deflections in arosifgsense between the left and right wings. Figure 8
illustrates symmetric and anti-symmetric modes.

Because of the symmetry that exists at the fuselage carmgednly one wing can be analyzed with appropriate
boundary condition&’ The fuselage and tails contribute to the elastic modes aa@eotrated mass, half of which is
located at each of the wing roots. Then for symmetric modesbbundary conditions at the wing roots must match
the bending displacement slopes for both left and right wjagd are given by

e Lo K
Vy (0,1) 0
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The torsion boundary condition for symmetric modes is niilicki corresponds to a free-free boundary condition.
For anti-symmetric modes, the boundary conditions at thgwdots must be zero

0(0,t)
w(,t) | =
V (0,t)

(91)

O O O

Anti-Symmetric Modes

nose-down (up)

nose-up (down)

Symmetric Modes

nose-down (up) nose-down (up)

Fig. 8 - lllustration of Symmetric and Anti-Symmetric Modes

The symmetric boundary condition is an approximate anglysh accurate prediction of aeroelasticity requires
the entire aircraft structure including wings, fuselaged tails to be modeled.
The structural deflections obtained from a computational@hoan be expressed as

O(xt) @(X) m P, (X) n Wo,j (X)
W) | =] W | +3aiM) | dwit) |+ )| W) (92)
V (x,t) V (X) =1 Dy (X) =1 Wy (X)

where the overbar symbol denotes static soluti@ns,y) ; and¥gw,y),; are normalized eigenvectorg;, andr
are generalized coordinates for the th symmetric and anti-symmetric modes that solve a set of yrledwscalar
differential equations

M) 4+ ¢+ KT = T (0w uw P p, &), j=1,...,n (94)

The scalar quantities®", c%", andk%" are called generalized mass, damping, and stiffness regtnespectively,
andg®"andh%" are called the generalized forces. They can be computed thgirstandard procedure in elementary
vibration theory.

VIII.  Flight Dynamics of Flexible Aircraft

A flexible aircraft has various elastic modes that can piadie in the motion to affect its flight characteristics.
Wing elastic modes constitute significant structural dyicarof flexible aircraft. In addition, fuselage bending mede
are also known to affect pitch characteristics. There dreratlastic modes such as those due to horizontal stalilizer
and vertical stabilizer. In totality, all these componettstribute to flight characteristics and should be incluhed
the equations of motion. The coupled flight-structural dyits can be quite complicated when all elastic modes are
accounted for. In this study, we will only focus on the conglof wing elastic modes and rigid-body flight dynamics.
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A. Aeroelastic Forces and Moments in Aircraft Reference Frane

We define the elastic angle of attack as a function of the strakdeflections as

—y)-w [tan/\ _WEr)] g (95)

0t (0, W, Vi) = [V (

COosA ucosA

Wing structural deflections affect the lift characteristid an aircraft. Assuming both the left and right wings are
of the same geometry, then the elastic angle of attack s to the static and dynamic forces and the moments in
the aircraft reference frame B as

A)Z(U,W, pa Cf, 63 (pa 63) oL _ —Cy,a COS/\
AZ(uw,p,a,0,0,5) | = 2/0 Peob® cOS Ae (©, Wi, V) —Cra dx (96)
AM(U,\N, pvaaevqovéa) _ZbCX,(ICOS/\
AXP (U, W, p,a, 6,9, 3) N —Cyq COSA
AZS (u,w, p) =2F (k)/o PeobUZ oS Nae (Po |, Pwj, Py, —Cya dx  (97)
AMJS(u,w, p) —2bCx o COSA
AYA (u,w, p,a,0,0,5) L Cy.a SINA
p(uwp,a,0,9,0) | _ e k/ WbUZCOZ AT (Wo 1, Wi, W | a dx (98
ALY (u,w, ) ) P (Yo, Wwj W) —2bCyq SINA 9)

whereX, Y, andZ are the aircraft axial, side, and normal forcesM, andN are the aircraft rolling, pitching, and
yawing moments, the overbar symbol denotes static forocg@smments, and the superscrdpand¥ denote dynamic
forces and moments corresponding to symmetric and anti¥stnic modes, respectively.

It can be seen that symmetric modes affects forces and menmettte longitudinal direction. On the other hand,
anti-symmetric modes affects the lateral motion of theraftc The aeroelastic forces and moments contribute to
the flight dynamics of an aircraft in such a way that elastiftedions can adversely affect the rigid-body aircraft
responses and can result in elastic mode interactions wiigha control system. These interactions necessitate the
use of aeroelastic mode filters in the flight control desigartrer to attenuate structural dynamic responses of flexible
aircraft lifting surfaces.

B. Propulsive Forces and Moments in Aircraft Reference Frane

In addition, the elastic modes also affect the propulsiveds and moments generated by wing-mounted engines. The
propulsive force for the left engine is given by Eq. (72). é®8ng a twin-engine aircraft configuration, the propulsive
force for the right engine is given by

TR =T by — bz + (WksinA — ©CosA) b, . (59)

whereV, W, and® are defined according to the right wing reference frame C swatl/ and® are in the opposite
sense to those deflections in the reference frame DVi.is.positive towards the leading edge adds positive hose
up.

The total static and dynamic propulsive forces are then edetpbto be

XT =2T (100)

TA g,
A =2T| ., . a2 (101)
AZ]S Py SINA+Pg jcOSA |

=Xg
where the superscrigtSandTA denote thrust forces due to symmetric and anti-symmetrabanaespectively. Thus,
symmetric modes create a normal force and anti-symmetriesioreate a side force due to the combined thrust of
the two engines.

The propulsive moment is computed as

M = (rgby —ryba+r7bg) x TS+ (rgby +ryba +rfbs) x TR (102)
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where( 9 ,rE,r ) are the coordinates of the right engine thrust center velati the aircraft center of gravity in the

reference frame B.
Upon evaluation, this yields the total static and dynamappisive moments

T—omE (103)
ALTA rEW, —rf (LIJ(N’J- SINA + Wo | cos/\)
AM[S | =2T —rf (llJ\’N‘j sinA +Wo cos/\) (104)
ANTA B
J s LPV,J' X=Xg

It can be seen that symmetric modes result in an additiotedlipg moment, whereas anti-symmetric modes create
both rolling and yawing moments.

C. Equations of Motion

The flight dynamic equations with elastic mode and propal&ivce interactions can now be written as

m(U— rv+qw-+ gsing) = X' +C_gSsina — CpGScosa cosB + AX + JiAstqj (105)
M(V+ru— pw— gcodsing) = Gy GS8— CpaSsing + i AY A+ AYP)r (106)

m(W— qu+ pv— gcoBcosp) = —CgScosa — CpGSsina cos + AZ + g AZ[S+ A7) q; (107)
P — lxyG— hf + lyPr — LePa+ (12— lyy) ar + Iy (r2 — ¢?) = G GSh S (ALTA+ ALY 1 (108)

1

_ _ m
LB+ Iyl — Iy +1yz2P0 — Loy + (e — 1) Pr + b (p? = 1?) = CnGE+MT +AM + Z (AMT5+AMP) g; (109)

_ _ n
—laP — Iy + Lz + L — lyzpr + (lyy — ) PA+ Iy (0% — p?) = CaGSo+ > ANJAr; (110)
=1

where the coefficients with the overbar are for the airccpit,the dynamic pressurejsthe mean aerodynamic chord,
b is the wing spanSis the reference wing area, afids the angle of sideslip.

These equations constitute six degrees of freedom dyndhd@tare coupled with structural dynamics equations
from Egs. (93) and (94), which are obtained from a computafionodel. In analyzing the elastic modes, only
the first few significant modes whose natural frequenciesvéten a flight control frequency bandwidth are usually
considered. These elastic modes can become excited byghiecitintrol surface deflections. Examining Egs. (105) to
(110) reveals that symmetric modes only affects longitakitynamics of aircraft. On the other hand, anti-symmetric
modes play a role in both lateral and directional dynamics.

IX. Computation

In order to establish the equations of motion of flexiblerift; structural and aeroelastic eigenvalue analysis must
be performed. Equations of motion of flexible aircraft camamiently be derived using the Lagrangian equations of
motion in quasi-coordinaté$:1° This approach allows the derivation of the equations of amiin terms of quasi-
velocities (time derivatives of quasi-coordinates) in anederating reference frame fixed to the aircraft, as oppose
to the generalized coordinates in a non-acceleratingiahegference frame. The Lagrangian equations of motion
require the knowledge of three scalar quantities, nameélgtic energy, potential energy, and the virtual work due to
the applied forces. In our modeling approach, we regarditieaét as a flexible multibody system where the aircraft
components are the fuseladg,(wing (w), horizontal stabilizerk), and vertical stabilizenf. To describe the motion
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of the aircraft, a set of body ax¢s,y,z) are attached to the undeformed aircraft at a convenient paithe fuselage
(not necessarily the center of mass of the aircraft), asasedimilar axe$x, i,z ), i = w, h, v to the remaining aircraft
components. The fuselage, right and left wings, right aftdhlerizontal stabilizers, and vertical stabilizer are ralzdi

as thin-wall beams, each fixed at its respective root, angesuto flapwise bending displacemahit(x;) and one
spanwise generalized torsional displacem@it;), i = f,w,h,v. Then the motion of a point on the aircraft can be
expressed by the rigid-body translation and rotation ofathéy axes(x;,Vi,z) and by the elastic deformation of the
flexible bodies relative to their respective body axes.

The resulting equations of motion include 12 first-ordelimady differential equations for the rigid-body transla-
tion and rotation, and a partial differential equation fack elastic displacement component. The system is hybrid
since it includes both ordinary and partial differentialietions. The solution method requires a discretizatiomef t
partial differential equations. To this end, we assume ¢lagh elastic displacement can be expressed as a matrix of
n shape functions multipled by a vector nfgeneralized coordinates. The shapes functions can benelt&iom
the finite element method, Galerkin method, or any otherlaimmiethods. However, for best accuracy at the lowest
possible value ofi, the shape functions used in this paper are the eigenfursatiba uniform cantilever beam for the
bending displacements, and the eigenfunctions of a uni&brait for the torsional displacements. By discretization,
the partial equations are reduced to a set of first-ordenardidifferential equations.

Aircraft structures generally have a quite complex geoynétor simplicity, the structures of the flexible compo-
nents are modeled as thin-wall beams with constant thigasesTo approximate the mass and stiffness distributions
of the aircraft components, the cross-sectional propestieh as geometric center, cross-sectional area, areanteoome
of inertia, torsional constant, are computed at some finitaber of sections on the respective aircraft components.
For each flexible body, the geometric center locations aedfito a straight line which is chosen as thaxis for
this body. Theg-axis is chosen to be in the flapwise direction. The aircraftiet used in the study is based on the
NASA Generic Transport Model (GTM). The locations of the geric centers for the sections and theaxes for
the bodies of this model are shown in Fig. 9. The body axesefitbelage are treated as the body axes of the aircaft
and transformation matices are established between thead@s of the aircraft and the body axes of the individual
aircraft components. Flexural and torsional rigidity disitions of the individual aircraft components with respe
their x;-axes are shown in Fig. 10.

Fig. 9 - Stick Model of Aircraft

The modal characteristics of the aircraft without aerdalg is first estimated by solving the eigenvalue problem
for the system

(—w™™M'+K%U =0 (111)
whereU is the displacement vector for the whole aircraft, inclgdthe rigid-body displacements and the elastic
displacements.

For aeroelastic eigenvalue analysis, the aircraft is tiddiat a selected flight condition of mach 0.8 and 30,000 ft.
Then all pertinent aerodynamic derivatives are obtainethfain aerodynamic model. This information is used to create
the aerodynamic stiffness, damping, and mass matricesimfaify the analysis, the nonlinear effect due®dk) is
neglected, so that the model is effectively a quasi-stetatg snodel which does not account for the Theodorsen’s
function due to unsteady aerodynamic lag.
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Fig. 10 - Structural Rigidity Distributions of Fuselage,MJi Horizontal Tail, and Vertical Tail

Table 1 lists the computed structural and aeroelastic nfoelgiencies and aerodynamic damping associated with
aeroelastic modes from the eigenvalue analysis.

‘ Mode‘ Structural Frequencyy, | Aeroelastic Frequencyy ‘ Aerodynamic Damping{a ‘

1 A=0

2 A =-0.00165

3 A =-11423

4 0.0088 0.0138
5 0.3681 0.1508
6 0.5498 0.2868
7 7.0633 6.9637 0.0120
8 7.8161 7.9244 0.0019
9 7.9600 8.2228 0.0044
10 10.446 10.958 0.0063
11 11.029 11.023 0.0070
12 12.485 12.445 0.0075
13 13.819 13.492 0.0287
14 14.285 13.815 0.0007
15 17.206 17.218 0.0134
16 33.563 33.552 0.0024
17 39.272 39.234 0.0232
18 48.962 49.277 0.0099
19 49.277 49.537 0.0018
20 52.126 53.173 0.0156

Since the real parts of the eigenvalues are negative camdgpg to positive damping, the aircaft is stable about
this steady level flight. The first six modes are rigid-bodydes, with the first being a purely translation mode of zero
eigenvalue, the second being the spiral mode, the thircgtkibim roll mode, the fourth being the phugoid mode, the
fifth being the dutch roll mode, and the sixth being the shertqel mode. The remaining modes are aeroelastic modes
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with structural deflection involving bending and torsiorhelseventh mode is the lowest bending mode and involves
symmetrical bending of the wing and the horizontal stabiliabout thex— z plane and bending of the fuselage. The
eighth mode is the lowest torsional mode and involves amtirsetric bending and torsion of the all elastic members.
These mode shapes are illustrated in Fig. 3.

7th mode (bending) at ® = 6.96 Hz 8th mode (torsion) at ® = 7.92 Hz

Fig. 11 - First Bending and First Torsion Aeroelastic Modes

The lowest aeroelastic frequency is about 7 Hz. The aettietdfness effect does not appear to be too significant
since the aeroelastic modal frequencies are almost theaathe structural modal frequencies. However, aerodynamic
damping can have a significant influence in the overalll aftatability.

X. Conclusions

This paper has presented an integrated flight dynamic mmagelethod for flexible aircraft. The method combines
structural dynamics of an equivalent beam model of a flexilbhgy with rigid-body flight dynamics that accounts for
coupled effects due to aeroelasticity, inertial forces] propulsive forces. A formulation of aeroelastic angle of
attack for the combined chordwise bending, flapwise bending torsion is developed that extends Theodorsen’s
theoretical result. The structural dynamic equations @asdived using the finite-element method to determine static
and dynamic structural deflections as functions of airgt#tes. The elastic modes are decomposed into symmetric
and anti-symmetric modes with associated generalizeddowates. The standard flight dynamic equations for six
degree-of-freedom motion then includes the generalizeddioates as additional state variables. These equations
become coupled with a set of uncoupled second-order diffedeequations in terms of the generalized coordinates
that describe the elastic responses of the wing structures& equations must be solved simultaneously to obtain a
solution that describes the combined motion of flexibleraitc A computational aeroelastic model of a generic aftcra
has been created. Eigenvalue analyses have been conduetgthate structural modal frequencies and aeroelastic
frequencies. In the future, using this model, a modal trtionawill be performed to generate frequency response
models that will be coupled with rigid-body flight dynamics.

References

lpendleton, E., Lee, M., and Wasserman, L., “Application ofive Flexible Wing Technology to the Agile Falcon”, AIAA umal of
Aircraft, Vol. 29, No. 3, May-June 1992.Pendleton, E., Lide, and Wasserman, L., “Application of Active Flexible Wifigchnology to the Agile
Falcon”, AIAA Journal of Aircraft, Vol. 29, No. 3, May-June9®2.

2Wilson, J.R., “Active Aeroelastic Wing: a New/Old Twist ofight”, Aerospace America, September 2002.

SpPratt, R.W., Taylor, R., and Caldwell, B.D., “Aeroservatiaity: Key Issues Affecting the Design of Flight Contrgtsems”, IEEE Control
Conference Publication No. 389, March 1994.

4Gupta, K.K., Brenner, M.J., and Voelker, L.S., “Developienan Integrated Aeroservoelastic Analysis Program anaeBaion with Test
Data”, NASA Technical Paper 3120, May 1991.

5Cheng, P.Y. and Hirner, T.J., “Aircraft Aeroservoelastiosn@pensation Using Constrained Optimization”, AIAA Sturets, Structural Dy-
namics, and Materials Conference, AIAA-1992-2399, Ap8i92.

6Brenner, M.J., “Aeroservoelastic Modeling and Validatifra Thrust-Vectoring F/A-18 Aircraft”, NASA Technical Pap3647, September
1996.

Strass, H.K., and Stephens, E.W., “An Engineering Methadfetermination of Aeroelastic Effects upon the Rolling defiveness of
Ailerons on Swept Wings”, NACA Research Memorandum L53HNdyember 1953.

22 of 23

American Institute of Aeronautics and Astronautics



8Theodorsen, T. and Garrick, I.E., “Mechanism of Flutter -hedretical and Experimental Investigation of the Fluttesldem”, NACA
Report 685, 1940.

9Theodorsen, T, “General Theory of Aerodynamic Instabiind the Mechanism of Flutter”, NACA Report 496, 1935.
10Garrick, I.E., * Bending-Torsion Flutter Calculations Mfield by Subsonic Compressibility Corrections”, NACA Rep886, 1946.

Houbolt, J.C. and Brooks, G.W., “Differential Equationshétion for Combined Flapwise Bending, Chordwise Bendinugl dorsion of
Twisted Nonuniform Rotor Blades”, NACA Technical Note 39@&bruary 1957.

12| ge, U., “Equivalent Continuum Beam-Rod Models of Aircréifing Structures for Aeroelastic Analysis”, AIAA StructsreStructural
Dynamics, and Materials Conference, AIAA-1994-1695, Ap8i95.

13ghearer, C.M. and Cesnik, C.E.S., “Nonlinear Flight Dyrenaif Very Flexible Aircraft”, AIAA Atmospheric Flight Mednics Conference,
AIAA-2005-5805, August 2005.

14Meirovitch, L. and Tuzcu, 1., “Integrated Approach to ther@ynics and Control of Maneuvering Flexible Aircraft”, NASER-2003-
211748.

SMeirovitch, L. and Tuzcu, 1., “Unified Theory for the Dynarsiand Control of Maneuvering Flexible Aircraft", AIAA Jowah Vol. 42, No.
4, pp. 714-727, 2004.

18Bisplinghoff, R.L and Ashley, HPrinciples of Aeroelasticity, Dover Publications, Inc., New York, 1975.

17Abramson, N.An Introduction to the Dynamics of Airplanes, Dover Publications, Inc., New York, 1971.

18Hodges, D.H. and Pierce, G.Antroduction to Sructural Dynamics and Aeroelasticity, Cambridge University Press, 2002.
19Hughes, T.J.RThe Finite Element Method: Linear Satic and Dynamic Finite Element Analysis, Dover Publications, Inc., 2000.
20przemieniecki, J.STheory of Matrix Structural Analysis, Dover Publications, Inc., New York, 1985.

23 0f 23

American Institute of Aeronautics and Astronautics



