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Mike Gernhardt

EVA Physiology, Systems & 
Performance (EPSP) Project

Overview
• Prebreathe Protocols
• Lunar Suit Testing & Development
• Lunar Electric Rover & Exploration Operations 

Concepts

https://ntrs.nasa.gov/search.jsp?R=20100017354 2019-08-30T09:24:41+00:00Z
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Biomedical and Technological Challenges of EVA
• Decompression (denitrogenation required 

to work in low pressure suit (4.3 psi))

• Thermoregulation (-120oC to + 120oC)

• Nutrition (200 kcal/hr requirement)

• Hydration (1 liter/EVA)

• Waste Management

• Radiation

• Micrometeoroids and Orbital Debris

• Suit Trauma

• Mobility/Dexterity: current pressurized 
suits reduce mobility and dexterity 

• Visibility



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 3

EPSP Overview Blue Chart
• Suit metabolic cost 

vs. pressure & 
gravity

• AEVA Walk-back 
Test Augmentation

• EVA Task 
Metabolic profiles

• Ground-based 
EVA simulator 
development

• 14day Bed Rest 
study (w Muscle Disc.)

• Biomedical Sensors 
Requirements 
Definition

• Integrated 
Biomedical Vest

• Consumable 
Control & 
Regulation 
Algorithms

• Decompression 
Control Algorithm

• DCS/VGE detection 
devices

EVA Metabolic 
& Thermal 
Rates

EVA 
Physiology, Systems 
& Performance

EVA Prebreathe 
Protocols & 
Physiology

EVA Biomedical 
Performance Reqmts. & 
Assessments

Adjunct 
Characterizations 
& Studies

Biomed Sensors 
& Control 
Algorithms

DCS Treatment 
Modalities 
(Identify, reduce, treat)

Related Studies & 
Characterizations

Integrated Decompression Stress 
Predictive Model

Exploration DCS 
Risk Definition & 
Contingency Plan

Work 
Efficiency 
Indices

• Define 
policy/mission 
success statistics

• Risk Definition 
Report

• Suit/Human 
Biomechanical 
Interactions and 
Countermeasures

• Mechanisms of 
fingernail damage

• Hydration & 
Nutrition Reqmts 
definition

• Integrated 
delivery systems

• Waste Mgmt

• Real-time In-suit 
treatments

• Perfluorocarbon 
treatment (animal 
studies)

• Hyperbaric 
Chamber Trade 
Studies

• USN 
Decompression 
Stress vs. g-level

• Biochemical DCS 
countermeasures

• Literature review to 
characterize 
Hypoxia/O2 threat

• DCS End Point 
characterization

• Advanced suit 
physiology

• Task Efficiency 
Assessments

• Work Efficiency 
Assessments

EVA Prebreathe
Protocol Testing

• Nucleation 
Mechanisms (NRA)

• Break-In Prebreathe 
(NRA)

• Saturation- Protocol 
I 

• Prebreathe exercise 
saturation 
equivalent testing

• Variable pressure-
Protocol II 

• Intermittent 
recompression-
Protocol III 

• Variable Pressure-
Protocol IV

...
• Final Saturation-

Protocol X
• Model Validation 

Test
• Diluent gases
• N2 washout in µg

• EVA Task Analyses
• Optimum Suit/PLSS 

cg Study
• Reconfigurable 

PLSS cg rig 
development & 
testing (1/6g. 3/8g, 
NBL, NEEMO

• Suited contact 
forces/frequencies 
in 1/6 & 3/8g

EVA 
Biomechanics & 
CG control

EVA 
Countermeasures 
(Suit Trauma, Fatigue, 
Performance, Radiation)

EVA Nutrition & 
Delivery Systems

EPSP Project Overview

Updated 7-18-06
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EVA Suit Operates at 4.3 P.S.I

-Low pressure suit to 
Reduce the forces and
Torques necessary to
Work in vacuum

-Denitrogenation is 
necessary to prevent gas
phase seperation that 
can lead to DCS

-From Boyles Law the 
pressure/volume response
of a bubble increases at
progressively lower pressures

-Lower suit pressures require
increasingly more nitrogen 
elimination.
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Why Bubbles Form
• Supersaturation (∆P): a tendency or driving 

force for bubbles to form
∆P = ΣPtissue – (Pamb + Pmech )

– Σ Pgas = sum of dissolved gas tensions 
& liquid vapor pressures

–Pabs = absolute pressure
–Pmech = “mechanical” supersaturation ( surface tension, 

tissue elasticity decrease ∆P or mechanical tensile forces which can increase 
∆P)
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How Bubbles Form

• De novo nucleation - “from nothing”
− ∆P = 1,300 atm with no dissolved gases
− ∆P = 120-240 atm with dissolved gases
- Impossible to have altitude DCS without “Gas nuclei”

• “Gas nuclei” - pre-existing gas cavities, or generation 
from localized muscoskelatal stresses or other 
mechanisms
− ∆P < 1 atm

• Diving: 12 hours at 12 fsw (∆P = 0.4 atm)
• Altitude exposure: 12,000 feet (∆P = 0.4 atm)
• Gibbs Free energy calculations suggest that bubble nuclei of 2-

3 microns must exist, or form normally during decompression.

Presenter
Presentation Notes
What is a gas nucleus?
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“Tribonucleation”
• Mechanical supersaturation

∆P = Pgas - Pa - Pmech

∆Pmech ~ - 1,000 atm
– de novo nucleation

• Viscous adhesion
– Seperation of surfaces immersed in a viscous fluid can 

generate large tensile forces. (Function of the seperation
velocity and the viscosity of the fluid)

– opposite to mechanism of lubrication 
– cavitation on machinery
– “vacuum phenomena” in joints
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Viscous Adhesion
- Cottrell (1964)

Before 
fracture

After fracture

 Liquid fractures when surfaces 
separate too fast for viscous 
liquid to flow into gap 

 Fracture is due to negative 
pressures approaching 1,000 
atm

 Muscle contractions, tendons 
contraction/relaxation, cyclic 
loading from walking -potentially 
can generate negative pressures 
resulting in the constant 
formation of bubble nuclei-
(dynamic equilibrium, with nuclei 
constantly forming and resolving under 
the driving force of surface tension)

Presenter
Presentation Notes
Radiography teaches that bubbles form in the body as a result of viscous adhesion. Most of these bubbles are asymptomatic, but a few that are present after decompression are associated with pain. Radiography is no longer used in decompression studies because of the hazard of ionizing radiation. 
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Shuttle Pre-breathe Ground Studies

• 4 hour in-suit 
resting oxygen pre-
breathe

• 12 hr 10.2 psi 
staged 
decompression 
procedure

• R value ( tissue 
tension (360)/suit 
pressure)= 1.65

Two Pre-breathe 
protocols approved 
for flight operation
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Type II DCS – Percentage of All DCS vs. Diving Methods
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Altitude DCS - Nitrogen Elimination during Oxygen Prebreathe
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- 15-25 minutes at resting conditions 
- Resting prebreathe reaches point of diminishing return for reducing pain 

only DCS
- Type II DCS incidence higher on “Zero Prebreathe”
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Flight Experience Shuttle 10.2 psi Staged Protocol – Zero DCS 

Theoretical Tissue Bubble 
growth as a function of 
10.2 exposure time

Time at 10.2 psi prior to 
shuttle EVA
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Defining and Controlling Risk in Operational Research 
Programs – Example of Prebreathe Reduction Program (PRP)

Shuttle Prebreathe Ground 
Trials (~ 25% DCS, ~ 5% 
symptoms that would 
terminate an EVA.) Acceptable 
Risk?
- 4 hour prebreathe
- 10.2 psi staged protocol
- 146 EVAs exposures with no 
reports of DCS

ISS Overnight
Campout

Limitations
•Timeline, back to 
back EVAs, 
•02 usage,ISS 02 
concentration
•crew isolation and 
comfort

Enabling  Counter 
Measure Research 

( NASA TRL 3/4)
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Background
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Enabling Research

10 minutes 75% V02peak, 88% lower 
body, 12% upper body
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Prebreathe Reduction Program

• Start by defining 
acceptable DCS risk 
for ISS mission and 
developing 
accept/reject limits 
for countermeasure 
trials

• Early development 
focused on 
delivering  
acceptable/effective 
counter measure

• Later development 
focused on 
increased efficiency 
and improved 
scientific 
understanding of  
counter measure 
mechanisms

Accept: DCS < 15% and Grade IV VGE < 20% , @ 95% 
C.l
Reject:  DCS > 15%  or  Grade IV VGE > 20%  , @ 70% 
C.l
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Multi-Center Study:  NASA, Duke, DCIEM, Hermann UT

Exercise 10 mins @ 75% V02peak
And/or light exercise (160-253 Kcal/hr)

Micro-gravity simulation
( non-ambulation)

Simulated EVA exposure at
4.3 psi 4 hrs Use of “Suit Simulator” for

EVA Exercise 

2hr oxygen prebreathe
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Prebreathe Trials

PRP Phase I-IV 2 hr oxygen prebreathe exercise protocols
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• High intensity exercise 
(75% peak oxygen 
consumption [VO2 
peak])

• Low intensity activity 
(5.8 mL·kg-1·min-1 VO2) 

• Neither High or low 
intensity exercise was 
acceptable

• Coupling High with 
low intensity exercise 
was acceptable

DCS and Grade IV VGE observations (shown with 95% 
upper confidence limit bars dashed lines indicating accept 
levels for DCS and VGE incidences)
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Exercise and Inert Gas Kinetics

P1N2 = P0 + (1 - exp – k1t ) * (Pa - P0),  

k1 = [(1 / exp (-λ * mL*kg-1*min-1)) / 519.37]. 
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Hosmer-Lemshow Goodness of fit  statistic = 2.188 with 5 degrees of 
freedom, p = 0.82 ( significance > .05)
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Exercise Prebreathe Protocol:  Experience to Date
• Overview- The exercise prebreathe protocol has been used successfully  on 

34 EVAs from the International Space Station (ISS)- no DCS
• Five Shuttle assembly flights and two increment EVAs

• Starting in July 2001
• These assembly missions would have been difficult or impossible to 

execute as base-lined, without the protocol

Presenter
Presentation Notes
Video = 060620_164803_Prebreathe.wmv
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A United States Airlock:  Doorway to Space

U.S. “Quest” Airlock

Presenter
Presentation Notes
Video = ISS EVA1MB_720_MOS.wmv
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ISS Campout

• 60 mins prebreathe prior to 8hrs 40 mins at 10.2 psi, 26.5% 
O2 during sleep

• Wake up, don O2 masks, repress airlock to 14.7 psi
• 70 minute hygiene break (on O2 mask)
• Return to 10.2 psi, 26.5% O2 for 60 mins for breakfast and 

suit donning 
• Repress in suit to 14.7 psi 100% O2
• 50 minute in-suit prebreathe

59 pairs of spacewalkers have used the Campout protocol
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The Challenge of Moving Past Apollo
• Apollo was a remarkable human achievement

• Fewer than 20 EVAs, maximum of three per 
mission

• Constellation Program, up to 2000 EVAs  over 
the 10 year Lunar program

• Limited mobility, dexterity, center of gravity 
and other features of the suit required 
significant crew compensation to accomplish 
the objectives. It would not be feasible to 
perform the constellation EVAs using Apollo 
vintage designs

• The vision is to develop an EVA system that is 
low overhead and results in close to (or better 
than) one g shirt sleeve performance i.e. “ A 
suit that is a pleasure to work in, one that you 
would want to go out and explore in on your 
day off”

• Lunar EVA will be very different from earth 
orbit EVA – a significant change in design and 
operational philosophies will be required to 
optimize suited human performance in lunar 
gravity

Presenter
Presentation Notes
Video = trip.wmv
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Challenges for EVA on the Moon
• Dealing with risk and consequences of a significant Solar Particle Event 

(SPE) 
• Long duration missions with three 8hr EVAs per person per week

– Apollo suits were used no more than 3 times
– Individual crewmembers might perform up to 76 EVAs in a 6-month mission
– Suit-induced trauma currently occurs with even minimal EVA time

• With Apollo style un-pressurized rover (UPR), exploration range is limited by 
EVA sortie time and 10 km walkback constraint

– Science community input that  optimal scientific return within this range could be 
accomplished within ~ 30 days of EVA

– Two UPRs could extend exploration range up to 15-20 km (crew-day limited)
• Apollo highlighted the importance of dust control for future long duration 

missions
• Increased Decompression Sickness (DCS) risk and prebreathe requirements 

associated with 8 psi 32% O2 cabin pressure versus Apollo with 5 psi 100% 
O2

• The high frequency EVA associated with the projected lunar architectures 
will require significant increases in EVA work efficiency (EVA prep time/EVA 
time)
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“The Wall of EVA”

ISS Construction 

Gemini Apollo/Skylab

Pre-Challenger
Shuttle Shuttle

“The Wall”

Page 24
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“The Mountain of EVA”
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Primary Objective:
• Collect biomedical and human performance data and produce a crew consensus regarding the feasibility of performing a suited lunar 10 

km ‘Walk back’.  

Products:
• Understanding of biomedical & performance limitations of the suit compared to weight  matched unsuited controls
• Data to estimate consumables usage for input to suit and portable life support system (PLSS) design
• Metabolic & ground reaction force data to allow development of an EVA simulator to be used on future prebreathe protocol verification 

tests
• Assessments of cardiovascular & resistance exercise associated with partial gravity EVA to be used in planning appropriate Exploration 

countermeasures.  

EVA Walkback Test – Objectives & Products
• Energy -velocity 

tests vs. gravity 
level  - Earth, 
Lunar and Mars

• Transition 
speeds

• 10 Km walk 
back

• Metabolic Costs
• Ground reaction 

forces and time 
series motion 
analysis

• Skin and core 
temperatures, 
EKG, Cooper 
Harper, RPE

Presenter
Presentation Notes
Videos = Walkback_suited_Mike.wmv & Wolf_7022 unsuited.wmv
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EVA Walkback Test – Subjects

• NASA crewmembers 
– n = 6
– Typically members of 

the EVA Branch
• Good fit with MKIII EVA 

Suit
• All males

– Females were not 
excluded, but were not 
included either due to 
inadequate suit fit or 
unavailability

• Current Air Force Class III 
physical

Mean SD Range

Age (yrs) 46.8 4.3 40 - 51

Height (cm) 180.3 5.0 175 -188

Body Mass (kg) 81.4 7.8 71.2 - 89.4 

VO2pk
(mlkg-1min-1)

48.7 5.7 40.8 - 55.6
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Subjective Measurements 
Gravity Compensation Performance Scale
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Subjective Measurements (continued)
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Energy-Velocity Series Results - Moon
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per-minute 
metabolic 
cost

2. Cooling may 
be a limiting 
factor

Implications for Walkback
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10 km Walkback Summary
10 km Walkback Summary Data

(averaged across entire 10 km unless noted)

MEAN SD

Avg walkback velocity (mph) 3.9 0.5

Time to complete 10 km (min) 95.8 13

Avg %VO2pk 50.8% 6.1%

Avg met rate (BTU/hr) 2374 303.9

Max. 15-min-avg met rate (BTU/hr) 2617 315

Total energy expenditure (kcal) 944.2 70.5

RPE 11.8 1.6

Cooper-Harper 3.5 1.4

Water used for drinking (oz) ~24-32 N/A

Planning / PLSS Sizing Data Walkback Apollo

O2 Usage 0.4 lbs/hr 0.15 lbs/hr

BTU average 2374 BTU/hr 933 BTU/hr

Cooling water 3.1 lbs/hr 0.98 lbs/hr

Energy expenditure 599 kcal/hr 233 kcal/hr
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Haughton Mars Project  Walkback Test

Haughton Mars Project (HMP) 10 km Radial Distance 
Walkback Test

– To evaluate how terrain, regolith and navigation through landscape 
similar to the lunar surface affect a crewmembers’ ability to complete 
a 10km walk

– To determine an EVA environment correction factor derived from the 
comparison of data collected on Partial Gravity System (EWT & 
Integrated Suit Test 1) with HMP data
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HMP Walkback Test - Test Protocols

• Haughton Mars Project (HMP) 
Walkback 
– 10 km “as the crow flies”
– GPS navigation
– Rapid but sustainable pace

• <85% predicted max HR
– No time limit or route limitations
– 3 separate routes

• Matched Treadmill Control
– Speed/grade/distance matched 

to HMP Walkback
• Level Treadmill Control
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HMP Walkback Test - Route Selection

South Route

“Crater Climb Out”

North Route

“Mare”

Southwest Route 
“Lunar Highlands”
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HMP Walkback Test Results

• Average time 126.5 ± 28.7 min (mean ± SD)……...[96 min for EWT]
• Average VO2 27.8 ± 5.1 mL·kg-1·min-1…………………[24.8 for EWT]
• Straight line distance 9.91 ± 0.22 km 
• Actual distance was 10.61 ± 0.61 km (7% increase)

 

10.18 9.84
10.30

9.79 9.57 9.81 9.91 9.89 9.89

0.69
0.42

1.24

0.52
0.27

2.06

0.35 0.37 0.48

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 1 2 3 1 2 3

Route and Subject

St
ra

igh
t L

ine
 D

ist
an

ce
 (k

m)

Radial 17Radial 00 Radial 23



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 37

HMP Walkback Speed/Grade Matched Control Trial

• Speed/grade matched to the best 
1-min average from field

• Speed/grade adjusted manually 
every minute

• Clothing and boots similar to field 
trials

• Weighted vest used to account 
for weight differences

• -10 to 30 available
– Within this band > 98% of time
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HMP Walkback Test Results: Field vs. Matched Control

Summary (n=3) HMP JSC ΔVO2

Avg VO2 (mL·kg-1·min-1) 26.9 6.4 17.1 4.9 9.8 3.8

Presenter
Presentation Notes
Table is summary of all subjects. Graph is representative subject.
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Suit Test One- Ambulation in a Planetary Suit
Understanding the breakdown of the total metabolic cost of the suit
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Integrated Suit Test 1 Test Conditions

63 kg 121 kg 186 kg 247 kg 308 kg

6.9 kPa 
(1.0 psi)

20.7 kPa 
(3.0 psi)

29.6 kPa 
(4.3 psi)

34.5 kPa 
(5.0 psi)

44.8 kPa 
(6.5 psi)

121 kg 247 kg 308 kg

+ 0 kg + 11.4 kg + 22.7 kg + 34.1 kg

Shirt-Sleeve (Harness)

Varied Pressure (121 kg suit weight and inertial mass)

Varied Weight (29.6 kPa, 121 kg inertial mass)

Varied Inertial Mass (weight-matched @ 121 kg)

Varied Weight (weight-matched to suited configuration)

Suited (MKIII)
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Presenter
Presentation Notes
Keeping weight/mass constant, there was no significant effect of pressure on metabolic cost.6.9 kPa was the lowest suit pressure, but it’s not necessarily operationally possible.  The top 4 pressures were more realistic, but there was no difference between them.  However, there IS a cost of working in a pressurized suit that’s related to pressure, but it doesn’t vary much once the suit is pressurized.  Increased effort to move against pressure, but the variance of pressure did not seem to increase met cost.
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Metabolic 
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Presenter
Presentation Notes
Metabolic rate increased with increasing suit weights.  This effect was more pronounced at higher speeds.Lower speeds, no difference, but Significant = 3.5 ml/kg/min = BMR and 10% of the VO2pk in a deconditioned crewmember. Avg preflight VO2 pk= ~44All speeds above 4.0 km/h, were significant (≤ 3.5 ml∙kg-1∙min-1).  Within a given RPE, we see variation that is 2-3x greater than 3.5, and the average “step-up” for crewmember to change RPE was around 3.552.5The difference between the lowest and the highest suit weight varies from ~ 6 ml∙kg-1∙min-1 at speeds between 4.0-5.0 km/h up to ~ 15 ml∙kg-1∙min-1 at speeds between 6.1-8.0 km/h.As you can see in these graphs, there is a definite difference from suited to unsuited metabolic cost.  We still found significant differences at the higher weights.We didn’t do statistical test comparing means because we didn’t have enough statistical powerDon’t have a hypothesis-driven comparison.  Determine what effects these factors have Trends were similar, but lower, metabolic rates were lower
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Presenter
Presentation Notes
Delta metabolic cost.  Although it was Not significant for suit weights between 63 and 186 kg, began to increase significantly at higher weights.  From other factors: (biomech, pressure, mass, etc)Effect seems to increase as suit weight increases
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Presenter
Presentation Notes
Transport cost = O2 required for 1kg to travel 1km.  (Gas mileage) Lower the suit weight, the higher the efficiency, but also the higher the speed at which they are efficient.Nominal condition of 121 kg is most efficient from 6.5-9 km/h. Slow speeds, not much of a difference, but as you get faster, the lower suit weights are more efficient and they are more efficient at higher speeds
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• Preliminary linear regression model
– Uses the following combination of variables to predict normalized 

metabolic rates during locomotion in the MKIII EVA suit: 

MR = b0 + b1·(Vlocomotion×Wtotal) + b2· Mbody + b3·(Wtotal×Lleg) + b4·Psuit 
where 

MR = metabolic rate expressed as normalized VO2 (ml ·kg-1·min-1)
Vlocomotion  = locomotion speed (km/h)
Wtotal = total weight of EVA suit plus astronaut (N)
Mbody = body mass of unsuited astronaut (kg)
Lleg = leg length of astronaut (cm)
Psuit = suit pressure (kPa)

– (R2) = 0.846
– Root mean square error = 2.52 ml·kg-1·min-1 (< 3.5 ml·kg-1·min-1)

Predicted Effect Algorithm

Presenter
Presentation Notes
Used all combinations of data-possible predictorsTried to narrow down to best combinations-least variables, coefficients made sense
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Model for Metabolic Cost of MKIII Suit

Presenter
Presentation Notes
Psi units…initial slikNegative effect on cost-orange0 and 4.3
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Presenter
Presentation Notes
operational concepts for Lunar exploration: (transl ranges- Digital video analysis = Apollo films) because we don’t know the final configuration is, we took the nominal as starting point.  Using our operational sign levl 3.5, plus/minus from nominal.  At what point do we lose or gain significant improvements to human performanceWhat range of weights make a diff – lvl ground ambulationDon’t take this for more than what it’s worthSlow walking speedsPoint to pointcontingency121-baseline = nominal for suit, efficient at walkback contingency…considered acceptableUsed 3.5 ml/kg/min as significantly different from the baselineWhat range of weights would be acceptable for these translations?
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Integrated Suit Test 2 – Exploration Tasks
• Varied Suit Weight

– 63, 121, 185, 246, 308 kg
– Constant suit mass (121 kg)
– Constant suit pressure (29.6 kPa)
– Matched shirt-sleeve controls at 63, 

121 and 185 kg
• Varied Pressure

– 6.7, 20.7, 29.6 kPa
– Constant suit mass/weight (121 kg)

• Varied Inertial Mass (shirt-sleeve)
– Constant weight 
– 25, 50, 75 lbs added mass

• Waist-locked
– Compared to standard MKIII 

configuration
– 121 kg suit mass/weight, 29.6 kPa

Presenter
Presentation Notes
Videos =  Video_Rock_Translation.wmv  & Video_Shoveling.wmv
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Integrated Suit Test 2 - Protocols and Data Collection

• Shoveling, rock transfer, busy board 
– Metabolic Rate (VO2)
– Modified Cooper-Harper (CH)
– Rating of Perceived Exertion (RPE)
– Time series motion analysis
– Foot force contact vectors

• Rock pickup, kneel and recover, 
hammering, ladder setup

– CH
• Incline Treadmill Walking

(10,20,30% at slowest walking speed)
– VO2

– CH, RPE
– Time series motion/foot force contact 

vectors
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Metabolic Rate and Time to Completion
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Exploration Task Metabolic Cost – Varied Weight
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Exploration Task Metabolic Costs – Varied Pressure

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35
Suit Pressure (kPa)

To
ta

l O
2 -

 l/
ta

sk
 (B

us
y 

B
oa

rd
, R

oc
k 

Tr
an

sf
er

)

0

10

20

30

40

50

60

70

80

VO
2 -

 m
l/k

g 
ro

ck
 (S

ho
ve

lin
g)Shoveling

Busy Board

Rock
Transfer



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 53

Exploration Task Subjective Ratings

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

1-g Equivalent Suit Weight (kgf)

M
od

ifi
ed

 C
oo

pe
r-

H
ar

pe
r

6

8

10

12

14

16

18

20

R
PE

Busy Board CH
Rock Transfer CH
Shoveling CH
Busy Board RPE
Rock Transfer RPE
Shoveling RPE

Best 
Performance



Locking MKIII Waist Bearing (POGO)
Ambulation Exploration Tasks
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 Note that waist-locked condition was always done last and familiarization over the 
trial may account for part of the lack of difference

 Mode of locomotion (hop, lope, run) greatly affected biomechanics measurements 
and limited direct comparison 54



Inclined Walking Results
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• Metabolic cost of weight increased with grade

• Metabolic costs unrelated to weight decrease with grade

- Indicates energy recovery from suit
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∆  Weight vs. ∆ Mass Results (C-9)

• RPE results indicate that 
simulating mass by 
changing weight alone 
does not accurately 
reflect the RPE changes 
seen with an increase in 
actual mass
– Trends more similar when 

simulating lower masses
– Simulating small mass 

changes (5-10 lb TGAW) 
may not affect RPE 
significantly
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∆  Weight vs. ∆ Mass Results (C-9)

• GCPS results indicate that 
simulating mass by 
changing weight alone 
does not accurately reflect 
the GCPS changes seen 
with an increase in actual 
mass
– Trends are quite similar when 

simulating lower masses
– Simulating small mass 

changes (5-10 lb TGAW) may 
not affect GCPS significantly

1

2

3

4

5

6

7

8

9

10

40 60 80 100 120 140

G
C

PS

Average Total Gravity Adjusted Weight (lbs)     

Walk-C9 K/R-C9
Rock Pickup-C9 Shoveling-C9
Walk-C9 (g) K/R-C9 (g)
Rock Pickup-C9 (g) Shoveling-C9 (g)

Actual mass 
variation

(weight only)

Simulated
mass variation

57



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 58

Gimbal Development
• Decreased moment of inertia 

– Less mass away from subject
– Compact design
– Big improvement in yaw axis

• Example – with current gimbal, lower body 
movement is predominant 1

– Initial calculations indicate new design may 
have  only 10-15% of the moments of inertia of 
current gimbal

• Decreased mass
– Current gimbal assembly > 40 kg
– New designs may be as low as 10 kg

• To be designed to work with other suits
• Same gimbal design will support both 

suited and unsuited testing

or

1
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Center of Gravity (CG) Studies

• CG Study Objective
– To understand the impact of a varied CG on human performance in lunar 

gravity
– Divers weighed out to Apollo weight suit ( 60 pound suit, 135 pound backpack)
– Six different c.g locations ( high, low, forward, aft, baseline backpack ( high and 

aft), ideal)

Presenter
Presentation Notes
Videos = NEEMO10_Edit(v4).wmv & NBL_Tasks.wmv
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Underwater CG Study Results (continued)

•
Modified Cooper-Harper Ratings for Varied CG Configuration

 Ambulation vs. Exploration Tasks
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Results from EPSP underwater CG studies indicate
that a high/aft CG negatively affects performance 61
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Underwater CG Study Results (continued)

Ramp Angle vs. CG Configuration
(Preliminary Data)
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• NEEMO data indicates that 
0,0 is the ideal target

• Parabolic data indicates 
that if the CG moves aft, it 
must also move high
– For each 1 cm aft, raise the 

CG by       1.5 - 3 cm

• Consider both 
– 182.9-cm, 81.6-kg male   

(72-in, 180-lb)
– 163-cm, 65-kg female (64-in, 

143-lb)
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Lunar Electric Rover Design Features 
(Slide 1 of 2)

Suit Ports: allows suit donning 
and vehicle egress in < 10min 
with minimal gas loss.  

Work Package Interface: 
allows attachment of 
modular work packages 
e.g. winch, cable reel, 
backhoe, crane

Ice-shielded Lock / Fusible 
Heat Sink: cabin surrounded 
by 5.4 cm frozen water 
provides SPE protection.  
Same ice is used as a fusible 
heat sink, rejected heat energy 
by melting ice vs. evaporating 
water to vacuum. 

Aft Driving Station: 
enables crew to drive 
rover while EVA (not 
shown)

Suit PLSS-based ECLSS: 
reduces mass, cost, volume 
and complexity of 
Pressurized Rovers ECLSS

Radiator on Roof: allows 
refreezing of fusible heat sink 
water on extended sorties

Suit Shelter: retractable shelter 
protects EVA suits from dust, 
radiation and micrometeorites.  
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Lunar Electric Rover Design Features 
(Slide 2 of 2)

Modular Design: pressurized 
module is transported using 
Mobility Chassis.  
Pressurized module and 
chassis may be delivered on 
separate landers or pre-
integrated on same lander.

Docking Hatch: allows 
pressurized crew transfer from 
Rover-to-Habitat, 
Rover-to-Ascent Module and/or 
Rover-to-Rover

Dome windows: 
provide visibility as 
good, or better than, 
EVA suit visibility

Pivoting Wheels: enables crab-
style driving for docking 

Cantilevered cockpit: 
Mobility Chassis does 
not obstruct visibility

Exercise ergometer 
(inside): allows crew to 
exercise during 
translations

Two Pressurized Rovers: low mass, low 
volume design enables two pressurized 
vehicles, greatly extending contingency 
return (and thus exploration) range
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An Accelerated, Highly Mobile, Flexible Architecture:
Moving Emphatically Beyond Apollo from the First Mission

Optional Phase 3: Deliver additional pressurized volume 
(preferably with mobility) and ISRU

- Enables extended stay missions (60+ days)
- Options include i) additional LERs, ii) pressurized rover(s) provided 
by commercial or international partners, iii) NASA-provided habitats / 
Logistics Modules. 

Optional Phase 2: Deliver chassis with additional energy storage
- Enables 14-28 day LER missions at non-polar locations 
- Approx 700 KWh for un-crewed vehicles to survive lunar night

Phase 1: 2 LERs, 2 PUPs, 1 Davit or LSMS, 28 days Logistics
- Enables 4-person missions up to 28 days at polar locations
- Exploration range from poles ~ 100-200km
- LERs return to Lander to resupply after 14 days (no initial need for 
mobile logistics vehicle)

Page 69



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 70
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Leap Frog Exploration

Page 70
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Lunar Electric Rover Design Evolution

Original Concept
Page 71
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♦Despite extensive analysis of the LER concept during LAT2, 
widely diverging opinions remained as to the efficacy of the 
concept  e.g.:
• Human factors of suit ports 
• Viability of making scientific observations from inside the LER
• The ops concept of SPR versus UPR exploration
• How long crew could live and function in the LER

♦The cycle of debating these issues and conducting increasingly 
detailed theoretical analyses could have lasted years and still be 
ongoing

It was clear that we needed to break out of the normal development 
process, and start a new process the focused on an iterative 
evolutionary Design – Build – Test – Refine approach
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A New Process is Needed
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Preliminary 
Design 

Requirements
Flight Design 
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Gen I Gen II Gen III Flight

Begin with a clear 
vision of what the 
vehicle will do and 

what it won’t do

By PDR we will 
know exactly what 
we want and how 

we’re going to 
operate it

Design-build-test conducted iteratively with 
increasing knowledge of the lunar 
environment will result in an end-product that 
optimizes safety and performance 
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The Vision: 
Generation 1 LER Initial Functional Requirements
• Power-up and Check-out including suit/PLSS power up and check-out: ≤1hr
• Mate/de-mate from Hab/Lander: ≤ 10mins and ≤ 0.03kg gas losses 
• Nominal velocity: 10kph
• Driving naked-eye visibility should be comparable to walking in suit i.e. eyes at same level, 

similar Field-of-View
– Augmented by multi-spectral cameras/instruments

• Visual accessibility to geological targets comparable to EVA observations i.e. naked eyes ≤ 1m 
of targets

– Possibility of magnification optics providing superior capability than EVA observations
• Suit don and Egress/Egress

– ≤ 10mins
– ≤ 0.03kg gas losses per person
– ≥ 2 independent methods of ingress/egress

• Vehicle Mass (not incl. mobility chassis) ≤ 2400kg
• Habitable volume: ~10 m3

• 12 2-person EVA hours at 200km range on batteries and nominal consumable load
• Ability to augment power and consumables range and duration to achieve ≥ 1000km 
• PLSS recharge time ≤ 30mins
• Crewmembers ≤ 20mins from ice-shielded lock SPE protection (incl. translation to Small 

Pressurized Rovers and ingress)
• Heat and humidity rejection provided by airflow through ice-shielded lock and condensing heat 

exchanger

Page 75



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 76

The NASA Project Life Cycle

The typical NASA project management approach works well if you know exactly 
what you want to build and how you want to operate it with a high level of fidelity 
before you begin the process 

Otherwise, cost , schedule and content will be compromised.
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History has shown that the NASA Team is at its best when it has a clear problem 
to solve and not too much time to solve it
Lets recognize this and make it work for us in our new lunar developments
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Secondary Test Objective: 
• Assess the ability to navigate to predefined targets under different levels 

of navigational uncertainty (± 50m, 100m) 

1. The habitability and human factors of the 
LER vehicle during a 14-day mission will be 
acceptable as assessed by established 
human factors metrics. 

2. Crew productivity during LER mission tasks 
(EVA and IVA science operations and vehicle 
maintenance tasks) will not significantly vary 
among two different communications 
scenarios: 
• Continuous real-time comm. (baseline)
• Limited comm. (66% coverage, 34% no 

coverage – based on single highly-elliptical 
south pole coverage relay satellite)

DRATS 2009: Primary Hypotheses
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Protocol and Hypothesis Testing

Acceptability Rating Scale 

• Practically significant 
Accept-Reject criteria for specific 
metrics were prospectively 
defined for the testing of all study 
hypotheses

• 10% difference in time, range and 
productivity metrics

• Categorical difference in subjective 
human factors metrics

• Acceptability Rating of 1-4 
(scale below)
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Video: Driving,  Bubble Viewing & Suit Ports
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Video: Food Preparation
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Video: Exercise
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Hypothesis 1: The habitability and human factors of the LER vehicle 
during a 14-day mission will be acceptable as assessed by established 
human factors metrics. 
Data Collection: 14-day LER mission completed with no violations of 
Habitability Assessment Rules.  Overall Vehicle Acceptability Ratings 
collected daily from 2 subjects.  Acceptability Ratings also collected for 
individual elements of the LER (e.g. sleep stations, seats, displays & 
Controls, etc).

Results: All Overall Vehicle 
Acceptability Ratings were 
within the Acceptable 
Range.  Results for 
individual aspects of LER 
habitability are currently 
being analyzed.

 HYPOTHESIS ACCEPTED
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Hypothesis 1: The habitability and human factors of the LER vehicle 
during a 14-day mission will be acceptable as assessed by established 
human factors metrics. 
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Hypothesis 2: Crew productivity during LER mission tasks (EVA and 
IVA science operations and vehicle maintenance tasks) will not 
significantly vary among different communications scenarios: 

– Continuous real-time comm. (baseline)
– Limited comm. (66% coverage, 34% no coverage – based on single 

highly-elliptical south pole coverage relay satellite)

Data Collection: EVA productivity data 
collected throughout the 14-day mission.  
Unintentional comm. dropout affected 
portions of several traverse days.  
Where Data Quality ratings were affected by 
unintentional comm. dropout the scores 
were not used.  
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Hypothesis 2: Crew productivity during LER mission tasks (EVA and 
IVA science operations and vehicle maintenance tasks) will not 
significantly vary among different communications scenarios: 

– Continuous real-time comm. (baseline)
– Limited comm. (66% coverage, 34% no coverage – based on single 

highly-elliptical south pole coverage relay satellite)

Results: The Scientific 
Productivity Index was 
marginally greater during the 
degraded comm scenario but 
the difference (4.8%) did not 
meet the prospectively defined 
level of practical significance 
(10%). 

 HYPOTHESIS ACCEPTED

Page 91



Biomedical & Technological Challenges of EVA    |    National Aeronautics and Space Administration    |    Mike Gernhardt 92

Test Objective 1: Assess the ability to navigate to predefined targets under 
different levels of navigational uncertainty (± 50m, 100m) 

Data Collection: A series of six targets were identified and a 
traverse plan created using an annotated map and 
photographic references.  

The crew then attempted to reach 
the exact target locations using the 
traverse plan, photographs and 
vehicle position data with an rms
error of 50m or 100m.  

Results: All targets were reached 
successfully by the crew with 
minimal difficulty.  
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LER Consumables and Logistics

* DRATS drinking water consumption very high due to A/C failure, heavy suits in 1g and 
summer desert weather.  HSIR specifies 2L per person per day.  

• 50% reduction in EVA hours will reduce cooling water, drinking water and O2 consumption 
(due to higher met rates during EVA)

• Significant savings in food possible by reducing packaging waste
• Silver-impregnated clothing may reduce clothing mass 

– DRATS-modified baseline based on actual clothing used versus clothing manifested

Mass Savings of 46% plus tankage and packaging may be achievable 

DRATS '09 LSS Baseline
DRATS-modified 

Baseline

Water, Food Prep 0.57 0.5 0.86
Water, EVA 0.86 1.71 0.86
Water, Laundry 0 0 0
Water, Hygiene 0.12 0.4 0.12
Water, Flush 0 0.5 0
Food / Packaging 0.47 2.06 0.71
Clothing 0.69 0.46 0.08
Misc. Crew Consumables 0.34 0.64 0.34
IVA O2 0.88 0.88 0.88
EVA O2 0.15 0.3 0.15
N2 0.06 0.06 0.06
Water, Drinking 7.9* 2 2

4.14 7.51 4.05

kg per person per day
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Base Camp
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What This Means for the Exploration  Architectures
Habitats
• Dedicated habitats or large pressurized rovers probably

unnecessary for stays of 14-28 days

Communications and Ground Support
• DRATS results suggest continuous real-time comms and 

ground support will not significantly improve productivity
• Significant cost and infrastructure savings

Navigation
• Desert RATS demonstrated the ability to return to specific 

rocks using GNC system with only 100m accuracy
• Expensive, high accuracy GNC is probably unnecessary 

Logistics
• Potential savings of 30-50% versus current campaign 

assumptions
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• 1 x Cargo Lander 
– 2 x LERs
– 2 x PUPs
– 1 x Simple Off-loading davit
– 14-28 days logistics delivered with each 4-person crew

14-28 day Mission Capability +
“Leap-Frog” Exploration Capability +
Hundreds of kilometers exploration range

International and commercial 
partners can augment the 
architecture with additional 
robotics, logistics and possibly 
additional cargo landers

LER and Desert RATS testing 
indicates that complex and expensive 
comm., nav., power, habitation and 
unloading infrastructure is not 
required for this initial capability

• This architecture can be the driver to get the heavy lift capability 
needed to execute the flexible exploration strategy without tying 
us to the moon

• By 2021 we could have a lunar program that takes America 
emphatically beyond Apollo while still preserving the possibility of 
other concurrent human exploration programs
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Intermittent Recompression - Background
• Current plans for lunar surface 

exploration include Small 
Pressurized Rovers (SPRs) that 
are quickly ingressed and 
egressed with minimal  loss of 
consumables

• This capability enables crew 
members to perform multiple 
short extravehicular activities 
(EVAs) at different locations in a 
single day versus a single 8-hr 
EVA

• Previous modeling work and 
empirical human and animal data 
indicate that the intermittent 
recompressions may reduce 
decompression stress
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Tissue Bubble Dynamics Model (TBDM)- Provides Significant 
Prediction and Fit of Diving and Altitude DCS Data

• Decompression stress index based on tissue bubble 
growth dynamics (Gernhardt, 1991)

• Diving: n=6437 laboratory (430 DCS cases)
– Logistic Regression Analysis: p <0.01
– Hosmer-Lemeshow Goodness of Fit  = 0.77 

• Altitude: n=345 (57 DCS, 143 VGE)
– Logistic Regression Analysis (DCS): p <0.01 
– Logistic Regression Analysis (VGE): p <0.01 
– Hosmer-Lemeshow Goodness of Fit  (DCS): p = 0.35
– Hosmer-Lemeshow Goodness of Fit  (VGE): p = 0.55

r = Bubble Radius (cm)
t = Time (sec) 
a = Gas Solubility ((mL gas)/(mL tissue))
D = Diffusion Coefficient (cm2/sec)
h(r,t) = Bubble Film Thickness (cm)
Pa = Initial Ambient Pressure (dyne/cm2)
v = Ascent/Descent Rate (dyne/cm2⋅cm3)
g = Surface Tension (dyne/cm)
M = Tissue Modulus of Deformability (dyne/cm2⋅cm3)
PTotal = Total Inert Gas Tissue Tension (dyne/cm2)
Pmetabolic = Total Metabolic Gas Tissue Tension

Gernhardt M.L. Development and Evaluation of a Decompression Stress Index Based on Tissue  Bubble Dynamics. Ph.D dissertation, University of 
Pennsylvania, UMI #9211935, 1991.
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Intermittent Recompression - Background
• Intermittent recompression during saturation decompression was previously proposed as a 

method for decreasing decompression stress and time (Gernhardt,1988)

– Gas bubbles respond to changes in hydrostatic pressure on a time scale much faster 
than the tissues

• Intermittent recompression (IR) has been shown to decrease decompression stress in 
humans and animals (Pilmanis et al. 2002, Møllerløkken et al. 2007)

Gernhardt, M.L. Mathematical modeling of tissue bubble dynamics during decompression.  Advances in Underwater Technology, Ocean Science and Offshore 
Engineering, Volume 14: Submersible Technology.  Society for Underwater Technology, 1988.
Pilmanis A.A., Webb J.T., Kannan N., Balldin U. The effect of repeated altitude exposures on the incidence of decompression sickness. Aviat Space Environ Med; 
73: 525-531, 2002.
Møllerløkken A, Gutvik C, Berge VJ, Jørgensen A, Løset A, Brubakk AO. Recompression during decompression and effects on bubble formation in the pig. Aviat 
Space Environ Med; 78:557-560, 2007. 

6437 laboratory dives (430 DCS cases)
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Discussion

A

B

Pilmanis A.A., Webb J.T., Kannan N., Balldin U. The effect of repeated altitude exposures on the incidence of decompression 
sickness. Aviat Space Environ Med; 73: 525-531, 2002.
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Intermittent Recompression - 3 x 2hr EVA at 4.3 psi     
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What this Means to America
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Floating Through the Terminator in the Sea Space Continuum
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