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Abstract 
Designing spacesuits and vehicles for the diverse human population presents unique challenges for 
methods of traditional anthropometry. Existing spacesuits are bulky, allow the operator to shift position 
within the suit, and inhibit the ability to identify body landmarks. Limited suit sizing options cause 
differences in fit and performance between similarly sized individuals. Space vehicles are restrictive in 
volume with respect to both the fit of astronauts and the ability to collect data. NASA’s Anthropometry 
and Biomechanics Facility (ABF) has shifted from using traditional linear anthropometry to exploring 
capabilities of 3D scanning to provide volumetric anthropometric solutions for design. The key goals 
to improve the human-system performance and develop new processes to aid in the design and 
evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear 
analyses to an augmented volumetric tool set for predicting and analyzing the human within the 
spacesuit and vehicle.  
 
The first case study involves the calculation of maximal head volume of the target population to 
total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an 
inaccurate representation of the head shape, yet limited data exist for the determination of a large 
volume. Steps were first taken to identify and classify a maximum head volume, and the resulting 
comparisons to the estimate are presented in this paper. This study illustrates the gap between linear 
components of anthropometry and the need for overall volume metrics to provide solutions. 
 
A second case study examines the overlay of the spacesuit scans and components onto scanned 
individuals to quantify fit and clearance; to aid in sizing the suit to the individual. Restrictions in 
spacesuit size availability present unique challenges to optimally fit the individual within a limited sizing 
range while maintaining performance. Quantification of the clearance and fit for similarly sized 
individuals is critical in providing a greater understanding of the human body’s function within the suit.  
The third case study presented in this paper explores the development of a conformal seat pan using 
scanning techniques, and details the challenges of volumetric analyses that were overcome to develop 
a universal seat pan that can be utilized across the entire user population.  
 
The final case study explores expanding volumetric capabilities through generation of boundary 
manikins. Boundary manikins are representative individuals from the population of interest that 
represent the extremes of the population spectrum. The ABF developed a technique to take 3D scans 
individuals and manipulate the scans to reflect the boundary manikins’ anthropometry. In essence, this 
process generates a representative 3D scan of an individual from anthropometry, using another 
individual’s scanned image. The results from this process can be used in design process modeling and 
initial suit sizing work as a three dimensional, realistic example of individuals from the population, 
maintaining the variability between and correlation with the dimensions of interest. 
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1. Introduction 
The improvement of human-system interactions, the evaluation of accommodation parameters and 
development of new processes to aid in the design and evaluation of space systems are primary goals 
of the Anthropometry and Biomechanics Facility (ABF) at NASA Johnson Space Center. The 
complexities of traditional human factors analyses are compounded due to the effects of space 
hardware, environment and operations. For example, space suits restrict movement and comfort to  
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varying degrees based on the size and fit of the individual. The total space vehicle mass is restricted 
and volume is at a premium to provide storage, crew facilities, and workspace for the crew for the 
duration of their mission. Placing the highly variable human body within these restrictive physical 
environments and ensuring the entire anticipated population can live, work, and interact within this 
restrictive space has led to a shift from evaluations focused on linear-based metrics to the 
development of volumetric tools to evaluate and analyze the human within the space environment.  
 
This exploration into the capabilities of 3D scanning to provide volumetric anthropometric solutions for 
design arose when the linear measurements were found to be insufficient to quantitatively classify the 
subject within the population due to the multivariate nature of the problem itself. As exploration 
progressed, it became apparent that volumetric capabilities were a powerful tool to aid in the design of 
human-system interfaces. Four case studies are presented that illustrate the shift from purely linear 
analyses to an augmented volumetric tool set for predicting and analyzing the human within the 
spacesuit and vehicle.  

2. Case Study #1: Maximal Head Volume 
The first case study involves the maximal and mean volume of the head-neck complex to estimate total 
free volume within the space suit helmet for the current astronaut population. The available traditional 
linear measurements were not sufficient to describe the shape properly. This study demonstrates the 
need for overall volume metrics to provide solutions and how the linear dimensions were used to assist 
in the identification and classification of the representative head volumes. 
 
2.1 Background 
The design of spacesuit helmet aims to protect the crew from injury and from the external environment, 
while minimizing the impact on crew performance, field of view, and storage mass and volume. While 
the space suit is pressurized, the helmet also has a minimum free volume required for proper air 
exchange for the crewmember. Free volume is the total space remaining within a system that is not 
displaced by an astronaut. While regression equations can be utilized for derivation of this value [1], 
the interest was in the actual maximal head volume for crewmembers within the astronaut corps.  
 
2.2 Methods 
An initial attempt was made to estimate the total free volume using traditional linear measurements. 
Head length and head breadth, the only available head-specific anthropometry measurements from 
the population of interest, were used to approximate the volume using an oblate ellipsoid shape using 
these two measurements as the semi-principal axes, and using head length as the third axes to 
generate the ellipsoid. Using this equation of an ellipsoid, the maximal volume was initially calculated 
using a combination of the maximum head length and head breadth from the astronaut database. 
Unfortunately, the ellipsoid shape is not closely representative of the head (Figure 1) and it is highly 
unlikely that it represents the largest anticipated head volume. In addition to the inaccuracy of relating 
an ellipsoid to the shape of the head, it is inappropriate that the maximum values of the two 
measurements are used, due to the only moderate correlation (r = 0.4). Finally, the neck volume is 
completely ignored using this methodology. In order to ensure an accurate, reasonable maximal head 
volume, the linear dimensions of population were examined and the associated maximal volumes were 
determined from the representative 3D scans of crewmembers (VITUS/Smart™, Vitronic GmbH, 
Wiesbaden, Germany).  

 
Fig. 1. The ellipsoid created by head length and head breadth 
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This move from examination of linear aspects of the body to considering the multivariate aspects using 
the volumetric data was limited in scope. The new methodology focused on associating the maximal 
anthropometric values with the actual volumes from 3D head scans. The ABF maintains 
anthropometric databases of key values used to assist in sizing the astronauts in the spacesuit and 
vehicle [2]. The ABF is also in the process of collecting 3D body scans of all current crewmembers. 
The head length and head breadth data for all current crewmembers was summarized and the mean 
and maximum head dimensions were retrieved from the astronaut databases. It was postulated that 
the maximal head volume would belong to an individual with some combination of the head breadth 
and head length values near the higher end of the population spectrum. The subjects that had the 
maximal or near-maximal head dimensions were then compared to the available 3D body scan 
repository in the ABF. If the crewmember had not been scanned yet by the ABF, instead a CAESAR 
scan [3,4] of that astronaut was used for volume calculations. 
 
2.3 Results 
The maximum head length for all subjects in the database was 24.9 cm (9.8 in) for the males and 20.3 
cm (8.0 in) for females (Table 1). However, 3D scans were not available for the male subject or for a 
corresponding CAESAR scan, so the next largest head length measurement that was available was 
23.1 cm (9.1 in) for the males. The same method was repeated to determine the subjects with the 
mean head length, max head breadth, and the mean head breadth. The mean values were examined 
in conjunction to the maximum to investigate the overall difference in scope between maximum and the 
average volumes. The analysis of the database yielded three males representing maximum head 
length, max head breadth, mean head breadth and mean head length, and two females representing 
the maximum head dimensions and the mean head dimensions for analysis.  
 

Table1. Maximum & mean head dimensions of the available crewmember anthropometry. 

  Head Length [cm (in)] Head Breadth [cm (in)] 
  Mean Max Mean Max 
Male 20.1 (7.9) 24.9 (9.8) 16.0 (6.3) 18.3 (7.2) 
Female 19.1 (7.5) 20.3 (8.0) 14.7 (5.8) 16.5 (6.5) 

 
The 3D scans for these five subjects were processed using Polyworks (InnovMetric Software, Quebec, 
Canada). In order to calculate the volume of the scan images the head and neck region was isolated 
using a plane at the neck, then removing the lower body. There were several holes (missing data 
points) in the scan images that needed to be filled in manually to create a watertight object before the 
volume could be computed. The holes in the scans are primarily due to the limitations of the scanner 
from the horizontal laser beam, causing holes around the ears, top of the head and bottom of the chin. 
Once all the holes were filled in and the image was made watertight (Figure 2), the Polyworks software 
was used to calculate the volume of the combined head and neck. The resulting volumes are displayed 
in Table 2. The largest volume was 5.5 liters (338.5 in3). The delta between the maximum and mean 
volume values for males was 0.5 liters (28.6 in3).  

 

 
Fig. 2. A representative example of a scanned head image (source: CAESAR [3,4]) 

 



Table 2. Head volume results from Polyworks scan 

Subject 
Number Gender Representative of: 

Head Length 
[cm (in)] 

Head Breadth 
[cm (in)] 

Volume 
[liters (in3)] 

1 M Max Head Breadth 19.0 (7.5) 18.2 (7.2) 5.3 (325.7) 
2 M Max Head Length 23.0 (9.1) 15.3 (6.0) 5.5 (338.5) 

3 M 
Mean Head Length & 
Mean Head Breadth 20.0 (7.9) 15.9 (6.3) 5.1 (309.9) 

4 F 
Max Head Length & Head 
Breadth 20.2 (8.0) 15.5 (6.1) 4.8 (293.7) 

5 F 
Mean Head Length & 
Mean Head Breadth 19.0 (7.5) 14.7 (5.8) 4.4 (267.1) 

 
2.4 Summary 
The results yielded a maximum current crew head volume of 5.5 liters (338.5 in3). In a comparison 
against the ellipsoidal head volume calculation using the maximum head breadth and head length 
values as the semi principal axes of the ellipsoid, the current crew maximum volume is 0.4 liters (23.6 
in3) smaller than estimated (Table 3). This difference was unexpected, since it was anticipated that the 
calculated volume from the 3D scan would be larger than the ellipsoidal calculations. However, this is 
explained by the use of both maximum head breadth and head length values as inputs into the 
ellipsoid equation. If the head measurements from the maximal subject (Subject 2) are input into the 
equation instead, the volume drops down to 4.2 liters (258.7 in3). The volume of the ellipse should 
logically fall within that of the 3D scan head volume because the ellipse is contained within the head 
shape and excludes the neck. As previously discussed, using both the maximum head breadth and 
head length values is inappropriate due to the low correlation between the two measurements (r = 0.4). 
 
To compare the results within the context of the anticipated crew population, the total head and neck 
volume was also calculated using the regression equations available in McConville (1980) [1]. The 
male stature and weight values from a modified age-truncated Anthropometric Survey of U.S. Army 
Personnel (ANSUR) database [5,6] were used as inputs to the regression equations for the head and 
neck volumes. The head and neck volumes were then summed for each male in the database and the 
mean and standard deviation was determined from the resulting volume values. The mean and 
standard deviation were used to calculate a predicted total head and neck volume of a 99th percentile 
male and then compared to the current crew total head and neck volume. The current crew maximum 
head-neck volume is 0.5 liters (28.5 in3) smaller than the 99th percentile volume value of the head-neck 
using the regression equations (Table 3). This difference is consistent and anticipated, since the 3D 
scans used from the crew database do not represent the 99th percentile male, only the maximum 
current crew data.  
 

Table 3. Comparison of results against alternative calculations 

 

Prediction based on 
Maximum Ellipsoid 

[liters (in3)] 

Predicted 99th %-tile 
based on Regression Eqn. 

[liters (in3)] 

Actual Current Crew 
Maximum 3D Scan Data  

[liters (in3)] 
Volume 5.9 (362.1) 6.0 (367.0) 5.5 (338.5) 

 
This study illustrates the gap between linear components of anthropometry and ability to relate linear to 
volumetric variables. While linear regressions available through literature could be employed to derive 
volumetric information, the availability of 3D scan information provides a quick, easy, and accurate 
means for calculation of volume. 

3. Case Study #2: Volumetric Overlay of Suit Components 
When examining the complex shape that is the human body, linear measurements do not provide the 
entire picture. Placement and comparison of subjects within the context of the user population using 
just a single linear dimension is fairly simple; however, as more and more dimensions are added into 
the problem scope, it becomes difficult to define and differentiate the subjects within the population as 
a whole. There are techniques to parse and group a user population multivariately using such methods 
as Principal Component Analysis (PCA) [7] and cluster analysis [8] techniques, yet those are utilized 
for larger population-based analyses, not examination of a small subset of subjects. A 3D scan allows 



for that immediate relation of linear to multivariate dimensions of the human body using the volumetric 
aspects of the body scans. This section of the paper examines several ways the ABF has utilized 
whole-body scanner technology to evaluate suit fit. 
 
3.1 Evaluation of fit across individuals 
As the space program develops new suits, there is a need to verify and validate the suit fit, mobility, 
and performance using prototypes. In the early stages of design, prior to a suit sizing scheme, 
selection of the suit components is often geared toward the anthropometry of available suit test 
subjects. In this case, three subjects were selected on the basis of similar anthropometric parameters, 
of which a small selection is shown in Table 4. These subjects were selected for the intended purpose 
of using them as primary test subjects to operate the suit to perform prototype suit evaluations.  
 

Table 4. Torso-based anthropometry of the test subjects 

Subject 
Stature  
[cm (in)] 

Vertical Trunk 
Diameter  
[cm (in)] 

Chest 
Breadth  
[cm (in)] 

Expanded 
Chest Depth 

[cm (in)] 
Hip Breadth 

[cm (in)] 
Waist Depth 

[cm (in)] 
1 164.6 (64.8) 63.8 (25.1) 31.5 (12.4) 26.9 (10.6) 38.9 (15.3) 21.6 (8.5) 
2 174.0 (68.5) 69.3 (27.3) 33.3 (13.1) 28.4 (11.2) 33.3 (13.1) 23.6 (9.3) 
3 167.4 (65.9) 62.7 (24.7) 29.0 (11.4) 24.9 (9.8) 34.5 (13.6) 21.6 (8.5) 

Range 9.1 (3.6) 6.6 (2.6) 4.3 (1.7) 3.6 (1.4) 5.6 (2.2) 2.0 (0.8) 
 
Examination of the values in Table 4 indicated that the subjects were extremely similar, with just 2.0 
cm (0.8 in) to 6.6 cm (2.6 in) of difference for torso specific measurements. However, because the suit 
is such a restrictive fit, how large of a range is too large? How do these measurements combine to 
create the overall body shape? The ABF overlaid the torsos of the three test subjects on top of one 
another (Figure 3) to examine this combination of measurements and how they would impact the 
overall fit. In comparing all the subjects in this manner, it was observed that there was a large gap in 
the shoulder area (Figure 3 far left) and gaps at the hips and buttock area (Figure 3 middle) where 
there is a single subject that exceeds the other two subjects. In addition, the smallest subject would 
have large amounts of clearance at every point (Figure 3 middle and far right), meaning they would be 
‘swimming’ inside the suit. The most problematic area to designers was the mid torso and chest. Suit 
components, such as drinking water bags, are placed in this area since the waist naturally tapers and 
provides a pocket to place those components. If a suit was made that fit to the external shape of the 
combined torsos, this pocket would need to be located right at the waist area, due to the differences 
observed in the chest and varying locations of the bustpoint of the multiple subjects. This location 
would have hindered waist mobility and/or the placement of waist disconnects for ingress and egress 
of the suit. Ultimately based on these results, the prototype design was delayed to develop a better 
sizing scheme and determine the acceptable variation ranges in anthropometry as it correlates to 
performance and mobility.  

Fig. 3. Overlaid torsos of 3 test subjects, Subject 1 (green), Subject 2 (purple), and Subject 3 (gray) 

 
3.2 Evaluation of suit components 
The development of new suits also allows for computer-aided design (CAD) modeling of suit 
components. Previously, many suit designs pre-dated the use of CAD modeling. As the space program 
develops new suits, the capabilities of CAD design can be used to evaluate fit and some performance 



issues in addition to providing feedback before the prototype is built, saving time and resources. The 
benefits of fitting the suit using the assistance of a CAD model is it provides the entire picture of the 
interplay between the suit components and the variables that are important for sizing.  
 
Restrictions in space suit size availability present unique challenges to optimally fit the individual within 
a limited sizing range while maintaining performance. For example, the Hard Upper Torso (HUT) of a 
suit (Figure 4) has four bearings/disconnects that are the same dimensions across suit sizes, to 
maintain the modular connection of adding suit components for optimal sizing. While the shoulder rings 
do not change in diameter, their placement with respect to the mid-line of the HUT does change across 
sizes. For smaller HUT’s (Figure 4 left) the shoulders are brought in more to accommodate a smaller 
person’s shoulder breadth, anterior interscye breadth, and chest breadth. The placement of these 
shoulder bearings ideally would fall at the mid-shoulder landmark of the body. Finally, restrictions 
imposed on measurements such as the chest breadth and depth also impact the fit, from just a sheer 
accommodation standpoint (Figure 4 left, middle).  

Fig. 4. Hard Upper Torsos overlaid onto a scanned subject: Medium (left), Large (middle), and X-Large (right) 

 
The complex multivariate nature of the body causes trade-offs to occur with the overall fit of the suit 
based on the linear dimensions. A single measurement can cause an individual to jump to the next suit 
size, with the unintended consequences of a performance detriment. For example, the placement of 
the shoulder bearings for a person with a large mid-shoulder breadth may necessitate that an 
individual jump to a larger size according to the sizing schema. However, if that same individual has a 
small chest breadth and bideltoid breadth, the mobility at the shoulder is reduced because of the 
bearing impingement near the armpit. The ability to place a scan of the subject in CAD and add suit 
components can allow a suit designer to evaluate the impact and tradeoffs within the context of the 
overall linear anthropometry.  
 
3.3 Conclusion 
Anthropometric measurements provide the backbone for sizing a suit to an individual, yet there is 
always the potential to improve the comfort and fit of the suit using advancements in available 
technologies. The utility of the multivariate nature of the 3D body scanner can be used to generate 
immediate relationships to linear dimensions of the human body using the volumetric aspects of the 
body scans. 

4. Case Study #3: Conformal Seat Pan 
Since safety is of utmost importance in all aspects of the human space program, by capturing the 
curvature of the lower-body of all potential users, a universal seat-pan with appropriate seat pads that  
can be designed to accommodate the entire user population. The contour of the lower-body of 
individuals cannot be described with conventional anthropometry; however, the linear measurements 
can be related to surface scans for evaluation of the seat-pan contour. In this study the lower body of 
individuals was captured, compared to the population and then incorporated into the design of the 
universal seat-pan contour to properly integrate with the body shapes of future crewmembers that are 
flying in the space vehicle. 
 



4.1 Background 
A vital component of the design of a cockpit is the design of the interface between the human and the 
system. The space vehicle seat must be comfortable during long hours of operation and provide safety 
and support during launch and re-entry while accommodating the entire user population. Minimizing 
space and weight is crucial to spaceflight, so cushioning and padding must be kept to a minimum. 
Accommodation of the seat interface to the user allows for the safety and comfort of the individual, 
which then reciprocates in successful mission task performance. Capturing and exporting 
surface-scans of individuals in a shirt-sleeve condition that represent the anthropometric spectrum for 
integrating into CAD designs of the CEV seat would allow for a seat pan design that accommodates 
the total variation in the human form.  
 
4.2 Methods 
An anthropometric survey of 33 (16 males, 17 females) participants was conducted to capture the 
specific anthropometric measurements critical to the seat-pan including hip breadth, buttock-popliteal 
length, and popliteal length. Using the anthropometric data, a subset of these participants (n = 7) was 
chosen as representative of the 1st, 50th, and 99th percentile critical anthropometric values (Table 5) to 
capture the contour of the lower-body. These percentile values were based on a modified age 
truncated ANSUR database population [5,6]. Due to time constraints, not all 1st, 50th, and 99th data 
values for each measurement could be exactly matched, but individuals were selected that had the 
closest value to the percentile data (Table 6).  
 

Table 5. Male and female data representing the 1st, 50th, and 99th percentiles of the population 

Percentile 

Hip Breadth, Sitting   
[cm (in)] 

Buttock-Popliteal Length 
[cm (in)] 

Popliteal Length       
[cm (in)] 

Female Male Female Male Female Male 
1st 32.7 (12.9) 31.5 (12.4) 42.2 (16.6) 44.6 (17.6) 33.2 (13.1) 38.3 (15.1) 
50th 39.6 (15.6) 37.5 (14.8) 48.5 (19.1) 51.0 (20.1) 38.6 (15.2) 44.1 (17.4) 
99th 46.5 (18.3) 43.4 (17.1) 54.8 (21.6) 57.3 (22.6) 44.0 (17.3) 50.0 (19.7) 

 
Table 6. Seat Pan Participant Critical Anthropometric Data (n=7). 

Subject 
ID 

Gender Hip Breadth, Sitting 
[cm (in)] 

Buttock-Popliteal Length      
[cm (in)] 

Popliteal Length  
[cm (in)] 

18 F 45.5 (17.9)*** 55.0 (21.7) 44.8 (17.6) 
19 F 40.3 (15.9)** 53.9 (21.2) 43.3 (17.0) 
25 F 31.5 (12.4)* 49.5 (19.5) 42.1 (16.6) 
30 F 33.8 (13.3) 45.2 (17.8)* 38.5 (15.2)* 
5 F 40.7 (16.0) 50.8 (20.0)** 39.9 (15.7) 
21 M 38.0 (15.0) 50.0 (19.7) 44.4 (17.5)** 
32 M 37.8 (14.9) 57.1 (22.5)*** 49.7 (19.6)*** 

*Selected participant anthropometric value closest to the 1st percentile. 
**Selected participant anthropometric value closest to the 50th percentile. 
*** Selected participant anthropometric value closest to the 99th percentile. 
 
The seven subset participants were scanned using a 3D full-body laser scanner. Participants were 
scanned in a seat mock-up, configured in an expected flight-like position inside the vehicle cockpit with 
similar hip joint and knee joint angles. The seat-pan was removed to allow the laser scanner to capture 
the contour of the participant’s lower body. Each 3D surface scan was then imported into a CAD 
software package for further analysis.  
 
4.3 Results 
Seven subjects were scanned in the seat mockup (Figure 5). The surface scans were processed by 
removing the extraneous seat mockup hardware, and adding reference plans for the seat-pan and 
back rest to aid in alignment of the scans and placement within the CAD vehicle/seat environment. 
Figure 5 (right) contains an example of the finished and referenced participant’s surface scan image. 
The seven surface scans were overlaid using the reference planes in CAD to compare and contrast 
the varying curvatures of the lower body (Figure 6). Capturing the curvature of the lower-body 
representative of potential crewmember anthropometry serves as a design tool and was provided 



through the 3D surface scans. The overlaid surface scans were then utilized in the fabrication of a 
contoured seat-pan mockup chair. 
 

  
Fig. 5. Participant surface scan raw (left, middle) and surface mesh in CAD (right) 

Fig. 6. Two overlaid, aligned body surface scans 

 
4.4 Summary 
Measurements such as hip breadth, buttock-popliteal height, and popliteal length cannot be used to 
reconstruct and represent the curvature of the lower body. Even with the volumetric information on 
hand, it is still difficult to quantify a surface mesh as representative of the entire user population. The 
linear measurements from an individual can be mapped to their 3D scans to place the scans within the 
context of the population for evaluation of the seat contour.  

5. Case Study #4: Boundary Manikin Generation 
In order to validate if a suit satisfies sizing requirements and can accommodate the range of the 
population, it must be thoroughly tested with many different types of body morphology. However, this 
can be a costly trial and error process if performed after the suits have been manufactured. An 
alternative is to provide 3D scans that represent the ranges of body types the suit designer will have to 
accommodate. Unfortunately, there is limited surface scan data that matches the entire range of 
measurements required for the database of interest [5]. Thus, the idea is to modify existing surface 
scans (baseline scans) using the relationship of baseline anthropometry to targeted anthropometry to 
generate 3D manikins for use with CAD. This section focuses on the ability to ‘morph’ a 3D laser scan 
of an individual to a whole new set of anthropometry and the resulting development of 3D digital 
manikins.  
 
5.1 Background 
Boundary manikins, in the context of this paper, are representative digital replicas of real subjects’ 
anthropometry from a database that spans the 1st to 99th percentile measurements critical to suit fit 
relative to the database of interest [5]. The details on the selection of anthropometry and derivation of 
the boundary manikin anthropometry have been previously published [9,10]. This boundary manikin 
anthropometry is utilized to transform a baseline subject scan into a representative 3D digital manikin 
with the corresponding anthropometric values. These 3D manikins can then serve as templates which 
can aid in the design of the future space suits. 
 



5.2 Methods 
5.2.1. Baseline scans and anthropometry 
The ability to morph an individual from one set of anthropometry to another requires a certain subset of 
anthropometry in order to fully adjust a scan. The measurements used (Table 7) were based on 
available measurements collected through the standard anthropometric data collection performed at 
the ABF [2] and the measurement selection itself also corresponded to the available body dimensions 
in the modified age truncated ANSUR database, representing the astronaut population [5,6]. These 
measurements were selected to represent the length, width, and breadths of discrete body landmarks 
readily identifiable from the scanner images; if widths/breadths were not readily available the 
circumferential measurement was utilized instead.  
 

Table 7. Measurements for morphing the human body 

Acromion-Radiale Length Hip Breadth 
Biacromial Breadth Lateral Femoral Epicondyle Height 
Biceps Circumference, flexed Lateral Malleolus Height 
Calf Circumference Radiale Stylion Length 
Cervicale Height Thigh Circumference 
Chest Breadth Trochanterion height 
Chest Depth Waist Breadth 
Forearm Circumference, flexed Waist Depth 
Gluteal Furrow Height 

  
In order to collect this baseline anthropometry and the associated scans to perform the morphing 
procedure, markers were placed on specific landmarks of the scanned subjects consistent to the 
required measurements and two scans were collected in various postures using a VITUS 3D Laser 
Scanner. Two scanner operators extracted the anthropometry listed in Table 7 and the results were 
averaged; the multiple extractors were used to minimize human error in the measurements. In order to 
morph the baseline scan to a new manikin, a reference T-pose scan was gathered in addition to the 
anthropometric information collected by the scanner. The T-pose scan of each subject was exported to 
Polyworks for hole filling, segmentation, and post processing for importation into a custom MATLAB 
(The MathWorks Inc. Natick, Ma) program. 
 
5.2.2. Scanned subjects  
Originally, the proposed analysis called for matching up the anthropometry of the boundary manikins 
as close as possible to the baseline scans. However, as the final results from the PCA and Whole 
Body Posture Based Analysis (WBPBA) [9,10] were realized, it became unrealistic to find the variety of 
subjects close to all dimensions needed for the morphing procedure. Since the boundary manikins’ 
anthropometry spans the entire range of the population across multiple measurements, it is not 
pragmatic to conduct an anthropometric survey of a multitude of subjects to gather their anthropometry 
in the hopes of striking close to the target anthropometry and body shape of all the proposed manikins. 
Instead, a key element involving the body somatotypes of the torso was examined, namely the 
volumetric consideration of the shape and distribution of weight. It was hypothesized that the human 
torso would be the trickiest portion of the body to deform, since the distribution of weight varies widely 
from person to person, and if the scans could be matched to body somatotypes, the deformations of 
the torso region would be more realistic.  
 
Due to the skin deformation present in the torso as weight varies, it was desired that a range of 
baseline scans covering these somatotypes were to be collected. These somatotypes were identified 
by looking at the ratios of the chest breadth, waist breadth, and hip breadth. Somatotypes of spoon, 
pear, hourglass, and ruler were identified in the boundary manikin anthropometry. A spoon has an 
equal chest breadth and waist breadth ratio, with a larger hip breadth. A ruler has equal ratios of all 
three dimensions. A pear has increasing ratios from the chest down through the waist to the hip 
breadths, and the hourglass has a small waist breadth in comparison to the hip and chest breadths. In 
the boundary manikin anthropometry, the females had hourglass, spoon, and pear somatotypes and 
the males had hourglass, ruler, spoon, and pear somatotypes.  
 
A total of 6 baseline subjects were used in the analysis, three males and three females, to cover the 
range of body somatotypes. Baseline subjects were identified and scanned in a reference T-pose scan, 
who matched the representative somatotypes and they were then paired with the corresponding 



boundary manikins. Due to a lack of available pear somatotypes in the male baseline subject selection, 
the pear boundary manikin anthropometries were coupled with the spoon anthropometry due to the 
similarities in the magnitude of their anthropometry.  
 
5.2.3. Manikin anthropometry  
The results from the PCA yielded 20 female manikins and 22 male manikins. The WBPBA resulted in a 
total of 4 female and 3 male manikins [9,10]. Therefore, there were 24 female and 25 male boundary 
manikin anthropometries generated from the two analyses that could be generated in the morphing 
procedure.  
 
While the initial number of 49 manikins provided a comprehensive representation of the various 
anthropometry combinations, there was a concern that all the manikins might ultimately not be used by 
the designer because of the vast amount. Therefore, the number of manikins was reduced down to a 
viable representative subset of 11 out of the 49 manikins via an optimization method to identify key 
manikins for the most critical anthropometric measurements. This optimization method reduced the 
total number of manikins while ensuring the maintenance of a suitable representation of the target 
population range. The lesser amount of manikins will also serve to promote the use of the boundary 
manikins by the designer to assist in the suit design process while not overwhelming them. The results 
of the truncation produced 6 female and 5 male boundary manikin anthropometries to generate using 
the morphing tool.  
 
It is critical to note that the head, hands, and feet of the manikins were not adjusted volumetrically. The 
scope of the project required the manikins to assist in the validation of whether a suit satisfies the 
sizing requirements and did not pertain to fitting the helmet, gloves, or boots due to the very specific 
measurements and postures required to size these components. In addition, the morphing of the head 
would have resulted in an erroneous result due to the complex geometric structure of the head-neck 
complex and the inability to segment the head into various pieces to account for all the minute details. 
Similarly, the foot is a complex shape that requires far more measurements to accurately deform. The 
hands were scanned with the fingertips and thumb grouped together and a change in the hand length 
or circumference would have been universally applied to the entire hand, resulting in an inaccurate 
morph. As a result, the baseline subjects head, hands, and feet were not morphed on the resulting 
manikin. They are included as a reference to assist in the placement of bearings or other suit 
components at the wrist, neck, and ankles; however, they are not intended to be used for design 
purposes. The minor variations between the hands and feet in the final boundary manikins are due to 
variances in the resolution of the scan when regenerating the 3D mesh for export into a CAD model. 
 
5.2.4. Morphing methodology  
Morphing a scan involves the application of manikin geometry to a body scan; the body scan is 
adjusted volumetrically to represent the manikin geometry. After conducting an extensive literature 
review it was decided that the morphing would be accomplished via the deformation of scanner point 
cloud information. A three dimensional scan is composed of a surface mesh of triangles. The vertices 
of these triangles were saved and imported into MATLAB as a point cloud of data in 3D space. These 
points were divided into various body segments and tagged with the landmarks of the measurements 
of interest. 
 
The morphing procedure involved a MATLAB program custom written by the ABF which manipulated 
the point cloud of a baseline subject. Essentially, a reference point was selected, either a landmark (for 
length) or the centerline through a segment (for breadths, lengths, and circumferences). The vector 
formed between that reference point and a point within the cloud had a scaling factor applied along the 
relevant axial system (Eqn. 1). The scaling factors (Eqn. 2) are the ratios of baseline scan 
anthropometry to target boundary manikin anthropometry. After the length morphing, the positions of 
all the ‘child’ segments relative to the morphed parent were altered to compensate for the morphing 
adjustment. For example, if the upper leg was lengthened the lower leg and foot was shifted so the 
transition between the two segments remained congruent.  
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The length morphing utilized Equation 1 with x as the long axis of the segment and i the relevant point 
in the point cloud (Figure 7). The crotch landmark was the total body reference point, to align all the 
morphed scans and to provide an overall reference point for the shifting of body segments 

 
Fig. 7. Baseline (blue circles) and morphed image (red, purple squares) illustrating length morphing 

 
For the body width and breadth anthropometry, Equation 1 was utilized with x as either the 
anterior–posterior or mediolateral axes of the segment and i the relevant point in the data cloud (Figure 
8). For example, to apply a change in chest breadth to a baseline subject, the chest is widened at the 
level of the bust point by taking the point on the chest segment and multiplying the scaling factor (Eqn 
2) on the magnitude of the vector formed by the point with respect to the center of the chest. This 
results in the points closest to the origin to be adjusted minimally in relation to the points farther away 
as a function of distance from the origin for a given segment.  
 
After this initial methodology for the breadths and widths was attempted and validated, a problem 
became apparent. If for example, the chest and waist breadths were both adjusted with unique scaling 
factors, it would result in disconnects between the point clouds of the two segments (Figure 8). This 
problem was solved by creating a scaling factor that changed as a function of distance away from the 
landmark origin along the length of the segment. With the previous chest breadth example, instead of 
applying a continuous scaling factor for all points in the chest segment until the waist segment was 
reached, the scaling factor would taper exponentially to a value of 1 as it moved away from the bust 
point down the torso until it reached the boundary between the chest and waist segments. However 
this caused problems as well because the boundary between the two segments therefore never had a 
scaling factor applied, resulting in large portions of the body unchanged. Ultimately, the body was 
re-segmented using the known width- and breadth- related landmarks as the segment boundaries. The 
scaling factor was then exponentially tapered to a value of 1 as it reached the next anthropometric 
measurement using Equation 3, where x is the anterior posterior or mediolateral axis, z as the long 
axis of the segment, and i the relevant point in the data cloud. In the case of the chest breadth example, 
the chest breadth scaling factor would taper exponentially to a value of 1 going from the bust point to 
the navel. When the waist breadth was then adjusted, the waist breadth scaling factor would 
conversely impact the torso by applying the exponentially tapering scaling factor up from the navel to 
the bust point. In this manner, all measurement changes resulted in a smooth transition between 
segments and the ability to individually adjust single measurements without impacting other critical 
anthropometric measurements. 
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Fig. 8. Baseline (blue) and morphed image (red, yellow, purple, green) illustrating smoothing between segments 

 
The width, breadth, and length manipulations of each segment were combined into an overall morphed 
image (Figure 9). This new point cloud data was then exported into Polyworks and a 3D surface mesh 
was regenerated for export into other CAD model programs. 
 

 
Fig. 9. Baseline (left - red, yellow, green, black) and final point cloud of morphed image (right - blue)  

 
5.3 Results 
The morphing tool has capabilities to provide a volumetric representation of real subject anthropometry 
without necessarily scanning a subject who has that anthropometry. The eleven manikins generated 
by this analysis are shown in Figure 10. To ensure the accuracy of the morph, the manikin 
anthropometry was verified by extracting the anthropometry from the scan and comparing those 
measurements to the target anthropometry. Thus, the final result is a verified representative manikin 
for use with sizing, along with the linear anthropometric measurements that are tied to each manikin for 
use in analytical analyses. The results from this process can be used in design process modeling and 
initial suit sizing work as a 3D, realistic example of individuals from the population, while maintaining 
the variability between and correlation with the dimensions of interest.  

 
Fig. 10. The final eleven morphed manikins and each baseline scan.  

 
 



6. Conclusion 
The adoption of 3D laser scanning has led to an increase in the capabilities of human factors analyses 
related to space vehicle and space suit design. The ability to provide information on volume and shape 
of the human body can augment traditional human factors analysis with better tools set for predicting 
and analyzing the human within the spacesuit and vehicle. In the case studies provided, scans of the 
human body coupled with linear based dimensions have led to increased understanding of multivariate 
characteristics of the head, suit-human interface, and the conformal nature of the human body. The 
culmination of this linear to volumetric based relationship resulted in the ability to morph baseline 
scans into new scans representing a set of target anthropometry. These methodologies will assist in 
the improvement of human-system interactions, the evaluation of accommodation parameters, and the 
further development of new processes to aid in the design and evaluation of space systems. 
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