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Abstract
NASA's experience with electrochemical sensors in a hand-held toxic gas monitor serves as a basis for the

development of a fixed on-board instrument, the Contingency Gas Analyzer (CGA), for monitoring selected toxic
combustion products as well as oxygen and carbon dioxide on the Orion Crew Exploration Vehicle (CEV).

Oxygen and carbon dioxide are major components of the cabin environment and accurate measurement of these
compounds is critical to maintaining a safe working environment for the crew. Fire or thermal degradation events
may produce harmful levels of toxic products, including carbon monoxide (CO), hydrogen cyanide (HCN), and
hydrogen chloride (HCl) in the environment. These three components, besides being toxic in their own right, can
serve as surrogates for a panoply of hazardous combustion products. On orbit monitoring of these surrogates
provides for crew health and safety by indicating the presence of toxic combustion products in the environment
before, during and after combustion or thermal degradation events.

Issues identified in previous NASA experiences mandate hardening the instrument and components to endure the
mechanical and operational stresses of the CEV environment while maintaining high analytical fidelity. Specific
functional challenges involve protecting the sensors from various anticipated events— such as rapid pressure
changes, low cabin pressures, and extreme vibration/shock exposures— and extending the sensor lifetime and
calibration periods far beyond the current state of the art to avoid the need for on-orbit calibration.

This paper focuses on lessons learned from the earlier NASA hardware, current testing results, and engineering
solutions to the identified problems. Of particular focus will be the means for protecting the sensors, addressing well
known cross-sensitivity issues and the efficacy of a novel self monitoring mechanism for extending sensor
calibration periods.

L Introduction

A. CGA OVERVIEW
The Contingency Gas Analyzer (CGA) is an element of the Fire Detection Subsystem of the Environmental

Control and Life Support System (ECLSS) for the Orion Crew Exploration Vehicle (CEV). During the CEV
mission, CGA continuously monitors the cabin atmosphere for oxygen (0 2), carbon dioxide (CO2), carbon
monoxide (CO), hydrogen cyanide (HCN) and hydrogen chloride (HCl) and total cabin pressure. The role of CGA
has evolved from its original purpose of monitoring combustion gases during and after a fire or thermal degradation
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event. In addition to monitoring toxic combustion products, the CGA also serves as the primary cabin pressure
control sensor, as a backup/emergency monitor for carbon dioxide and oxygen, and as a complement to the cabin's
smoke./particulate based fire detector.

The CGA is mounted on the forward bulkhead of the crew cabin to access cabin air. CGA's primary I/O
interface is through the ECLS software on the vehicle's master computer (VMC). Under certain contingencies;
including post-landing, when that interface is not available the CGA includes a remote display and alarm unit to
apprise the crew of the cabin air composition and related potential hazards.

In addition to their direct toxicity CO, HCN and HCl serve as surrogates to indicate the presence or absence a
panoply of potentially toxic combustion products. In a post-fire cleanup, if these constituents are successfully
removed, then one may infer  that the cabin atmosphere has been rendered safe for the crew. Oxygen and CO,
concentrations on the other hand are ongoing indicators of a well-controlled life support atmosphere. The oxygen
concentration must be balanced between a level that is high enough to support crew health yet below a level that
presents a flammability hazard and CO, must be kept below a maximum threshold to ensure crew comfort,
performance and safety. The Contingency Gas Monitor is a key component for monitoring these gases at various
stages of the Orion mission. 	 v

B. ELECTROCHEMICAL SENSORS
The CGA uses a suite of 5 electrochemical (EC) sensors for detecting O,, CO, HCN and HCI. Carbon dioxide is

monitored by non-dispersive infrared (NDIR) spectrometry. The use of electrochemical sensors offers significant
benefits with respect to power; weight and size when compared with other mature detection technologies. Applying
electrochemical sensor technology in a space environment presents far greater technical challenges than the
spectroscopic detection of carbon dioxide and, thus, issues related to the EC sensors are the principle subject of this
paper. Electrochemical sensors have a long history and wide use in industrial and chemical hygiene settings and
have previously flown in NASA's hand-held "Compound Specific Analyzer" used on Shuttle and ISS missions.'

All of the electrochemical
sensors in CGA detect target
analytes by oxidizing (or reducing,

	

	
Mass transport limiting barrier

(capillary or membrane)
in the case of oxygen) analyte
molecules at one electrode of an
electrochemical cell. The diagram in
Fig. 1 illustrates the construction 	 s	 q
and operation of a sensor. As a	 X	 Potentiostat

sample gas passes across the face of	 R	 current follower Malog V outpu

the sensor, analyte begins to diffuse
through the diffusion barrier and a	 Figure 1. Schematic illustration of the electrochemical gas sensing.
steady state concentration gradient	 Analyte (X) passes through the diffusion barrier, in proportion to the
is established within a few seconds.	 gas phase concentration, under the influence of the concentration
The concentration of analyte within 	 gradient created by the consumption of X at the Sensing electrode (S).
the cell is kept at zero in the cell as	 The analog circuit maintains the potential of the sensing electrode
the electrochemical reaction rapidly	 relative to a reference electrode (R) and measures the current
consumes any analyte molecules	 generated during the electrochemical reaction. Many sensors use an
passing through the barrier. In this	 auxiliary electrode (A) to improve control of the potential difference
steady state, analyte from the	 between S and R.
sample gas passes through the
diffusion barrier and into the cell in proportion to the gas phase concentration (or partial pressure) according to
Fick's laws. It is the diffusion limited mass transport, not the electrochemistry, that imparts the quantitative
relationship between sensor response and concentration. Selective oxidation or reduction of analyte at the electrode
provides selectivity toward specific target analytes. The selectivity of the different sensors is effected through the
use of various combinations of catalytic electrode material and electrode potentials. Analog electronics circuits fix
the potential of the sensing electrode relative to a reference and measures the number of analyte molecules passing
through the barrier via the current generated during the electrochemical reaction. All CGA electrochemical sensors
except the oxygen sensor use potentiostatic control to fix the electrode potentials at specific values. The oxygen
sensor. however, is a galvanic cell in which the electrode potential is poised by the thermodynamics of the cell and
current flows due to the spontaneous reduction of oxygen at the sensing electrode. The diffusion barriers for all of
the electrochemical gas sensors used in CGA, except for oxygen, use permeable membrane diffusion barriers. The
oxygen sensor uses a small capillary orifice as the diffusion barrier.
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II. IMPLEMENTATION
Two particular problems observed for EC sensors in general in previous spaceflight applications are pressure

induced physical damage and leakage and calibration changes over time. Overcoming the second of these— frequent
recalibration— promised to be a significant challenge as accommodating integration schedules and pre-launch
operations extended the sensor functionality timeframe significantly beyond the current state of the art. In addition;
sensor-specific issues of torten for CEV were the expected cross-sensitivity of CO sensors toward hydrogen;
drifting of OZ sensor response, and long response and recovery times for HCN sensors. Finally, a minor concern was
maintaining adequate airflow across the sensor surface. As most commonly used, EC gas sensors are "passive"
sensors in that they rely on ambient air circulation to move air across the surface of the diffusion barrier at a
minimum velocity in order to maintain quantitative fidelity. The specific minimum velocity required is not well
defined and ordinarily normal air circulation should meet this requirement. In still environments, however, the so-
called face velocity may drop below the minimum, producing a stagnant layer adjacent to the diffusion barrier and a
negative bias in the results.

A.PRESSURE TOLERANCE
An initial concern in using EC sensors for CGA was whether they could physically survive anticipated

depressurizationiepressurization events. Previous NASA experience indicated that EC sensors were susceptible to
damage, ranging from pressure induced response failure to actual leakage of electrolyte from the sensor body, when
exposed to pressure cycling. One of the driving scenarios for CGA's initial role involves cabin depressurization and
several other Orion activities involve potential cabin depressurization. Thus, it was mandatory that the CGA sensors
survive relatively rapid depressurization and repressurization events. The sensors selected for use in CGA use zero
headspace cells with stabilized liquid electrolytes to minimize the likelihood of expanding headspace gases forcing
electrolyte through the diffusion barrier, the only potential electrolyte pathway to the environment. CGA's primary
safeguard against both low pressures and extreme rates of pressure change is the incorporation of the sensors into a
flow cell that is protected by two solenoid valves. The valves are controlled by software and are closed to isolate the
sensors from the ambient environment when the pressure drops below the minimum operating pressure or when the
cabin pressure is changing at a rate deemed to be harmful to the sensors. During operation, a small sample pump
draws ambient air through the flow cells, which are designed to enhance mixing of the sample and to inhibit the
development of a stagnant air layer adjacent to the diffusion barrier durin g operation. Thus the CGA can produce
accurate results even in very still environments, so long as the air at the sample inlet is representative of the cabin
atmosphere.

The pressure thresholds for closing the valves are still being refined, but pressure testing to date has indicated
that the sensors are not particularly susceptible to damage by short exposure to pressures as low as 5psia or by
repeated pressure cycling at rates as high as f4psi/minute between 5 and 15psia. Barometric pumping of liquid
electrolyte from the sensors has not been observed in any pressure tests to date. After exposure to pressures as low
as 5psi for several hours or more, all of the sensors typically recovered and functioned properly at normal operating
pressures. The low partial pressure of water, even at high relative humidity, in low pressure environments caused
some sensor types to dry out when exposed to longer periods at low total pressures. For example, a series of tests in
which sensor response was evaluated following exposures to very low pressures (<2psia) showed HCN sensors to be
significantly affected by extended exposure to very low pressures while O, sensors were unaffected. A sample of O,
sensors showed no adverse effects after more than 300 cumulative hours at pressures below 2psia. A sample of HCN
sensors, on the other hand, showed 10% sensitivity loss after less than 24 hours at 2psia and complete failure after
less than 140 cumulative hours at 2psia. Post-failure inspection of one HCN sensor determined that the sensor was
completely desiccated; but it showed no indication of electrolyte leakage, suggesting that evaporative loss of water
from the electrolyte was responsible for the failure. Further, because their physical constriction is so similar, the
HCN sensor should reliably model the effects of low pressures on the HCI, CO, and H Z sensors.

B.ANALYTICAL ROBUSTNESS
The second major concern with using COTS electrochemical sensor technolo gy for the CEV application was

sensor longevity and calibration durability. Currently quoted sensor lifetime estimates for COTS sensors generally
are near the 2 year CEV requirement, but commercial vendors typically support these lifetime targets through liberal
sensor replacement policies. This replacement approach works well in most commercial settings, but is inadequate
when sensor replacement is not feasible and high reliability is required. The statistics surrounding COTS lifetime
estimates are vague and the probability of getting a sensor that doesn't meet the stated lifetime for one reason or
another is not negligible. Furthermore, current sensor lifetime estimates anticipate generally decreasing sensor
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sensitivity over the sensor life, necessitating frequent recalibration. COTS sensors typically must be recalibrated
every 1 to 3 months, particularly if high analytical accuracy is desired. Frequent recalibration is not a realistic option
for the CEV application, especially during the active mission phase and particularly for highly toxic gases such as
HCl and HCN. 'While it is commonly expected that sensor sensitivity will decrease with sensor a ge, the extent of
that decrease as the sensor ages is virtually uncharacterized for general production sensors.

The problem of sensor aging and calibration drift is addressed in CGA by the implementation of enhanced
acceptance criteria when the sensors are initially purchased and by the use of complementary built-in state-of-health
tests performed intermittently during CGA operation. In addition to working with the vendor through conventional
materials control approaches to quality, CGA is implementing an extended criteria set for sensor acceptability.
Sensors are screened based on sensitivity and background signal (an indirect indicator of purity), but they are further
evaluated through a series of tests to verify that the chemical composition and physical characteristics (e.g.,
electrode spacing, surface area) of the underlying electrochemical cells is as consistent as possible. Expanding the
tests to encompass certain physical traits is important as current manufacturing processes allow for significant,
poorly controlled, variations between production batches, especially over periods of time that may encompass
changes in materials suppliers and production personnel. Expanding the number of selection criteria, i.e., the number
of factors that must match to put a sensor in the accepted population increases the likelihood that sensors not only
will behave similarly with respect to their initial analytical performance, but more importantly that they will behave
similarly with respect to how analytical performance changes as the sensors age. By more tightly defining the
population of sensors from the beginning, one can improve the statistical reliability of subsequent built-in test results
for tracking sensor/calibration aging. Once the population of chosen sensors is selected, CGA uses a sub-sample of
that population to define the age-response characteristic for the population. Subsequently at various times during
normal operation, the CGA software executes the built-in test, estimates the current sensor accuracy and, if
necessary, makes adjustments to the sensor calibration based on the test results. A small set of sensors was subjected
to accelerated a ging by exposure to various elevated temperatures (up to 40°C) and dry environments (down to
12%RH). The results showed significant improvement in calibration stability using the built-in testing procedure
with a printive sensitivity drift model. Fig. 2 shows some results from the accelerated aging study with HCN
sensors. Currently additional validation of the approach is underway using a larger sample of sensors and long-term
sensor lifetime studies.
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Figure 2. Sensitivity Drift Compensation. HCN sensor sensitivity drift was reduced to less
than 3% by applying a primitive drift compensation model during a 2 month accelerated
aging test. Data prior to Day 29 were used to train the model.

Drift in oxygen sensor response has been reported as an issue in previous spaceflight applications ` and was a
consideration for CGA from the inception of its O, monitoring role. A set of oxygen sensors is undergoing lifetime
drift testing. In testing to date, the only sensors that have shown significant drift are sensors that are well into their
expected lifetime. Galvanic O, sensors function much like a battery and appear, like many other types of batteries, to
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hold a steady output for an extended period of time followed by a relatively brief period of rapidly decreasing output
during their final stages of discharge. Consequently sensor a ge is one of the primary acceptance criteria for CGA 02
to ensure the maximum use time with minimal drift. In addition, techniques for minimizing sensor exposure to OZ
during non-operational periods are being explored. The oxygen sensors are included in the enhanced acceptance

testing regime described above and a database of acceptance testing results is being created to correlate observed
sensor lifetime performance with initial chemical-physical characteristics. One purpose of the database is to identify
latent characteristics that can predict sensors that will prematurely enter their "high drift" phase.

C. CARBON MONOXIDE—HYDROGEN CROSS SENSITIVITY
Carbon monoxide is arguably the most important of the three "combustion gases" monitored by CGA. It is the

most persistent of the three and is generally present in higher concentrations, so it provides the most conservative
surrogate for other, unmonitored, hazardous combustion products. In addition, CO provides a complement to
Orion's smoke/particulate based fire detector because there are few, if any, CO sources in the cabin other than
combustion. In order to serve effectively as a fire indicator, the CO level must be reliably monitored at low ppmv
levels. The cross sensitivity of electrochemical CO sensors to hydrogen is well known 3, so the presence of
significant hydrogen concentration in the cabin poses a problem for precise monitoring of CO for fire detection.
Estimates of hydrogen sources ; primarily metabolic, in the cabin indicate that concentrations could exceed 150ppmv
and may be quite variable. Further, some CO sensors showed not only a cross-sensitivity toward hydrogen; but also
negative interference by hydrogen when both CO and H, were present. In other words, hydrogen produces a positive
sensor response in air samples containing only H, but in samples containing both CO and H,, it also reduces the
sensor response to CO. In Table I sensors 2 and 3 exhibit a negative interference due to hydrogen, but sensor 1 does
not. Selectivity, K, is a measure of cross-sensitivity and is calculated as the ratio of the sensor's sensitivity toward
CO in air to its sensitivity toward H^ in air. Selectivity alone is not an adequate measure of sensor suitability for the
CEV application.

Table I.	 Sensor sensitivity to CO as a function of hydrogen
concentration in sample.

Sensitivit . (	 11/ppiriv CO)
H2 conc'n

(ppmv)
Sensor 1
(K=2)2

Sensor 2
(K=4)

Sensor 3
(K=7)

0 1.77 1.60 1.56

40 1.83 1.29 131

80 1.73 0.93 0.66

Current follower output voltage.
Z Selectivity, K, is the ratio of CO sensitivity to Hz sensitivity.

Cross sensitivity is equal to 11K.

For CGA, the CO sensor is obtained from a manufacturer that produces stable sensors having selectivities
between 20 and 30 while at the same time showing no significant negative interference by hydrogen at
concentrations up to 200ppmv H,. This sensor is paired with a second sensor that is sensitive to both CO and 1-1 2, but
with a much lower selectivity toward CO. Neither of the two sensors is completely selective toward either CO or H,,
but the selectivity difference is large and stable enough that CO and H, concentrations can be reliably calculated
from a simple linear equation. Fig. 3 shows an early test using a simple algorithm to correct the sensor response in
the presence and absence of hydrogen background.
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Figure 3. Cross Sensitivity Compensation. Carbon monoxide detection was compensated for
hydrogen interference using a two sensor compensation technique. The uncompensated output
for a CO sensor with a selectivity of approximately 25 showed positive bias greater than 5ppmv
CO in the presence of 150ppmv Hz. Compensation with a simple linear correction of the CO
concentration based on a second sensor with much lower selectivity reduced the error to less than
Ippmv CO. Neither sensor was completely specific for either CO or Hz but their selectivities were
different and consistent.

D. SENSOR RESPONSE TIME
CGA electrochemical sensor response times, measured as the time required to reach 90% of the steady state value (t 90), range

fiom 20 seconds for O, to 30 seconds for CO and H,, to slightly less than 60 seconds for HCL These speeds fall within the
requirements for the CEV application. The response time for HCN, however, is more problematic, with t90 typically 300-400
seconds. Furthermore, the response time for HCN sensors varies widely between sensors and it is not uncommon to find sensors
with t90 greater than 600 seconds. Finally, the response time of HCN sensors increases greatly toward the end of the sensor's
useful life; it is not lack of sensitivity per se that defines the end of life for these sensors, but rather an increasingly sluggish
response. These behaviors appear to be typical of commercial HCN sensors and required additional consideration in CGA
development as the response delay could lead to underestimating HCN concentration when HCN is increasing and overestimating
concentration when HCN is decreasing. The latter condition is more germane to the CEV application in that CGA's HCN
detection fiinction is intended specifically for establishing a safe environment during cleanup following event that may have
generated hazardous levels of HCN and not for detecting the onset of HCN contamination. hi this application the relevant risk is
not endangerment due to under-reporting the HCN concentration. but rather wasting valuable time and resources as the reported
concentration lags behind a decreasing HCN concentration. Thus, the response time for HCN is not as critical as for OZ or CO,
two components for which both increasing and decreasing trends are important to crew health and safety. Carefiul selection of
HCN sensors can provide CGA with a marginally reasonable response time between 5 and 6 minutes for HCN, but the tendency
of the response time to increase with age must be checked. In the accelerated aging tests mentioned above one of the HCN
sensors under test showed a sudden increase in response time, to the point of failure. The built-in test being used to monitor
sensor aging showed a marked deviation prior the failure and appears to be an effective means for anticipating this type of sensor
failure. Efforts to characterize the onset of excessively slow response in an otherwise acceptable sensor and to identify
contributing factors are currently underway as part of sensor lifetime testing.

III. SUNMARY
Electrochemical sensors provide significant cost, power and weight advantages for use in a contingency gas analyzer for the

Orion Crew Exploration Vehicle. Solutions to issues identified in prior in-flight use of electrochemical sensors and to issues
unique to the CEV mission have been in development as part of the Hamilton Sundstrand CGA effort. A flow cell approach to
delivering sample to the sensors provides both a means to protect the sensors from pressure extremes and an insensitivity to
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ambient air movement that could otherwise cause quantitative errors. A two sensor approach to monitoring CO provides a robust
and simple means for making accurate, low-level CO measurements in the presence of nnch higher, and possibly fluctuating,
concentrations of interfering hydrogen. The CEV application requires calibration stability far beyond the state of the all for
commercial sensors. This challenge is being addressed by the use of a stringent acceptance protocol and a complementary built-in
test program that can track sensor changes in-situ during normal operation. This approach has been demonstrated in accelerated
aging tests and was able both to compensate for sensor calibration drift and to predict impending failure of a sensor. Additional
lifetime testing is currently underway to refine and validate these approaches.
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