

Packaging Concerns and Techniques for Large Devices Challenges for Complex Electronics

Components for Military and Space Electronics (CMSE)

February 9, 2010

Kenneth A. LaBel ken.label@nasa.gov 301-286-9936

Michael J. Sampson Michael.j.sampson@nasa.gov 301-614-6233

Co-Managers, NASA Electronic Parts and Packaging Program (NEPP)

www.nasa.gov

Can we "qualify" without breaking the bank?

New Silicon -90nm CMOS	New Connectors -higher-speed, lower noise -serial/parallel	New Board Material -thermal coefficients
-new materials		-material interfaces
New Architectures -new interconnects -new power distribution -new frequencies		New Workmanship -inspection, lead free -stacking, double-sided -signal integrity
New Design Flows/Tools	New Package	

-programming algorithms, application-design rules, tools, simulation, layout-hard/soft IP instantiation

-Inspection -Lead free

Where we were ©2006

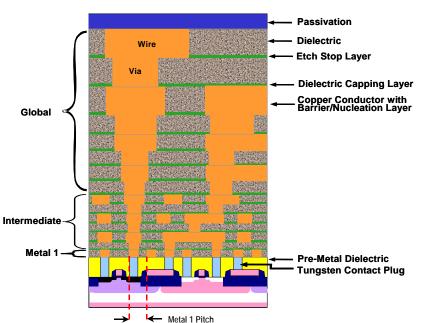
Overview

Solar Dynamics Observatory (SDO). Awaiting Launch

- Packaging Challenges
- Packaging Options
- Components of All Packages
- Commercial, Non-hermetic Packages
- Space Challenges to Packages
- A Non-hermetic, Complex Package for Space
- Hermeticity, Why Space Users Like It
- Non-hermetic, Complex Package Variations
- Class X
- Summary

Packaging Challenges

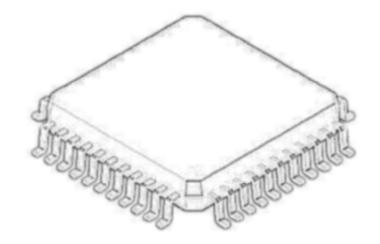
- I/O s, increasing number, decreasing pitch
- Heat Dissipation, especially in space
- Manufacturability
- Materials
- Mechanical
- Installation
- Testability
- Inspectability
- Space Environment
- RoHS (Pb-free)

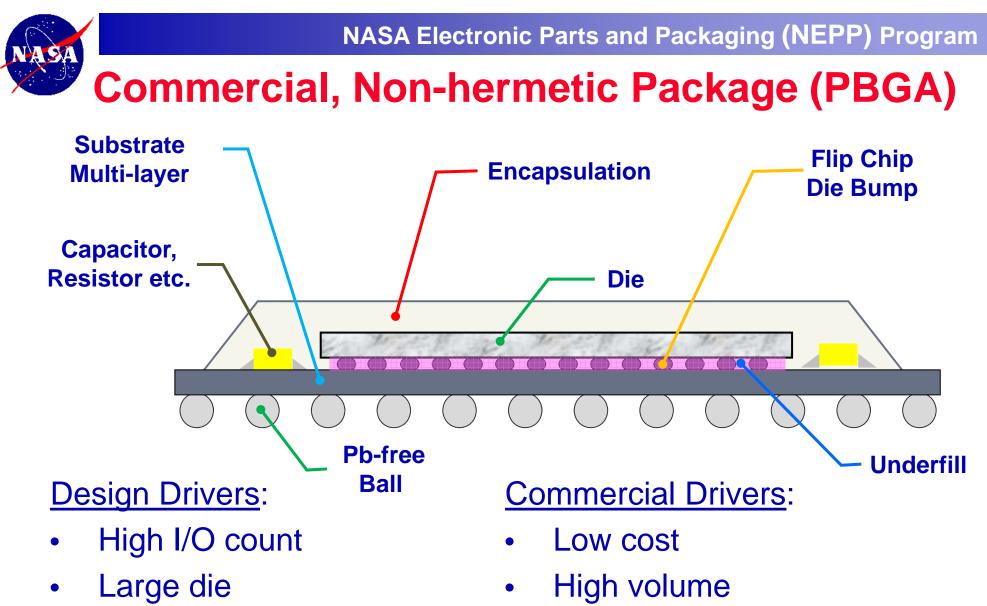


Lunar Reconnaissance Orbiter (LRO), Built at GSFC, Launched with LCROSS, June 18,2009

Package Options – Hermetic?

- Driven by consumer products
 - Low cost
 - High volume
 - Rapid turnover
 - "Green"
 - Minimized size




- Once, hermetic options existed for most package types
 - Now, few hermetic options for latest package technologies
 - Development of new hermetic options unattractive
 - » Very high NRE
 - » Very high technical difficulty
 - » Very low volume
 - » Demanding customers

The "General" Package

- Typically, packages consist of the same basic features but achieve them in many ways:
 - Functional elements active die, passives etc.
 - Interconnects between elements (2 or more elements)
 - A substrate
 - Interconnects to the external I/O of the package
 - A protective package
 - Interconnects to the next higher level of assembly

- Environmental protection
- Performance/Speed
- Ancillary parts

- Limited life
- Automated installation
- Compact

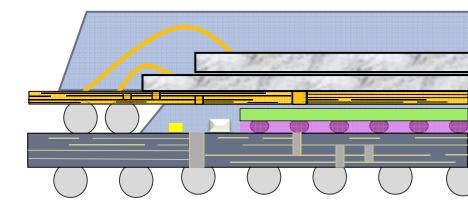
Space Challenges for Complex Non-hermetic Packages

- Vacuum:
 - Outgassing, offgassing, property deterioration
- Foreign Object Debris (FOD)
 - From the package threat to the system, or a threat to the package
- Shock and vibration
 - During launch, deployments and operation
- Thermal cycling
 - Usually small range; high number of cycles in Low Earth Orbit (LEO)
- Thermal management
 - Only conduction and radiation transfer heat
- Thousands of interconnects
 - Opportunities for opens, intermittent possibly latent
- Low volume assembly
 - Limited automation, lots of rework
- Long life
 - Costs for space are high, make the most of the investment
- Novel hardware
 - Lots of "one offs"
- Rigorous test and inspection
 - To try to find the latent threats to reliability

ONE STRIKE AND YOU'RE OUT!

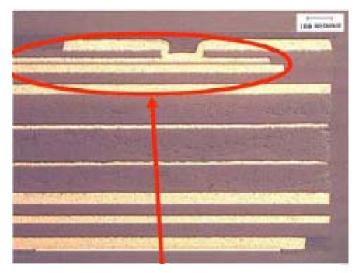
NASA Electronic Parts and Packaging (NEPP) Program **Non-hermetic Package, With "Space" Features** (CCGA?) **Substrate and Flip Chip Die Sn/Pb Column Bump** Cover **Grid Array** "Enclosed" Die **Package** Capacitor, Option Underfill **Resistor etc.**

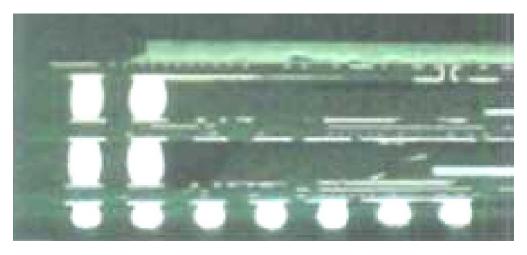
Space Challenge	Some Defenses		
Vacuum	Low out/off-gassing materials. Ceramics vs polymers.		
Shock and vibration	Compliant / robust interconnects - wire bonds, solder balls, columns, conductive polymer		
Thermal cycling	Compliant/robust interconnects, matched thermal expansion coefficients		
Thermal management	Heat spreader in the lid and/or substrate, thermally conductive materials		
Thousands of interconnects	Process control, planarity, solderability, substrate design		
Low volume assembly	Remains a challenge		
Long life	Good design, materials, parts and process control		
Novel hardware	Test, test		
Rigorous test and inspection	Testability and inspectability will always be challenges MJS 01/17/2010 9		

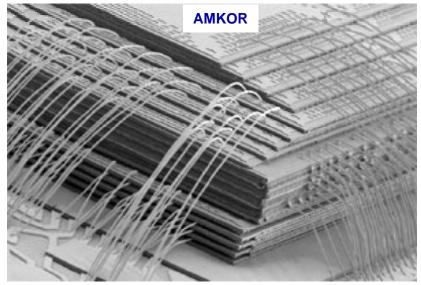

Hermeticity

- NASA prefers hermetic packages for critical applications
- Hermeticity is measureable, assuring package integrity
- Only 3 tests provide assurance for hermetic package integrity:
 - Hermeticity nothing bad can get in
 - Residual or Internal gas analysis nothing bad is inside
 - Particle Impact Noise Detection no FOD inside
- NON-HERMETIC PACKAGE INTEGRITY IS HARD TO ASSESS - NO <u>3 BASIC TESTS</u>

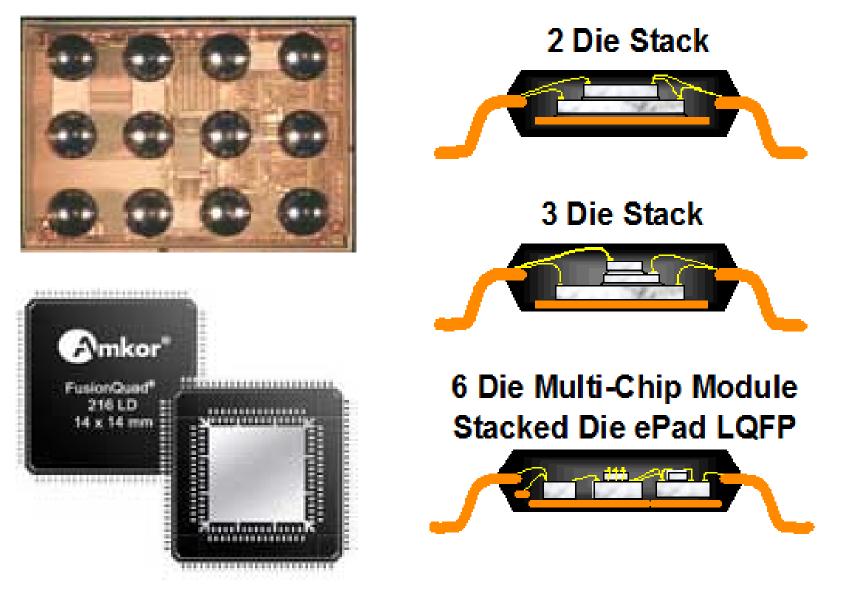
Non-hermetic Package Variations


- Current and future package options mix and match elements in almost infinite combinations
- Elements include:
 - Wire bonds
 - Ball interconnects
 - Solder joints
 - Conductive epoxies
 - Vias
 - Multi-layer substrates
 - Multiple chips, active and passive (hybrid?)
 - Stacking of components
 - Embedded actives and passives
 - Polymers
 - Ceramics
 - Enclosures/encapsulants
 - Thermal control features




Some Large Device Package Options

Embedded Capacitor



NASA Electronic Parts and Packaging (NEPP) Program

Some Large Device Package Options

From Amkor's Website http://www.amkor.com/go/packaging

Why MIL Spec. for Space ?

- Space users like MIL spec. parts because:
 - There are technical "rules" that apply equally to all suppliers
 - Qualification to recognized requirements
 - Visibility of change control
 - Required tests and inspections reduce or eliminate the need for the space user to do post-procurement tests
 - Transparent government process for reacting to performance issues
 - Space level participation provides an opportunity to do continuous improvement of the MIL supply chain for Class S (space grade) microelectronics

They Work!

MIL-PRF-38535, Class Y

- Proposed new class for M38535, monolithic microcircuits
- Class Y will be for Space level non-hermetic
- Class V will be defined as hermetic only
- Addition to Appendix B, "Space Application"
- Package-specific "package integrity" test requirements proposed by manufacturer, approved by DSCC and government space
- The Package Integrity Test Plan must address:
 - Potential materials degradation
 - Interconnect reliability
 - Thermal management
 - Resistance to processing stresses
 - Thermo-mechanical stresses
- G12 Task Group established 01/13/01

Summary

- NASA is going to have to accept the use of non-hermetic packages for complex devices
- There are a large number of packaging options available
- Space application subjects the packages to stresses that they were probably not designed for (vacuum for instance)
- NASA has to find a way of having assurance in the integrity of the packages
- There are manufacturers interested in qualifying non-hermetic packages to MIL-PRF-38535 Class V
- Government space users are agreed that Class V should be for hermetic packages only
- NASA is working on a new Class for non-hermetic packages for M38535 Appendix B, "Class Y"
- Testing for package integrity will be required but can be package specific as described by a Package Integrity Test Plan
- The plan is developed by the manufacturer and approved by DSCC and government space

http://nepp.nasa.gov