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ABSTRACT

Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the
lack of service history of these relatively new material systems, their long-term aging
performance is not well established. In this study, adhesive bonds were prepared by the
secondary bonding of Scotch-Weld™ AF-555M between pre-cured adherends comprised of
T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for
surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to
determine thickness and inspected visually for voids. A three-year environmental aging plan for
the SLS specimens at 82°C and 85% relative humidity was initiated. SLS strengths were
measured for both controls and aged specimens at room temperature and 82°C. The aging results
of strength retention and failure modes to date are reported.

1. INTRODUCTION

Fiber reinforced resin matrix composites have been introduced increasingly in recent years for
primary structural applications on military and commercial aircraft (e.g. A380, B787, YF-22).
These materials offer advantages in weight savings without sacrificing strength and mechanical
performance. Due to the lack of service history of these relatively new material systems, their
long-term aging performance is not well established. In view of this potential issue, an Aviation
Safety Program (ASP) was initiated under NASA’s Aeronautics Research Mission Directorate
(ARMD) in 2007. As a part of ASP, the Aircraft Aging and Durability Project (AADP) was
formulated to characterize, predict and manage damage and degradation issues associated with
aircraft aging. The focus of the AADP is aging and damage processes in “young” aircraft, rather
than life extension of legacy vehicles, thus the emphasis of research is on the behavior of new
composite and adhesive systems.

* This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United
States.



Previous work has demonstrated that high quality joints were bonded using a peel-ply surface
treatment that serves to provide increasing surface roughness and prevents mould release agents
and other materials from contaminating the surface [1-3]. In this approach, the peel-ply was co-
cured as part of the top laminate ply and subsequently removed just prior to bonding. It was
easily released by peeling off the adherend surface because of the non-stick nature of the carrier
fabric substrate (typically a polyester or polyamide). Increasing surface roughness resulted in an
increase in surface area, which allowed the adhesive to flow in and around the irregularities on
the surface to form a mechanical interlocking bond. In the present study for an AADP subtask
entitled “Bonded Joints for Construction and Repair”, the bonding surfaces were prepared by co-
curing Toray T800H/3900-2 composite prepregs with a resin impregnated wet peel-ply. Single-
lap-shear (SLS) specimens were bonded using AF-555M adhesive. Processing pitfalls for
producing porosity-free, high quality bonds have been reported previously [4]. The behavior of
on-going aging of SLS specimens in temperature/humidity chamber is reported herein.

2. MATERIALST

The materials used in this study are presented in Table 1. Specifications have been reported
previously [4]. All materials were used as-received without further treatments.

Table 1. Materials used in this study

Material Form Material Designation Supplier
Prepreg T800H/3900-2 Toray
Adhesive S/W AF-555M 3M
Wet peel ply Hysol EA-9895 Henkel

3. EXPERIMENTAL

31 Fabrication of composite adherends

The composite adherend panel, 61 cm by 81 cm (24” by 32”) - [0]:6, Was assembled by stacking
up 16 plies of uni-directional T800H/3900-2 prepreg. A peel-ply strip of 61 cm by 5.1 cm (24”
by 2”) was laid down on the top prepreg layer, perpendicular to the fiber direction and separated
by a pre-determined distance shown in Figure 1a. This assembly was cured at 177°C (350°F) for
2 hours under 690 KPa (100 psi) in an autoclave with vacuum bagging.

3.2 Bonding of adherends

Peel-ply co-cured composite adherend panels were then cut into six 61 cm by 10.8 cm (24” by
4.25”) strips along the center of the 5.08 cm (2”) wide peel-ply as indicated in Figure la. The
peel plies were then removed to expose the co-cured surfaces. Peel-ply surfaces were used as-
peeled without any additional chemical cleaning or wiping. The surfaces were visually inspected

1 Use of trade names or manufacturers does not constitute an official endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.
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Figure 1. Schematic drawing illustrates lay-up, co-curing, trimming (Figure 1a, top view) and
secondary bonding of composite/peel-ply/adhesive (Figure 1b, side view) in fabricating single-
lap-shear specimens.

for residual fiber debris after the peel-plies were removed. The surface characteristics have been
reported previously [4]. A 61 cm by 1.27 cm (24” by 0.5”) strip of AF-555M adhesive was
subsequently laid down on each exposed surface. A roller was used to help remove any trapped
air by rolling and pressing down the adhesive onto the surface. The adhesive was then
sandwiched by laying down the second half of the adherend panel. Shims were used to align and
control the final bond-line thickness. The six-strip assembly (see Figure 1b) was then bagged and
cured in an autoclave at 177°C (350°F) for 2 hours under 310 KPa (45 psi).

3.3  Preparation of the single-lap-shear (SLS) specimens

Co-cured strips measuring 61 cm by 12.7 cm (24 by 8”) were cut into 2.5 cm by 12.7 cm (1” by
8”) SLS specimens according to ASTM D1002-99 specifications [5]. Each bonded strip yielded
22 specimens, which were numbered as shown in Figure 2. A complete identification of a
specimen is indicated by Panel ID-Strips ID-Specimen ID. In this way, the origin of each
specimen can be traced back to the starting materials. A total of 66 specimens were fabricated
from a single autoclave run.



Panel #1-2/3-No

JEEER CEREREE

Panel #1-4/5-No

20 u 3

Panel #1-6/7-No

20 11 3

Figure 2. Schematic drawing (top view) illustrates identification of single-lap-shear specimens.
Panel ID is #1, bonded strip pair IDs are 2/3, 4/5 and 6/7 (see Figure 1), and specimen IDs for
each bonded strip pair is numbered 1 to 22 from right to left

34 SLS strength measurement

SLS strengths were measured by a MTS test frame. Details of the testing have been reported
before [4].

3.5 Aging chamber

The environmental chamber used was a MicroClimate™ model MCB-1.2 manufactured by CSZ
(Cincinnati Environment Chamber). This chamber has a standard temperature range of -73°C to
190°C (-100°F to 375°F) and a maximum relative humidity (RH) of 95%. The aging condition
selected in this study was 82°C (180°F)/85% RH [6]

4. RESULTS And DISCUSSION

Bond-line characteristics and thickness of each specimen were documented prior to aging or
testing. A typical specimen with voids present in the bond-line is shown in Figure 3. One side of
the bond-line exhibited no porosity, while the other side showed visible voids. For this study,
each humidity aging time exposure would contain a mixture of specimens consisting of some
that were void-free and some containing voids.

Specimens numbered 3, 11, and 20 in each bonded strip (see Figure 2) were selected to be tested
at room temperature (RT) as controls before aging. Results for Panel #2 are shown in Table 2.
Specimens from Strips 1 and 2 were void-free and exhibited SLS strengths which were
consistently 30% above the nominal value of 35.9 MPa (5,200 psi) reported by the manufacturer



[7]; while Strips 3 and 4, and 6 and 7 yielded void-containing specimens, with strength values
that were 85 to 95% of this nominal value. Results from another panel (Panel #4) which yielded
void-free specimens are presented in Table 3. The SLS strengths measured were consistently
over 10% of the nominal strength value. Whether the bond-line voidness is an effective
discriminator for bond strength remains to be seen from the aging results reported below.

Figure 3. Visual evidence of porosity in the bond-line. Adhesive is sandwiched between top
and bottom composite adherends

It was noted that Panel #4 yielded uniform bond-line thickness, while Panel #2 did not. The
origin of bond-line variations came from the thickness variations among the bonding adherend
strips. In an autoclave run, three sets of adherend strips were bonded using a single large caul
plate, which made the control of bond-line uniformity difficult.

Table 2. RT strength values for Panel #2 control specimens

Strip Specimen Bond-line SLS strength, | % of nominal
1D ID thickness, mil MPa strength**
172 3 1 46.8 130

11 1 46.6 130

20 1 47.6 133
3/4 3 9 41.5 116
11+ 13 30.5 85

20% 10 34.0 D5

6/7 3= 10 33.0 92
11+ 7 32.8 91

20% 8 30.2 84
Avg. 38.1+74 106

*Specimens with voids.
**Nominal strength 35.9 MPa (5,200 psi) from the supplier

4.1 Aging plan

The 3-year aging plan is presented in Table 4. Specimens were selected according to the
measured RT strengths of controls from each bonded adherend strips. Bond-lines were



photographed and characterized by 3 categories: Void-free, those containing 1-2 visible voids
and those containing 3-5 visible voids. It is important to note that the voids are only visible along
the bond edges. Specimens were too small for ultrasonic inspection of bubble entrapment within
the bond-lines. Thus it was not possible to assess overall bond quality for each specimen. Five
specimens in each aging group (i.e. exposure time) were randomly selected from these three
categories and were also selected such that they were not derived from a single co-cured panel.

Specimens were aged at 82°C (180°F) and 85% RH with pre-determined aging times. All
specimens were labeled, baked-out at 66°C (150°F) forl hour to eliminate moisture, and weighed
prior to placement in the aging chambers. Control specimens were wrapped in a plastic bag and
“aged” in desiccators at RT. A total of 160 specimens were included. Tests of control and aged
specimens were conducted at RT and 82°C (180°F). The test intervals were more frequent in the
first year. Specimen weights after aging were recorded and fracture surfaces were examined after

testing.

Table 3. RT strength values for Panel #4 control specimens

Strip Specimen Bond-line SLS strength, | % of nominal
ID ID thickness, mil MPa strength*
2/3 3 1 39.7 111

11 1 40.7 133

20 1 35.9 100

4/5 3 1 42.1 117
11 1 45.6 127

20 1 44.3 123

6/7 3 1 39.5 110
11 1 44.4 124

20 1 39.8 111

Avg. 41.3+3.0 115

*Based on nominal strength 35.9 MPa (5,200 psi) from the supplier

Table 4. Three-year aging plan in 82°C/85% RH chambers

Year | Aging time, No. No. No. specimens | No. specimens
month specimens | controls tested at RT tested at 82°C
1 0 0 10 5 5
1 10 0 5 5
3 10 0 5 5
6 10 10 10 10
9 10 0 5 5
12 10 10 10 10
2 18 10 10 10 10
24 10 10 10 10
3 30 10 10 10 10
36 10 10 10 10
Total 90 70 80 80




4.2

Results of control specimens “aged” in desiccators

Results of control specimens aged up to 4.2 months (125 days) in desiccators are tabulated in
Table 5. Specimen grouping for each aging interval consisted of 5 specimens that were a mixture
of void-free and specimens with voids. Strengths at RT and 82°C (180°F) for each aging time
were measured and average strengths and strength retentions calculated.

Table 5. Strengths of control specimens aged in desiccators at RT

Specimen No. of | Bond-line | Days | Test SLS Failure mode** Avg. % RT
ID voids in | thickness, | aged | temp, | strength, strength, | strength
bone-line | cm (mil) °C MPa MPa [ retention*
A0Q-1 0 0.018 (1) 0 RT 373 80 CF, 20 TLC 378+ 105
A0-2 1-2 0.028 (11) 338 80 CF, 20 TLC 2.7
A0-3 3-5 0.025 (10) 38.6 95 CF, STLC
A0-4 3-5 0.043(17) 38.0 95 CF, STLC
AQ-5 3-5 0.020 (8) 414 95 CF, STLC
AQ-6 0 0.031 (12) 0 82 31.1 50 CF, 50 TLC 304+ 85
AQ-7 1-2 0.038 (15) 33.1 60 CF, 40 TLC 2.0
A0-8 1-2 0.010 (4 304 80 TLC, 20 CF
A0-9 3-5 0.028 (11) 27.6 70 TLC, 30 CF
AQ-10 3-5 0.008 (3) 29.7 80 TLC, 20 CF
A180-1 0 0.031(12) | 125 RT 41.1 85 CF, 10 TLC, 5 LFT 36.6 £ 102
A180-2 1-2 0.033 (13) 42.0 90 CF, STLC,5LFT 6.7
Al180-3 1-2 0.025 (10) 304 70 CF, 20 TLC, 10 AS
A180-4 3-5 0.025 (10) 28.3 70 CF, 20 AS, 10 TLC
A180-5 3-5 0.028 (11) 41.1 90 CF, STLC,5LFT
A180-6 0 0.031(12) | 125 82 31.1 60 TLC, 40 CF 31.8+ 88
A180-7 1-2 0.031 (12) 324 60 TLC, 40 CF 0.8
A180-8 1-2 0.041 (16) 31.1 75 CF, 15 TLC, 10 AS
A180-9 3-5 0.038 (15) 324 85 CF, 15 TLC
A180-10 3-5 0.025 (10) n/a 60 TLC, 40 CF

*Based on nominal strength 35.9 MPa (5,200 psi) from the supplier
**Failure modes: CF — cohesive, TLC — thin layer cohesive, LFT — light fiber tear, FT — fiber tear, AS — adhesive
starvation. Numerical values depict percentages.

Table 6. Strengths of control specimens aged in desiccators at RT

Specimen Days aged Bond-line Test temp, | Avg. strength, % Strength
1D in desiccators | characteristics °C MPa retention*
A0 0 Void-free RT 37.3+0 104

82 31.1+0 87
125 RT 4110 114

82 31.1+0 87
A180 0 Void-containing RT 379+3.0 106
82 30.2+2.3 84

125 RT 355+7.1 99

82 32.0+0.8 89

*Based on nominal strength 35.9 MPa (5,200 psi) from the supplier




As previously observed, SLS strength values were independent of bond-line thickness. These
results were further re-grouped for clarity by specimens with and without voids in Table 6. Void-
free fresh specimens (i.e., specimens AQ) exhibited RT strength of 37.3 MPa (5,459 psi) which is
104% of the nominal 35.9 MPa (5,200 psi) from the supplier. Strength of 31.1 MPa (4,380 psi)
was measured at 82°C (180°F) and represented 87% retention of the RT value. Void-free
specimens aged in the desiccators for 4.2 months (125 days) yielded strength of 41.1 MPa (5,954
psi) and 31.1 MPa (4,505 psi) at RT and 82°C (180°F), and represented strength retentions of
114% and 87%, respectively. As expected, RT aging in desiccators had no apparent effect on
void-free specimens as both strength and strength retention at RT and 82°C (180°F) were
unchanged.

Void-containing specimens aged in desiccators behaved similarly to those void-free specimens
reported above (see Figure 6). Apparently bond-line voidness is not an effective discriminator in
this aging condition. It was also noted that the standard deviations were large in all cases for
reasons that are unclear at this time.

4.3  Results of strength retention for specimens aged in humidity chambers

Results of specimens aged at 82°C/85% RH up to 4.2 months (125 days) are tabulated in Table
7.

Table 7. Strengths of specimens aged in humidity chambers

Specimen No. of | Bond-line | Days | Test SLS Failure mode** Avg. % RT
ID voids in | thickness, | aged | temp, | strength, strength, | strength
bone-ling | cm (mil) °C MPa MPa retention*®
A30-1 0 0.018 (1) 35 RT 47.2 95 CF, STLC 375+ 104
A30-2 0 0.003 (1) 37.7 70 CF, 30 TLC 6.3
A30-3 0 0.031 (12) 383 95 CF, SLFT
A30-4 1-2 0.031 (12) 34.1 95 CF, STLC
A30-5 3-5 0.031 (12) 303 75 CF, 25 TLC
A30-6 0 0.010 (4 35 82 27.8 80 CF, 20 TLC 26.8 + 75
A30-7 0 0.018 (1) 30.8 75 CF, 25 TLC 5.2
A30-8 0 0.038 (15) 321 75 CF, 25 TLC
A30-9 1-2 0.028 (11) 24.2 70 CF, 15 TLC, 15 AS
A30-10 3-5 0.013 (5) 19.3 75 AS, 15 CF, 15 TLC
A90-1 0 0.033(13) | 95 RT 36.8 55CF,40 LFT, 5 AS 30.7+ 86
A90-2 0 0.020 (8) 35.6 70 CF,20 TLC, 10 LFT 54
A90-3 0 0.031 (12) 24.5 90 LFT, 10 FT
A90-4 1-2 0.010 (4 303 60 TLC, 40 CF
A90-5 3-5 0.028 (11) 26.5 60 LFT, 40 CF
A90-6 0 0.033(13) | 95 82 24.9 60 TLC, 40 CF 23.7+ 66
A90-7 0 0.003 (1) 239 80 TLC, 20 CF 29
A90-8 0 0.046 (18) 234 65 TLC, 35 CF
A90-9 1-2 0.023 (9) 19.3 65 TLC, 25 CF, 10 AS
A90-10 3-5 0.020 (8) 27.3 60 CF, 40 TLC
A180-1 0 0.038 (15) | 125 RT 28.8 85 CF, 15FT 29.6 + 82
A180-2 0 0.003 (1) 37.0 50 CF, 50 TLC 43
A180-3 0 0.031 (12) 29.8 90CF,STLC,5FT
A180-4 3-5 0.028 (11) 28.5 95 CF,5FT
A180-5 3-5 0.025 (10) 30.0 70 CF, 30 TLC
A180-6 0 0.043(17) | 125 82 23.7 50 CF, 50 TLC 234+ 65




A180-7 0 0.010(4) 252 65 TLC, 35 CF 1.5
A180-8 0 0.031 (12) 229 65 TLC, 35 CF

A180-9 1-2 0.020 (8) 24.9 60 TLC, 40 CF

A180-10 3-5 0.036 (14) 223 40 CF,40 TLC, 20 AS

*Based on nominal strength 35.9 MPa (5,200 psi) from the supplier
**Failure modes: CF — cohesive, TLC — thin layer cohesive, LFT — light fiber tear, FT — fiber tear, AS — adhesive
starvation

Specimen grouping for each aging interval consisted of 5 specimens that were a mixture of void-
free and specimens with voids. Strengths at RT and 82°C (180°F) for each aging time were
measured and average strength and strength retention calculated. These results were further re-
grouped for clarity by specimens with and without voids, with the results presented in Table 8.

Table 8. Avg. strengths of specimens aged in humidity chambers: void-free vs. void-containing

Specimen Days aged Bond-line Test temp, | Avg. strength, | % Strength
1D characteristics °C MPa retention*
A30 35 Void-free RT 41.0=+5.3 114
82 30.2+22 84
A90 95 RT 36.2+0.8 101
82 24.1+0.8 67
Al180 125 RT 31.9+45 89
82 239+1.1 67
A30 35 Void- RT 322+2.6 90
containing 82 21.8+34 61
A90 95 RT 28.4+2.7 79
82 23.3+5.6 65
Al180 125 RT 293+1.1 82
82 23.6+1.8 66

*Based on nominal strength 35.9 MPa (5,200 psi) from the supplier

Percent strength retention measured at RT in Table 8 was plotted in Figure 4 for comparison
between void-free and void-containing specimens. Strength retention for the void-free specimens
was clearly better than those containing voids. Aged void-free specimens exhibited 100%
strength retention up to 3.2 months (95 days) in the humidity chambers and 90% strength
retention after 4.2 months (125 days). On the other hand, the void-containing specimens
exhibited 90% strength retention after only 1.2 months (35 days) of aging; then rapidly dropped
to 80% retention afterwards.

Percent strength retention measured at 82°C (180°F) in Table 8 was plotted in Figure 5. In this
case, strength retention for the void-free specimens was only marginally better than for those
containing voids. Aged void-free specimens maintained 85% strength retention up to 1.2 months
(35 days), and then began to diminish. For the specimens containing voids, the strength retention
was noted to drop immediately and reached 60% level at 1.2 months (35 days) days of aging.
The void-containing specimens were more susceptible to moisture ingression and consequently
began to degrade quicker. After 35 days aging, strength retention for both void-free and void-
containing specimens remained at ~65% up to 4.2 months (125 days) of aging.
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Figure 4. Percent strength retention measured at RT for void-free vs. void-containing specimens
aged in 82°C/85% RH chambers up to 125 days.
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Figure 5. Percent strength retention measured at 82°C for void-free vs. void-containing
specimens aged in 82°C/85% RH chambers up to 125 days.

Percent strength retention in Figure 5 was comparable between void-free and void-containing
specimens aged after 35 days, with strength retention values leveling off in spite of the bond-line
quality. This observation raised the possibility that voids were actually entrapped in the bulk of



the “void-free” specimens but were not visibly detectable. These specimens were only examined
optically along the bond-line edges as shown in Figure 3.

The poor strength retention observed in this study requires further investigation to determine if
bond quality is the cause. Since the bonded area of these specimens was too small for ultrasonic
inspection, this issue will be addressed in future work by fabricating specimens with larger bond
areas. Additional SLS specimens will be fabricated, aged and tested following ASTM D5868 [8]
which specifies a 6.5 sq-cm (1 sq-in) shear area versus the 3.2 sg-cm (0.5 sg-in) (ASTM D1002)
used in the current study. This larger bonded surface area will retard moisture ingression and
allow for bond quality investigation by non-destructive techniques such as c-scan. In addition, a
lower aging temperature of 71°C (160°F) under 85% RH will be investigated.

4.4  Failure modes of SLS specimens

Fracture surface failure modes were characterized according to ASTM D5573 [9]. For specimens
aged up to 125 days, the failure modes were dominated by cohesive failure and thin-layer
cohesive failure.

5. SUMMARY

SLS specimens were fabricated using state-of-the-art carbon fiber/epoxy laminates and AF-
555M adhesive. The adhesive bond was cured in an autoclave under 310 KPa (45 psi) at 177°C
(350°F) for 2 hours. Fresh specimens, with either void-free or voided bond-lines, yielded RT
SLS strengths which were consistently >10% higher than the nominal 35.8 MPa (5,200 psi), and
85% strength retention when measured at 82°C (180°F) for this adhesive.

A three-year aging plan was initiated in 82°C (180°F)/85% RH chambers. Specimens were
removed at discrete aging times and SLS strengths measured. Bond-line characteristics and
thickness, and specimen weights before and after aging were documented. Each aging time was
composed of a mixture of void-free and void-containing specimens for a total of five specimens.
Control and aged specimens were tested under RT and 82°C (180°F) conditions.

For the controls stored in desiccators, both RT and 82°C (180°F) strength values remained
unchanged after 4.2 months (125 days) for both void-free and void-containing specimens.

For the aged specimens in humidity chambers, RT strength retention for the void-free specimens
was clearly better than for those with voids. Void-free specimens exhibited 100% strength
retention with up to 3.2 months (95 days) of aging and 90% retention after 4.2 months (125 days)
of aging. On the other hand, specimens containing voids exhibited 90% strength retention after
only 1.2 months (35 days) of aging; subsequently, strength then diminished more rapidly.

The 82°C (180°F) strength retention for the void-free specimens were only marginally better
than those with voids. Void-free specimens maintained 85% strength retention up to 1.2 months
(35 days) of aging before diminishing.

The poor strength retention behavior after aging at 82°C (180°F) and 85% RH observed in this
study requires further investigation to determine if porosity in the bulk of the specimens is the
cause of degradation of properties.
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