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Abstract

Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright

band, are checked by means of comparisons with simultaneous measurements of the bright band

made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-

FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary

along the radius of the particle, is used to compute the scattering properties of individual melting

snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast

Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional

water content of melting particle as an exponential function in particle radius, it is found that at

X band the simulated radar bright-band profiles are in an excellent agreement with the measured

profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the

measured bright-band profiles even though persistent offsets between them are present. These

offsets, however, can be explained by the attenuation caused by cloud water and water vapor at

W band. This is confirmed by the comparisons of the radar profiles made in the rain regions

where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W-

band Doppler velocity measurements. The bright-band model described in this paper has the

potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM

and GPM satellite missions



1. Introduction

The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is

often observed in stratiform rain. Understanding the microphysical properties of melting

hydrometeors and their scattering and propagation effects is of great importance in accurately

estimating parameters of the precipitation from spaceborne radar and radiometers (Bringi et al.

1986; Fabry and Szymer 1999; Olsen et al., 2001a and 2001b; Meneghini and Liao 2000; Liao

and Meneghini 2005; Sassen et al., 2005 and 2007;). These instruments include the Precipitation

Radar (PR) and the TRMM Microwave Imager (TMI) on the Tropical Rainfall Measuring

Mission (TRMM) and the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave

Imager (GMI) on the proposed Global Precipitation Measuring (GPM). However, one of the

most difficult problems in the study of the radar signature of the melting layer is the

determination of the effective dielectric constants of melting hydrometeors. Although a number

of mixing formulas are available to compute the effective dielectric constants, their results vary

to a great extent when water is involved in the mixture, such as in the case of melting snow. It is

physically unclear as to how to select among these various formulas (Meneghini and Liao 1996).

Although some success was achieved in simulating the radar bright-band signatures from the

TRMM Precipitation Radar (Ku band) and airborne dual-wavelength radar (X and Ka bands) by

modeling melting snow as a stratified sphere, a sphere composed of multiple layers (Liao and

Meneghini 2005), the accuracy of the formulation needs to be examined in greater detail at other

radar frequencies. Simultaneous measurements of the bright band made by the EDOP (X-band)

and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002

provide an excellent opportunity to check the validity of the stratified-sphere scattering model.

Measurements of both radar reflectivities and Doppler velocities at two frequencies with the
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higher frequency at W-band are particularly useful for testing the model. In the stratified-sphere

model the water fraction is constant within each layer of the stratified sphere but is allowed to

vary from layer to layer. As such, the stratified-sphere scattering model, which was described in

detail by Wu and Wang (1991), can be used to compute scattering parameters for non-uniformly

melting hydrometeors where the fractional water content is prescribed as a function of the

particle radius. A melting layer model provides the melting fractions and fall velocities of

hydrometeors as a function of the distance from the 00 C isotherm. By coupling this information

with snow mass density, particle size distribution, and the effective dielectric constants of the

mixed-phase hydrometeors, the backscattering intensities and attenuation coefficients can be

computed from any location within the melting region.

The paper is organized as follows. In Section 2 we derive the effective dielectric constants of

uniformly mixed snow and water particles from their internal electric fields by using the

computational model in which the particles are described by a collection of 128x128x128 cubic

cells of identical size and the CGFFT (Conjugate Gradient Fast Fourier Transform) numerical

method. Procedures to simulate the radar bright-band signatures using the stratified-sphere model

are described in Section 3. Comparisons of the simulated radar profiles in the melting layer of

the EDOP and CRS airborne measurements are given in Section 4 followed by the summary in

Section 5.

2. Effective Dielectric Constant

Let E(r,k) and D(r,,%) be the local electric and dielectric displacement fields within a

composite material at location r at free-space wavelength X, satisfying

D(r,A,) =	 ,	 (1)(	 )	 (	 ) (	 )
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where E is the dielectric constant. In view of the local constitutive law described by the above

equation, the bulk effective dielectric constant, Eeff, is defined as the ratio of the volume averages

of D and E fields (Stroud and Pan 1978)

s^ f f f E(r, A)dv _ f f f D(r, A)dv


v

	 v
V

If the particle, composed of two materials E 1 and E2, is approximated by N small equal-volume

elements, then the Eeff can be written as

e, 1 Ej +62 jEj
je M, MZ

 Ej + 
je M,	 e MZ

The notations je M 
and	 denote summations over all volume elements comprising

materials 1 and 2, respectively. In this study, the internal fields appearing on the right-hand sides

of (3) are computed by the CGFFT numerical procedure in which the volume enclosing the total

particle is divided into 128×128×128 identical cells. Validation of the computational procedures

for Eeff has been extensively carried out for uniform and non-uniform snow-water mixtures

(Meneghini and Liao, 1996 and 2000; Liao and Meneghini, 2005). This is done by comparing the

scattering parameters, such as backscattering and extinction cross sections, and phase function,

from realizations of the mixed-phase particle models with those from a uniform particle with

dielectric constant Eeff. It has been shown that E eff as derived from (3) is sufficiently accurate to

compute the effective dielectric constant of snow and water mixtures in the microwave range. An

example of a realization of a uniformly mixed snow-water particle is shown in Fig.1 for a water

fraction of 0.3. The dark and light gray areas represent water and snow, respectively. The

minimum size of any snow or water region is chosen to be at least 4×4×4 cells to better satisfy

the boundary conditions at the snow-water interfaces.

(2)

 (3)
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Figures 2 and 3 display the real and imaginary parts of Eeff of uniformly mixed snow-water

hydrometeors versus water fractions at X and W bands as computed from (3) by the CGFFT for

a snow density of 0.1 g/cm 3 . For comparison, the results from the Maxwell Garnett (1904) and

the Bruggeman (1935) mixing formulas are also shown in the plots. As can be seen in Figs. 2 and

3, the results of Eeff derived from the CGFFT lie between the two results derived from the

Maxwell Garnett mixing formula, one in which water is treated as the matrix with snow

inclusions (MGWS), and the other in which the roles of water and snow are reversed, i.e., snow as

matrix and water as inclusion (MG SW). The results of the Bruggeman’s mixing formula are also q DUH q DOV

bounded within the results of MG WS and MGSW, but tend to yield larger real and imaginary parts

of Eeff than the CGFFT.

3. Bright-Band Simulations

To simulate the radar signatures in the melting layer, two models are required: One is the

melting layer model that provides microphysical properties of the mixed-phase hydrometeors,

such as melting fractions and fall velocities of individual hydrometeors over their size spectra, as

a function of the distance from 0 0
C isotherm; the other is the particle scattering model that is

used to compute the scattering properties of the melting hydrometeors. Using the information

provided by the melting layer model along with the particle scattering model, snow mass density

and particle size distribution, the backscattering intensities and attenuation coefficients can be

computed from any location within the melting region. In this study, the snow is assumed to fall

and melt in accordance with the model described by Yokoyama and Tanaka (1984). Aggregation

and drop breakup are not included in the model. Although there are many studies on importance

of aggregation and drop breakup in the melting layer, their results vary (Yokoyama 1984; Mitra
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et al. 1990; Szyrmer and Zawadzki 1999). The one-to-one correspondence between snow

particles and raindrops is suggested by the field observations of Du Toit (1967) and Ohtake

(1969). Long-term radar observations of weak and moderately intense bright bands by Fabry and

Zawadzki (1995) indicate that the combined effect of aggregation and breakup, though present,

on the average accounts for less than 1 dB of change in reflectivity from snow above to rain

below the melting layer.

The mass density of snowflakes, as noted above, is among a few parameters that affect

simulations of radar bright band profiles. Several studies reveal that snow density varies with its

size and possibly changes as melting progresses (Nakaya 1954; Magono and Nakamura 1965;

Zikmunda and Vali 1972; Locatelli and Hobbs 1974; Brandes et al. 2007). However, the results

exhibit a great deal of variability depending on snow type, amount of riming and other conditions

under which the studies were done. Moreover, there is a great uncertainty in determining a

general relationship between snow density and fall velocity. This poses difficulties in specifying

these variables and in carrying out the melting layer simulations. Because of these difficulties we

use constant snow density, independent of particle size and fractional melt water. Varying the

snow density as a function of its size and melting stage tends to improve the physics of the model

(Zawadzki et al. 2005; Ryzhkov et al. 2007) but at the expense of more complicated

computations and a greater number of free parameters. Because of these uncertainties and

because the fixed snow density assumption yields reasonable results, we will not consider the

variable snow density case in this paper.

To model the fact that melting usually starts at the particle surface and then progresses

toward the center (Fujiyoshi, 1986), we employ the stratified-sphere particle model, which

consists of 100 concentric equal-thickness layers. The melting water distribution or fractional
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water content inside the particle can be expressed as a function of radius. Within each layer of

the stratified sphere the effective dielectric constant is fixed and determined from the results of

Figs.2 and 3 (X and W bands, respectively) based on the fractional water content specified at the

layer of interest. An exponential function is adopted to describe the fractional water content f W in

terms of radius r

A,

.fW (r) _ .fW Me , r < r'
f

IL 1, 


 

  r

where r0 is the radius of the particle, and r  is the radius at which fW is equal to 1, i.e., fW(r )=1.

The coefficient R specifies the radial gradient of the water fraction so that a larger R results in a

more rapid transition from snow to water. Its value was found to be 4.5 from the simulation

study reported by Liao and Meneghini (2005). An example of such stratified-sphere models of

melting snow for volume-averaged water fraction Fw of 0. 1, 0.2 and 0.3 are shown in Fig.4.

To model the bright-band reflectivity the Marshall ±Palmer raindrop size distribution (1948),

N(D) in m-3 mm -  1 , is assumed, which can be expressed as a function of rain rate, R in mm/h, by

N(D) = 8000exp(-4.1R-0.21D),	 (5)
0 . 21

( ) 8000 exp( 4 1

where D is diameter of particle in mm. The form of the Z e-R relation at X band, assuming the

Marshall-Palmer size distribution, is given by

Ze = 290R1.6Z	 290 
1 . 6

At the range just below the melting layer, N(D) is obtained from the measured reflectivity at X

band using (5) and (6). To maintain constant mass transport during fall of hydrometeors, the

product of N(D) and particle velocity v(D) is fixed over the regions of snow, melting, and rain.

This, in turn, provides estimates of N(D) in the snow and melting layers. Once N(D) has been

(4)

(6)
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specified throughout the melting layer, the apparent or measured radar reflectivity factor, Zm in

mm6/m3 , is determined at any range within the melting layer from the follow equation:

s

Z.(A,$)=ze (A,$)exp^-0.21n1of [kp(A,$)+k^(A,$)+k,,(A,$)]ds , 	 (7)
0Z s Z s

m	 e

where X is the wavelength, and the exponential term describes radar attenuation at a range of s.

kp, kc and kv in dB/km are the specific attenuations from precipitation, cloud water, and water

vapor, respectively. The precipitation may include rain, snow and mixed-phased hydrometeors,

which can be computed by

kp = 4.343x 10 -3 f N(D,$)6e(D,A)ds, 	 (8)
0

k	 4 . 343 10	 ( , )
3

0

where 6e(D,X) is the extinction cross section of particles. The true (un-attenuated) radar

reflectivity factor is expressed as

I4
	

10

Ze (A,$) _ 
^5 

I IZ f N(D,$)rT,(D,A)dD,	 (9)
 	

5	 2  Ne

	

	  |	 |K 
w	 0

w

where 6b(D,X) is the backscattering cross section. Kw the dielectric factor, is used to designate

(m2-1)/(m2+2), where m is the complex refractive index of water. In this study, |K w | 2 is taken to

be 0.93 at X band and 0.698 at W band. The computations of 6b and 6e depend upon the

scattering model of hydrometeors and mixing formulas used in the determination of the effective

dielectric constant of melting snow. The melting layer model of Yokoyama and Takana (1984) is

used to produce a table that provides the water fractions and fall velocities of particles at each

size bin as a function of distance from 0 0
C isotherm. It should be noted that because of the lack

of information on cloud water and water vapor, the attenuation corrections are only made for the

precipitation.



Shown in Fig.5 are the simulated results of the X- and W-band radar profiles in the melting

layer for the snow densities of 0.05, 0.1 and 0.2 g/cm 3 as computed from the melting layer model

and stratified-sphere scattering model described above. In these simulations the Marshall-Palmer

raindrop size distribution (1948) is assumed for a rain rate of 1.0 mm/h. The attenuation due to

hydrometeors is also taken into account in the results. A change in the snow density has different

impact on the results of the simulated bright-band profiles at X and W bands. The smallest snow

density (p=0.05 g/cm3) gives the biggest enhancement of the reflectivity at X band but yields the

narrowest bright-band width. At W band no clear radar bright bands are seen in Fig.5, even

though a strong enhancement in the radar reflectivity is apparent in the early stages of melting. In

contrast to the results at X band, the biggest change in the radar reflectivity at W band from snow

to the bright-band peak occurs at p=0.2 g/cm 3 , the highest snow density among those used in the

plot. After reaching the maximum, the radar reflectivities computed from all the values of the

snow density tend to converge, and their intensities remain nearly constant up to the rain region.

It should be noted that the primary difference in the bright-band signatures at these frequencies

arises from the differences between Rayleigh (X-band) and non-Rayleigh scattering.

To see how the simulations vary with respect to the different mixing formulas, Fig.6 depicts

the results of the simulated bright band computed from the Maxwell-Garnett (MGWS and MGSW)

and the Bruggeman mixing formulas as well as the stratified-sphere model. The snow density is

set to 0.1 g/cm3 , and the rain rate is 1.0 mm/h for these computations. Comparisons of the results

reveal that differences of the simulated profiles among these scattering models are quite

distinctive at X band, in which the MGWS leads to the strongest bright-band peak, and its

counterpart, MGSW, presents the weakest increase in reflectivity within the melting layer. The

Bruggeman results show a moderate boost but still much less than those from the stratified-
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sphere model. In contrast to X band, the simulated results at W band appear to be much less

sensitive to the choice of mixing formula. All the profiles exhibit more or less the same behavior

except that the reflectivity profile of MGWS tends to rise more quickly than others and has a

relatively small peak. The similarities of the simulated radar bright-band profiles at W band are

largely due to the dominance of Mie scattering at W band and to the relatively small contrast of

the dielectric constants for snow and water which results in a much smaller difference in the

effective dielectric constants computed from the mixing formulas.

4. Comparisons of Simulated Profiles to Measurements

Comparisons of the simulated radar bright-band profiles to the measured ones offer a direct

check of the models as to their validity and accuracy. Illustrated in Figs.7 and 8 are the

measurements of the radar reflectivity factors and mean Doppler velocities by EDOP and CRS

on 7 July 2002 from 20:15:00 UTC to 20:25:00 UTC during CRYSTAL-FACE. The EDOP and

CRS, mounted on NASA ER-2 aircraft during the CRYSTAL-FACE field campaign, are the

nadir-looking airborne Doppler radars operating at X and W bands respectively. A detailed

description of the EDOP and CRS can be found in the literature (Heymsfield et al. 1996; Li et al.

2004). Vertical profiles are also plotted in Figs.7 and 8 at selected locations along the flight line.

With a range resolution of 37.5 m, the signature of the bright band is clearly detected by both

radars at an altitude of around 4 km throughout the flight line. To make the measured profiles

less noisy, a smoothing procedure is used. This is done by first finding all the pairs of the X- and

W-band profiles based on the criteria that the peaks of X-band within the melting layer are in the

range of Zpeak to Zpeak+1 (dB) (where Zpeak value is specified below), and then averaging the

selected profiles separately for X and W bands. It is worth noting that with such procedure, the
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stability of the measured radar mean profiles is dramatically improved. Shown in Fig.9 are the

four EDOP (blue heavy-dotted lines) and CRS (red heavy-dotted lines) mean profiles that

correspond to values of Zpeak of 30, 32, 34 and 37 dB where profiles with the lowest value are

shown on the top-left panel and profiles with the highest value are shown on the bottom-right

panel.

Using the stratified-sphere melting particle model described earlier and assuming the

Marshall-Palmer size distribution for rain, the simulated radar profiles (solid lines) are computed

and compared with the measured ones in Fig.9. The snow density used in our simulations is

chosen as 0.1 g/cm3 , which is consistent with the findings of the previous study for the retrieval

of the snow size distribution by use of dual-wavelength techniques for the same data (Liao et al.,

2008). Because there is no particle breakup or aggregation assumed in the melting layer model,

and also because the mass flux is constant within the melting layer, the particle size distribution

(PSD) specified in rain can be uniquely converted to PSDs in the snow and melting layer

regions. With the models being initialized in the way described earlier, the rain rate, which

completely specifies the Marshall-Palmer size distribution, is the only free parameter in the

simulation. In the comparisons depicted in Fig.9, the rain rates that give the best agreement

between the simulated and measured profiles are 0.58, 0.88, 1.01 and 1.62 mm/h, respectively.

As can be seen, the simulated radar bright bands are in excellent agreement with the measured

ones at X band. They are not only matched well at the peaks of the bright band but also in the

widths. Evaluating the comparisons at W band is not as straightforward as those at X band

because of attenuation effects at W band. The chief contributors of attenuation at W band are

cloud water and water vapor in addition to hydrometeors. Although attenuation by hydrometeors

(snow, melting snow and rain) is taken into account in our simulations, the contributions from
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cloud water and water vapor are not included. Since neither cloud water nor water vapor is

detectable by the EDOP and CRS, and there are no independent measurements available in

estimating them during the campaign, they are largely unknown. This, as a result, introduces

uncertainties in the higher-frequency radar retrieval. As illustrated in Fig.9, the simulated

profiles (solid) at W band tend to agree with the measured ones (dotted) in shape but offsets in

the magnitudes are clearly seen. To determine whether these offsets can be attributed to cloud

water and water vapor attenuations at W band, we conduct comparisons of attenuation-corrected

radar profiles in rain between the model simulations and the reconstructed W-band profiles by

use of Doppler measurements.

Taking an advantage of simultaneous measurements of the Doppler velocities at X and W

bands, we can derive the un-attenuated or true W-band radar profiles in rain (Tian et al., 2007;

Liao et al., 2008). The differential Doppler velocity (DDV), which is defined as the difference of

the Doppler velocities between X and W bands, depends only on the particle median volume

diameter (D 0). This is also true of the radar dual-frequency ratio (DFR) in dB, which is equal to

the difference of the radar reflectivity at X and W bands. However, in the case of the DFR,

correction of attenuation due to hydrometeors, cloud water and water vapor must first be

performed at W-band (assuming that attenuation at X band is negligible) whereas the DDV is

independent of attenuation. Figure 10 depicts the relationships between DFR-D 0 (left) and DDV-

D 0 (right), which are computed when the rain drop size distribution is given by the gamma

distribution. The p in the plots is the shape factor of the gamma distribution, which is zero for

the Marshall-Palmer size distribution (1948). Since the DDV is independent of the radar

attenuation and also unaffected by air motion, D 0 can be estimated from the measured DDV

(Tian et al., 2007; Liao et al., 2008). This in turn leads to a value of DFR from the differential
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Doppler-estimated D0. The true radar reflectivity at W band is, by definition, the difference

between the X-band reflectivity and the DFR, based on the assumption that attenuation at X band

is negligible. This should be true for stratiform rain, particularly for the cases shown in Fig.9

where only light rain is present because of the fact that the specific attenuation in rain at X-band

is about 0.02, 0.08 and 0.18 dB/km for a rain rate of 1.5, 5 and 10 mm/h, respectively, for the

Marshall-Palmer raindrop size distribution. Note that the procedure used to obtain the DDV-

derived estimate of the true reflectivity profile applies only to the rain and not the melting layer

or snow. The diamond-shaped data points in Fig.9 represent the non-attenuated radar profiles of

rain at W band, derived from the DDV. The dashed curves refer to the non-attenuated W-band

radar profiles generated from the models. There is a fairly good agreement between the non-

attenuated radar rain profiles generated from the model on one hand and the estimated results on

the other, implying good accuracy in simulating the W-band bright-band profiles. We conclude

that the differences between the simulated and measured W-band radar reflectivity profiles can

be explained primarily by cloud water and water vapor contributions to the W-band attenuation,

though the uncertainties in snow density, size distribution and fall velocity might contribute

somewhat to the mismatch.

5. Summary

In simulation of the X- and W-band radar returns within the melting layer, a stratified-sphere

model is used to describe non-uniformly melting of single snowflakes during their descent

through the 00 isotherm. With use of the stratified-sphere particle model, the fractional water

content is conveniently expressed as a function of the particle radius. As a result, the melting

process, which starts at the snow surface and progresses to the center, can be realistically
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modeled. In each layer of the stratified sphere, the fractional water content is constant but is

allowed to change from layer to layer. The effective dielectric constant in the layer of interest is

computed by the CGFFT numerical method in accordance with its specified fractional water

content. Expressing the fractional water content as an exponential function in particle radius, and

using Yokoyama and Tanaka melting layer model, the radar bright-band profiles are simulated

and subsequently compared to the X- and W-band Doppler radar measurements. While excellent

agreement is found at X band, there are persistent offsets between the model and measured

results at W-band. These offsets, however, can be reasonably explained by the attenuation caused

by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar

profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be

estimated through the X- and W-band Doppler velocity measurements. It is shown that the

simulated un-attenuated rain profiles at W band agree well with those from the retrieval of the

Doppler measurements. Despite the difficulty in describing microphysical properties of

hydrometeors in the melting layer, our simulations of the radar bright band made at X and W

bands appear to be fairly accurate and suggest the usefulness of the stratified-sphere scattering

model as well as the effective dielectric constants derived from mixed-phase particle realizations.

The bright-band model described in this paper has the potential to be used effectively for both

radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.
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Figure Captions:

Fig. 1 Realization of snow-water spherical particle at a water fraction of 0.3.

Fig.2 Comparisons of real (top) and imaginary (bottom) parts of Eeff for uniformly mixed snow-water
spheres as derived from the CGFFT and several mixing formulas at X band.

Fig.3 Comparisons of real (top) and imaginary (bottom) parts of Eeff for uniformly mixed snow-water
mixed spheres as derived from the CGFFT and several mixing formulas at W band.

Fig.4 Stratified-sphere models of melting snow for volume-averaged water fraction FW of 0. 1, 0.2 and
0.3 from Liao and Meneghini (2005).

Fig.5 Results of simulated radar profiles at X- and W-bands in the melting layer for snow densities
(p) of 0.05, 0.1 and 0.2 g/cm 3 using CGFFT stratified sphere model.

Fig.6 Comparison of simulated radar bright-band profiles at X- and W-bands as computed from the
Maxwell-*aUQHWq LBrV gge¶a%[L¶ixHgLfQ¶V la[La [LQllLa[LthP[tODVe q -sphere model for the 	q V WUD'
snow density of 0.1 g/cm3 .

Fig.7 Measured radar reflectivity factors (top and middle panels) from EDOP (X-band) and CRS (W-
band) nadir-looking airborne radar over a 130-km flight line over stratiform rain. The selected radar
reflectivity profiles in the locations given by the dashed lines are shown in the bottom panel where the
red and blue curves represent the EDOP and CRS radar reflectivity profiles, respectively.

Fig.8 Measured mean Doppler velocities (top and middle panels) from EDOP (X-band) and CRS (W-
band) for the same storm shown in Fig.6. The selected mean Doppler velocity profiles are shown in
the bottom panel where the red and blue curves represent the EDOP and CRS, respectively.

Fig.9 Comparisons of simulated (solid) and measured (dotted) bright-band profiles at X (red) and W
(blue) bands. The dashed lines are the simulated results without taking into account attenuation. The
diamond-shaped data points are the estimated un-attenuated W-band profiles based on the Doppler
measurements.

Fig. 10 Plots of DFR vs. D 0 (left) and DDV vs. D 0 (right) for X- and W-band radars for rain as the
shape factor (p) of the gamma particle distribution varies from 0 to 6.
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Fig.1 Realization of snow-water spherical particle at a water fraction of 0.3.
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Fig.2 Comparisons of real (top) and imaginary (bottom) parts of eff for uniformly mixed snow-water
spheres as derived from the CGFFT and several mixing formulas at X band.
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Fig.3 Comparisons of real (top) and imaginary (bottom) parts of eff for uniformly mixed snow-water
mixed spheres as derived from the CGFFT and several mixing formulas at W band.
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Fig.4 Stratified-sphere models of melting snow for volume-averaged water fraction FW of 0.1, 0.2 and
0.3 from Liao and Meneghini (2005).
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Fig.5 Results of simulated radar profiles at X- and W-bands in the melting layer for snow densities
(p) of 0.05, 0.1 and 0.2 g/cm 3 using CGFFT stratified sphere model.

25



Fig.6 Comparison of simulated radar bright-band profiles at X- and W-bands as computed from the
Maxwell-Garnett and Bruggeman mixing formulas as well as the stratified-sphere model for the snow
density of 0.1 g/cm3.
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Fig.7 Measured radar reflectivity factors (top and middle panels) from the EDOP (X-band) and CRS
(W-band) nadir-looking airborne radars over a 130-km flight line over stratiform rain. The selected
radar reflectivity profiles in the locations given by the dashed lines are shown in the bottom panel
where the red and blue curves represent the EDOP and CRS radar reflectivity profiles, respectively.
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Fig.8 Measured mean Doppler velocities (top and middle panels) from EDOP (X-band) and CRS (W-
band) for the same storm shown in Fig.6. The selected mean Doppler velocity profiles are shown in
the bottom panel where the red and blue curves represent the EDOP and CRS, respectively.
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Fig.9 Comparisons of simulated (solid) and measured (dotted) bright-band profiles at X (red) and W
(blue) bands. The dashed lines represent the simulated results without taking into account attenuation.
The diamond-shaped data points represent the estimated un-attenuated W-band profiles based on the
Doppler measurements.
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Fig.10 Plots of DFR vs. D 0 (left) and DDV vs. D 0 (right) for X- and W-band radars for rain as the
shape factor (p) of the gamma particle distribution varies from 0 to 6.
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Abstract

Simulated radar signatures within the melting layer in stratiform rain, namely the radar
bright band, are checked by means of comparisons with simultaneous measurements of
the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars
during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the
fractional water content to vary along the radius of the particle, is used to compute the
scattering properties of individual melting snowflakes. Using the effective dielectric
constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical
method for X and W bands, and expressing the fractional water content of melting
particle as an exponential function in particle radius, it is found that at X band the
simulated radar bright-band profiles are in an excellent agreement with the measured
profiles. It is also found that the simulated W-band profiles usually resemble the shapes
of the measured bright-band profiles even though persistent offsets between them are
present. These offsets, however, can be explained by the attenuation caused by cloud
water and water vapor at W band. This is confirmed by the comparisons of the radar
profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can
be estimated through the X- and W-band Doppler velocity measurements. The bright-
band model described in this paper has the potential to be used effectively for both radar
and radiometer algorithms relevant to the TRMM and GPM satellite missions.


