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charge-coupled device (CCD) detector.
The resulting digitized interference
fringe pattern is then analyzed by dedi-
cated software to determine the angular
misalignment between the two laser
beams (and, hence, the misalignment
between the cubes) at the sub-arcsec-
ond level. If a null fringe pattern were
achieved, it could be concluded that the
laser beam points anti-parallel to the
surface normal of the test cube. Knowl-
edge of the distance from null (via the
angular misalignment seen in the inter-
ference pattern) coupled with readings

from azimuth and elevation encoders
calibrated to the laser-pointing direc-
tion then gives the orientation of the
cube surface normal vector in two (an-
gular) dimensions. This is the same in-
formation as would be given by a
theodolite aligned to the test cube, al-
beit with greater accuracy.

This system offers several advantages.
The parts used in the prototype unit
were off-the-shelf and relatively inex-
pensive. Whereas the uncertainty of a
typical theodolite measurementis 1 to 2
arcseconds, the current theoferometer
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prototype has a demonstrated uncer-
tainty of about 0.3 arcsecond. Moreover,
the theoferometer makes it possible to
completely automate the data-taking
process, reducing the time required to
take measurements. The net result is
better metrology at lower cost, relative
to metrology by use of an autocollimat-
ing theodolite.

This work was done by Ronald W. Toland
and Douglas B. Leviton of Goddard Space
Flight Center. Further information is con-
tained in a TSP (see page 1). GSC-14753-1

Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility

The facility can test nozzles up to 8.75-in. (22.2-cm) in diameter.

John H. Glenn Research Center, Cleveland, Ohio

A molecular Rayleigh-scattering-
based air-density measurement system
was built in a large nozzle-and-engine-
component test facility for surveying
supersonic plumes from jet-engine ex-
haust. The facility (see Figure 1) can
test nozzles up to 8.75 in. (22.2-cm) in
diameter. It is enclosed in a 7.5-ft (2.3-
m) diameter tank where ambient pres-
sure is adjusted to simulate engine op-
eration up to an altitude of 48,000 ft
(14,630 m). The measurement tech-
nique depends on the light scattering
by gas molecules present in the air; no
artificial seeding is required. Commer-
cially available particle-based tech-
niques, such as laser Doppler ve-
locimetry and  particle  image
velocimetry, were avoided for such rea-
sons as requirement of extremely large
volume of seed particles; undesirable
coating of every flow passages, model,
and test windows with seed particles;
and measurement errors from seed
particles not following the flow. The
molecular Rayleigh-scattering-based
technique avoids all of these problems;
however, a different set of obstacles as-
sociated with cleaning of dust parti-
cles, avoidance of stray light, and pro-
tection of the optical components
from the facility vibration need to be
addressed.

To avoid a problem with facility vi-
bration, light from a single-mode con-
tinuous-wave laser was transmitted
into the vacuum tank by the use of an
optical fiber. It was then collimated
and passed through the plume.
Rayleigh-scattered light from various
points along the collimated beam was
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Fig. 1. The Optical Arrangement is shown with the enclosing tank retracted downstream.

collected by a set of collection lenses
placed outside the vacuum tank and
measured by a photomultiplier tube
(PMT). Large glass windows on the
tank provided optical access. The col-
limator for the transmitted beam and

the light-collection optics were placed
on two synchronized traversing units
to enable a survey over a cross-section
of the nozzle plume. Although the
technique is suitable to measure veloc-
ity, temperature, and density, in this
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Fig. 2. Density Variation is shown along the centerline of a 5.06-in. (12.9-cm) diameter, nozzle-pres-

sure-ratio 10, supersonic jet from a convergent nozzle.
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first entry only air density was meas-
ured by monitoring intensity of the
scattered light. Excellent comparison
between theoretically predicted varia-
tion and the measured data along the
centerline of a highly underexpanded
supersonic jet provided validation to
the measurement technique (see Fig-
ure 2).

This work was done by Carlos R. Gomez
of Glenn Research Center and Jayanta
Panda of the Ohio Aerospace Institute. Fur-
ther information is contained in a TSP (see
page 1).
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