Metrology requirements c future x-ray telescopes

Mikhail Gubarev NASA Marshall Space Flight Center

brought to you by provided by NASA Technical Rej

metadata

citation

and

similar

papers

at <u>core.ac.uk</u>

Astronomical x-ray telescopes need large area and high-resolution imaging.

Einstein Observatory (HEAO-2) 1978-1981 (f = 3.3 m, A = 0.04 m^2) 10" Thick full-cylinder fused-quartz mirrors

Röntgen Satellit (ROSAT) 1990-1999 (f = 2.4 m , A = 0.10 m²) 5" Thick full-cylinder glassy-ceramic mirrors

> Chandra X-ray Observatory 1999-? (f = 10 m, , A = 0.11 m²) 0.7" Thick full-cylinder glassy-ceramic mirrors

XMM-J 1999-Thin-fi

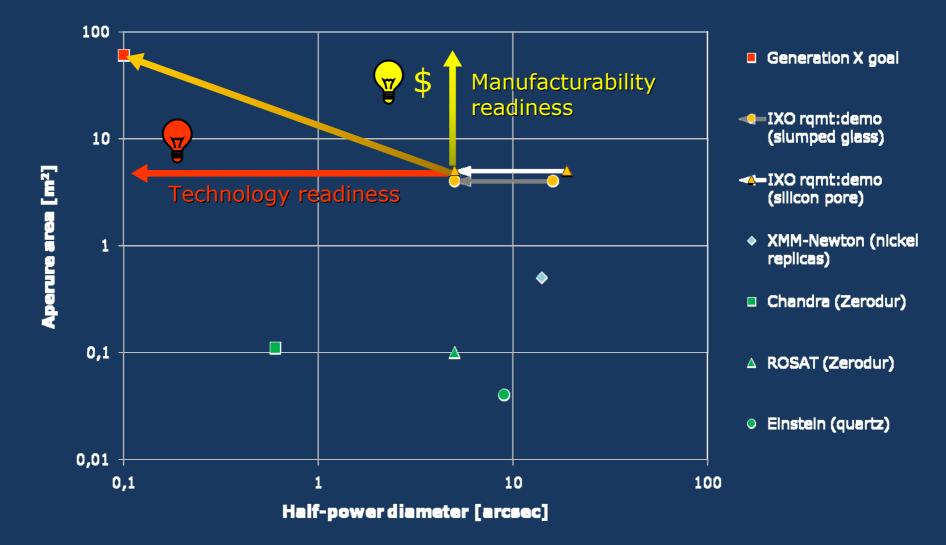
XMM-Newton 1999-? (f = 7.5 m, A = 0.5 m²) 14" Thin-full-cylinder electroformed-nickel mirrors

> Generation X 2035+ (f \approx 50 m, A \approx 60 m²) 0.1" Thin segmented (glass) mirrors

International X-ray Observatory (IXO)

≈2022 (f ≈ 20 m, A ≈ 4 m²) 5"

Thin segmented mirrors

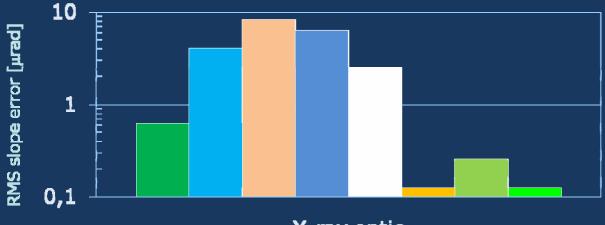

(glass or silicon-pore)

Higher resolution improves both imaging quality and sensitivity (noise reduction).

15" 10" 5″ 0.7" 0.1''

Aperture area improves sensitivity (signal increase), down to the confusion limit.

In principle, segmented optics may be scalable to arbitrarily large areas.


There are 4 top-level terms in the error budget for 0.1" HPD (0.074" RMS blur)

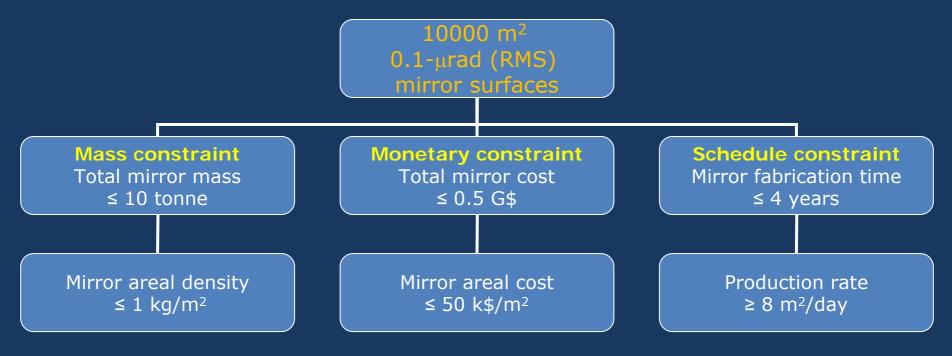
- Mirror surface quality
 - Microroughness scatters far outside 0.1" Ø.
 - Slope deviations < $0.026'' = 0.125 \mu rad RMS$.
- Mirror mounting
 - Mount must not distort mirror, or
 - Must be able to correct any distortions.
- Mirror-pair (P-S) alignment
 - Accuracy of P–S slope difference < 0.037" RMS.</p>
- Positioning of aligned mirror pairs
 - Accuracy of co-location < 0.36µ×F RMS.</p>
 - P-S pairs are not sensitive to overall tilt errors.

There are alternative approaches for addressing each error contribution.

- Mirror surface quality
 - Replicate to requirements at >mid-f.
 - Correct >mid-f figure of replica (in situ).
- Mirror mounting
 - Align very stiff mirrors with correct low-f figure.
 - Actively correct low-f figure of flexible mirrors.
- Mirror-pair (P-S) alignment
 - Align separate P and S replicated mirrors.
 - Replicate integral P+S mirror from mandrel.
- Positioning
 - May need rigid-body adjustment on-orbit.

Requirement on axial-slope deviation is near state-of-art, even for thick mirrors.

Chandra optics
Con-X TD full mandrels
Con-X TD slab mandrels
5" IXO optics rqmt
2" IXO mandrel rqmt
Generation-X optics rqmt
Synchrotron spheres
Synchrotron flats


X-ray optic

Metrology needs of future x-ray telescopes (e.g. Generation X):

- Axial-slope deviations along meridians
 - Verify < 0.125 μ radian (RMS) at \approx 0.025 μ radian accuracy.
 - Measure mirror segments about 1-m long.
- Meridian-to-meridian mean-slope (cone-angle) variations
 - Verify mounted S-P differences < 0.175 μradian (RMS).
 - Sample azimuthal spans about 1-m wide and 1-6 m radius.

Programmatic constraints require innovation for manufacturing readiness.

- Optimize mandrel fabrication and replication.
 - Minimize post-replication corrections.
- Automate all processes as fully as possible.
 - Implement closed-loop fabrication & metrology.

2008. Marting-11 ACTOP08 (Trieste, Italy): Optics requirements for the Generation-X x-ray telescope

Summary

Fundamental needs for future x-ray telescopes • Sharp images \Rightarrow excellent angular resolution. • High throughput \Rightarrow large aperture areas. Generation-X optics technical challenges • High resolution \Rightarrow precision mirrors & alignment. - Large apertures \Rightarrow lots of lightweight mirrors. Innovation needed for technical readiness 4 top-level error terms contribute to image size. There are approaches to controlling those errors. Innovation needed for manufacturing readiness Programmatic issues are at least as severe.

9