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Abstract

Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious
concern to Science Mission and Constellation programs since there are a number of COPVs on board
space vehicles with stored gasses under high pressure for long durations of time. It has become customary
to establish the reliability of these vessels using the so called classic models. The classical models are
based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account
for any additional damage due to the complex pressure-time histories characteristic of COPVs being
supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly
reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal
of a model that incorporates damage due to proof test. The model examined in the current paper is based
on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture
and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof
testing which every flight vessel undergoes. The paper compares current model to the classic model with
a number of examples. In addition, several applications of the model to current ISS and Constellation
program issues are also examined.

Nomenclature

a	 Weibull shape parameter for composite strength

0 	 Weibull exponent and shape parameter for composite lifetime under fixed fiber stress

0 	 creep exponent for matrix

P	 power law breakdown exponent reflecting sensitivity of lifetime to fiber stress

6 	 fiber stress

6p 	 fiber stress at proof pressure level

6ref	 characteristic fiber stress level

6ˆy	 composite reference strength (same as 6 ref )

ζ 	 Weibull shape parameter for fiber strength

F(t)	 cumulative distribution function for composite failure

NASA/TM—2010-215831



k’	 same as kˆ

kˆ	 critical fiber break cluster size for catastrophic failure

kp 	 fiber break cluster size after proof

R(t)	 vessel reliability over time

t	 time in hours

tc characteristic time for creep to occur

tc characteristic time for matrix creep

tp hold time at proof pressure

tp,b proof benefit time scale

tref characteristic time scale for fiber failure

Introduction

Carbon composite overwrapped pressure vessels (COPVs) are widely used for storing gasses under
high pressure in a wide range of applications including onboard spacecraft such as the Space Shuttle and
the International Space Station (ISS). The use of COPVs is currently being planned for the Crew
Exploration and launch vehicles as well. The principal advantage of the carbon COPV technology over
conventional all metallic storage devices is the substantial weight savings. The National Aeronautics and
Space Administration (NASA) has been supporting the development of this technology since the early
1970s (Ref. 1) with an interest in safe application of these components to reduce mass to orbit. NASA
Johnson Space Flight Center White Sands Test Facility (WSTF) in collaboration with NASA Jet
Propulsion Laboratory (JPL) has been testing components in support of this objective since the 1980s and
WSTF has been involved in test development and analysis to address effects of impact, propellant and
cryogenic fluids exposure on Kevlar (DuPont)/epoxy and carbon/epoxy composite overwrapped pressure
vessels (Ref. 2).

Space flight COPVs are generally made of a thin metallic liner overwrapped with a high strength
fiber/epoxy composite. This design allows for significant weight savings in contrast to an all metal
pressure vessel design and these vessels are widely used for spacecraft and commercial applications
because of this advantage. Mechanisms associated with the failure of the COPV system must be
considered for safe operation from manufacturing to disposal. The fibrous composite overwrap carries a
significant portion of the pressure load during operation and therefore is subjected to a possible stress
rupture failure mode. Stress rupture is manifested as sudden, catastrophic failure of the overwrap, and is a
function of fiber stress ratio in the composite and time at pressure.

Stress Rupture Phenomenon

As mentioned before, failure due to stress rupture is one of the major concerns with the usage of
COPVs. A thorough discussion of various approaches to compute reliability under stress rupture failure is
given in the NASA Engineering Safety Center (NESC) Carbon ITA report (Ref. 3). In recent publications,
both Thomas and Robinson (Refs. 4 and 5) have provided models for determinations of reliability which
included their interpretation of model parameters based on carbon/epoxy stress rupture data available at
the time of their publications. The industry practice is to utilize these early models. The Thomas model
was chosen to develop the stress rupture requirements in the COPV industry standard, AIAA SO–81–
2000 (Ref. 6).
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Thomas and Robinson models used in the COPV industry are based on Weibull distributions for
lifetime, yet they are fundamentally different in structure. Both were generated to allow the fitting of
stress rupture data without physics based interpretation to other composite behavior, such as strength, and
neither is based on the fundamental fiber behavior such as single fiber failure mechanisms. The Robinson
model is based on a Weibull power law and the Thomas model is derived from a Weibull exponential
framework. These two frameworks were originally suggested by Reference 7. In addition, the work of
Phoenix (Ref. 8) suggests the power law framework has more flexibility and is self-consistent with other,
but related, composite properties such as strength. A history of these models with detailed comparison of
the exponential and power law forms is given in the volume II of the NESC Carbon Report in Appendix L
(Ref. 8). Due to the limitations in the Thomas and Robinson models, the Phoenix power law framework
model was used in the NESC COPV Independent Investigation. The results from this model are
consistent with the Robinson model as well. The remainder of the current paper focuses on the Phoenix
classic model, and its limitations due to lack of physics and the subsequent improvements proposed by
Phoenix which is named the fiber breakage model. A thorough discussion of these models is given in the
Appendix L of the NESC Carbon Report Volume II.

In the current paper the classic model of Phoenix is reviewed and its limitations are illustrated when
proof testing of COPVs is included in the model. This is followed by a theoretical development and
applications of a more sophisticated fiber breakage model that incorporates the proof test induced damage
for the reliability computations of carbon COPVs. Proof testing COPVs after fabrication is conceptually
viewed as a process of weeding out weak vessels. Vessels are most often removed because of liner
leakage, but rarely from catastrophic failure of the composite overwrap. Nevertheless, unlike the situation
with metal vessels, considerable damage is done by a proof test in terms of breaking carbon fibers and
possibly strands. Classical reliability models are typically not based on fiber breakage processes in a
way that captures the above drawbacks of proof testing. In fact, when applied to carbon/epoxy COPVs,
the power law-Weibull version of the classical model predicts that the higher the proof test level, the
greater the benefit in terms of improved reliability. The fiber breakage model explicitly accounts for
the micromechanics based statistical failure processes in composites consisting of carbon fibers in
epoxy matrix.

Classic Model: A Review

The usual reliability model for failure of a composite is a parametric model in a Weibull power-law
framework that embodies a memory integral for past fiber history, σ( s), 0 < s ≤ t. The distribution
function for overall composite failure is given by

⎤
β
 ⎫

F(t ;σ ( o )) = 1− exp ⎨ − ⎢ 1
 ∫ 

t ⎛ σ( s ) ⎞
ds ⎥⎪⎬ , 	 t > 0	 (1)

⎪⎩	
tref 

0 σ ref	 ⎦ ⎪⎭

where ρ is the power law breakdown exponent reflecting sensitivity of lifetime to fiber stress level, R is a
Weibull exponent that happens to be the Weibull shape parameter for composite lifetime under fixed fiber
stress, and σref and tref are characteristic stress and time scale constants for the composite material. Thus a
stress history for a pressure vessel in stress rupture may be idealized as

⎧⎪ σ 	 0 < s < t
σ p (s) = I P	 p	 (2)

l	 it σ, tp < t
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where σp is the proof level and tp is the proof hold time, typically a few minutes, and t is overall time that
may stretch to thousands of hours. Then the distribution function for lifetime (including failure times
during proof) is

⎧ ρ 	 ρ⎡⎤
β
 ⎫

	

F ( t;σp (o))= 1− exp ⎨ − σp

	

t

p-- 

+
⎛ σ ⎞ t − tp
	 (3)

 (
I ⎩	

σ ref	 tref	 σ ref	 tref ⎦ ⎭

The conditional distribution for lifetime given survival of the proof test is

F ( t | σ ,σp ) = 1 − 1
− F ( t ; σp H)

1 − F ( tp ;σp (o))

σ 	 ⎤  
β

	

(4)

p= 1 − ex ^ − 	 p	 p	 1 + 
6 t-tp −1

⎪ t σref tref J	 σ
p	 tp

⎩ 	 ⎦ 	 ⎭

For times much longer than the proof time (a few minutes) and well within a proof benefit timescale, tp ,b ,

whereby t − tp ≈ t applies, this can be rewritten as

⎪ 	 ⎡ ⎛⎤
β
	 ⎫

	

F ( t |σ,σp )≈1− exp ⎨ − σp	 tp ⎥ β ⎜
σ 	

t 
⎪
	 0 < tp << t << tpb 	 (5)

⎪⎩	
σ ref	 tref ⎦ 	

σp 	 tp 
⎭

where

ρ
⎛

β
⎜

σ

(σ!--σ t
L = 1or tpb ≈ 	 (6)

p	 p

is the timescale over which the formula applies and a proof benefit exists, since the quantity after the
square parentheses is of order unity or smaller (typically β << 1 for carbon fiber composites). For very
long times tp ,b << t the probability of failure follows

⎪ 	 ⎡ ⎛⎤
β

F ( t | σ , σ p ) ≈ 1 − exp ⎨ − 	
σ ⎞ t ⎜ +(

σ
—
p 

tp ⎥ − ⎢ (σ—p

⎪

p ^
σref tref ⎦	

σ
t

σ 	 t
⎝ ⎣ 	 ⎦ 	 ⎣ ⎦ ⎪⎭

⎧
	

⎤
β
	

⎤
β
 

⎫
	 (7)

≈ 1 − exp ⎨ − ⎢⎜
σ

j 

t ⎜ 1 +β
⎛ σ p tp − σp tp

⎪⎩
	 σ ref	 tref ⎦ 	

σ 	 t	 σ 	 t
⎦
 

⎠⎭

and the proof benefit fades.
These results can be written in terms of the conditional reliability given by R (t | σ , σp) = 1 − F (t | σ , σp) .

For times within the proof benefit range up to time tp ,b we have
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⎪ 	 ⎡ ⎛⎤
β
	 ⎫

	

R ( t |σ,σ ≈ exp ⎨ − σp 	 tp 	 β ⎜
σ 	 t ^

⎬, 0 < tp << t << tpb 	 (8)

⎩	
σ ref	 tref ⎦ 	 σ p	 tp 

⎭

and for times tp ,b << t we have

⎧ 	 ρ 	 β 	 ρ 	 ρ 	 β

⎪ ⎡ ⎛
R ( t | σ ,σ≈ exp ⎨ − 	

σ 	 t	
1 +β(1
	 tp

 − σp tp 	
⎬ 	 (9)

⎪⎩
	 σ ref 	 tref ⎦ 	

σ 	 t	 σ 	 t
⎦
 

⎠⎭

Thus, according to the classic model, the reliability benefit of the proof test and how long it lasts are
strongly related to the values of β and ρ , and these vary widely among fiber types. For instance, for
Kevlar/epoxy composites, typically 1 < β < 2 and ρ < 30 but for carbon/epoxy composites typically
β<0.3 and ρ>70.

Finally we also consider a proof test followed by a long survival time, ts, and calculate the conditional
reliability for future lifetime of the same order of magnitude as that already survived. The probability of
failure by time t > ts (including failures during proof and up to time ts)

⎧ ρ 	 ρ 	 ρ⎡⎤
β
 ⎫

F(t;σp ( o )) = 1− ex	
σ p ⎞ tp ⎛ σ ⎞ ts − tp +

⎛ σ ⎞ t − ts ⎪
10p	 +

σ ref	 tref	 σ ref	 tref	 σ ref	 tref ⎦ 	
( )

⎭

Noting that tp << ts < t and using the above methods, the conditional reliability given survival to time ts
is found to be approximately

⎧ 	 ρ ⎤
β

	
⎤⎫

	

R(t | σ , σ p , ts ≈ exp ⎨ − σ
p
	

tp 	 1+ σ 	 t ⎟ − 1+ σ 	
ts 	 ⎪
	 (11)

j⎪⎩
	 σ ref	 tref ⎦ 	

σ p 	 tp 	 σ p	 tp 
⎦ ⎭

These results will be compared to those from the stochastic fiber breakage model derived below.

Deficiencies of Classic Model

To illustrate the effects of proof test on reliability, the relevant equations mentioned above are
shown plotted for both Kevlar and carbon in Figure 1. For Kevlar fibers the parameters chosen are
p = 24, R = 1.625 and tref = 1.43. These are typical values for Kevlar and are currently used in reliability
calculations of the Orbiter COPVs. A comprehensive database of stress rupture life data for Carbon
fibers, however, is not available. Limited data for strands and vessels are available in literature. In the
current computations the chosen parameters are p = 72, R = 0.35 and tref = 0.001. These are the parameter
values for a typical Carbon COPV based on the limited available data. Proof test is assumed for 5 min at a
fiber stress ratio of 0.667 and the operating stress ratio is assumed to be 0.5. The dashed lines show the
base line case of no proof test. The dot-dashed lines show the case of effect of proof test on reliability for
both Kevlar and carbon composites stress rupture performance. The solid lines show the conditional
reliability where credit is taken for surviving the proof test. For Kevlar composites the proof test appears
to have a minimal impact on the overall reliability for a period of about one year beyond which all three
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2
PLN, 4/7/2009 Kevlar No Proof

1 -•- Kevlar Proof
— Kevlar Cond. Proof

0	 ...	 ................;.. 	 .............................................=............................................................................ ............................... 	 Carbon Cond. Proof
-	 Carbon Proof

9 ••	 ^• -- Carbon No Proof

8	 .....................	 .....	 ..... ... .............................. ;.. 	 ......................................................................................................................... ...............................

7

6 ......; ................................................;.....................................................:................... ............................_€.	 ..................

5

4 ..	 ...... ........^	 .^.'.'.-.-+-....^.^. :..................................................

3	 three nine reliability =

2	 ....................... s.................................................... s................................................................................................... .... ..................................................... .......................

1 i..................................................... .......................

0
2

10	 10
0 2

	
4
	

6
10	 10	 10

Time in Years

Figure 1.—Effect of proof test on reliability of Kevlar and carbon COPVs.

cases are virtually indistinguishable. However, for carbon proof test appears to have substantial impact on
the reliability for extremely long periods of time. The effects for this particular case appear to last in
excess of 100,000 yr. Furthermore, the conditional reliability where credit is taken for surviving the proof
test itself appears to increase by several orders of magnitude compared to the straight calculated
reliability. Also, the proof test itself (dot-dashed line) appears to cost a significant amount of reliability in
number of nines although it is only for a short duration. In general if one were to put a three-nine
reliability as a minimum requirement, then carbon COPVs appear to last several times longer under stress
than Kevlar COPVs. It is for this reason, carbon overwrapped pressure vessels are becoming more
popular alternatives to the Kevlar counter parts in space applications.

In conclusion, if the classic model is correct, the proof test benefit for Kevlar fiber is relatively short
lived while that for the carbon fiber could last for any conceivable lifetime of the vessel, provided that
ρ > 70. However, the model is based on purely curve fitting to statistical stress rupture data. Any damage
that may have resulted during proof test is not accounted for in the model. Furthermore the model in its
current form indicates that higher the proof stress ratio, the better it is for reliability provided the vessels
survive proof test. As the proof test stress ratio increases composites tend to accumulate damage in terms
of fiber breakage which will have adverse effects to its performance. By considering the process of fiber
failure more explicitly, we investigate whether the classic model is a realistic reflection of the failure
process in the case of carbon/epoxy composites or whether it is a misleading idealization.

Fiber Breakage Model Development

The fiber breakage model theoretical development is discussed in detail in References 8 and 9. For
sake of completeness, this discussion is included in Appendix A. Key equations that are needed for
discussion here are shown below while the details are deferred to the Appendix A. The life time
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distribution function (probability of failure for T ≤ t for composite under stress σ which has gone through
a proof test at σp a hold period of tp is given by Equation (A.31) in Appendix A:

l	 ⎞
k̂− 1

HV ( t ; σ , σ p ) ≈ 1 − exp ⎨ ( σ p 1 Y4( 
1 + ( tp

/
tc ) 6 

J⎪  ⎩
(12)

r	 ⎤
k−kp ⎫

× 1 + ( σ/σ 	 ( 1 + (t/ tc )
θ

)/ I 1 + ( tp / tc )e ) − 1 ^ 	 I ⎬ , t > tp
⎝⎦⎪⎭

where σ̂V composite reference strength (same as σref ), kˆ is critical fiber break cluster size for
catastrophic failure, kp is fiber break cluster size after proof, S is Weibull shape parameter for fiber
strength, and 0 is the matrix creep exponent. α̂ is given by the product k̂ς . The fiber break cluster size
after proof kp is given by Equations (A.29.a) and (A.29.b) in Appendix A.

⎢ 	 ⎡ 2 	 ⎤
kp = 

4 (σp ⎞
− 1 ⎥ + 1

π 	 σ ⎠ 	 ⎥⎦ 	 ⎥⎦

	or 	 (13)
2	 ⎤

kp ≈
4 (σp

 )−

1 ⎥ + 1
π 	 σ 	

⎥⎦

The conditional reliability given that any weak vessels removed by proof test is given by the following
equation (App. A, Eq. (A.35))

⎞
k− 1

R(t | σ , σp ) exp ⎨ −(σp 7V ( 1 + (tp I tcy
J⎪⎩

	

⎫
	 (14)

× [1 +(σ/σp

fP
1 +( t/tc )θ)/I 1 +( tP It^ )θ ) − 1 

⎤
 k−kp 

− 1 ⎬ , 0 < tp < t

	

1 	 )⎦ 	 ⎪⎝ 	 ⎠⎭

Finally for the case where the vessel has not undergone any proof test the reliability is given by

⎧
R ( t | σ ) ≈ exp ⎨ − ( σ/aV )

α
r 1 + (tltc )

θ 1

k− 1 ^, 
0 < t 	(15)

⎪ J I

	

⎩ 	 J

Equations (5) to (7) can now be used to perform comparison studies to classic model for COPVs.

Comparison of Classic Model Versus the Fiber Breakage Model

To compare the predictions of classic model to fiber breakage model, a T1000G COPV with a
nominal stress ratio of 50 percent is considered. The proof factor (defined as the ratio of fiber stress at
proof to fiber stress at operating conditions) is 1.5 which gives a stress ratio of 0.667. These are typical
values for such vessels. The model parameters for T1000G fiber are taken as:

NASA/TM—2010-215831	 7



14
Classic, With Proof

Classic with No Proof

FB Model with Proof

FB Model with No Proof
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a
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0) 4W

Classic model:

ρ = 114; t,,ref = 0.001 hr; β = 0.22;
	

(16)

Fiber breakage model:

ζ = 5; t, = 0.01 hr; k = 5; tp = 0.0833 hr; &, = kζˆ
	

(17)

Predictions of reliability of T1000G COPV expressed as “number of nines” are shown plotted as a
function of time for both the models in Figure 2. Calculations are shown for both no proof test case and
the case where survival of a proof test conducted at 66.7 percent stress ratio for 5 min.

Both models predict almost identical reliability when proof is not considered, but the classic model
predicts vastly improved reliability when conditional survival of proof test is taken into account.
However, the fiber breakage model predicts much lower reliabilities when proof test effects are included
and the reliabilities are based upon conditional survival of proof test. A loss of two nines in reliability is
possible due to proof test as indicated in Figure 2. The reason for this divergent behavior is due to the fact
that the fiber breakage model takes into account fiber damage that takes place during the proof test. It is
for this reason recommended that the level of proof test be carefully determined such that excessive
damage to fibers is avoided.

Parameter Sensitivities and Uncertainties

The sensitivity of reliability to changes in various parameters is shown in Figure 3. Here each
parameter is varied with respect to its nominal value. The nominal values chosen for the parameters are
for the T1000G carbon fiber and are given by Eq. (10).

ζ = 5; t, = 0.01 hr; k = 5; tp = 0.0833 hr; &, = kζ ;ˆ

2	 Stress Ratio = 0.5
Proof Stress Ratio = 0.667

1.E-01	 1.E+02	 1.E+05	 1.E+08	 1.E+11	 1.E+14	 1.E+17	 1.E+20

Time in Hours
Figure 2.—Comparison of classic and fiber breakage model reliability predictions

for a T1000G COPV operating at a stress ratio of 50 percent.
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Stress ratio considered is 50 percent and proof stress ratio is 75 percent. Each parameter is made
dimensionless by dividing with nominal values and the dimensionless parameters are varied from 0.7 to
1.3, one at a time. The reliability of the vessels conditional on proof test survival is computed for 10,000
hr and is shown plotted versus all the parameters.

It is clear from the figure that the Reliability shows a high degree of sensitivity to changes in the
parameters ^ followed by k’ and 0. The parameters tc and tp have very little or no effect on the reliability.
Determination of the three most important parameters to a high degree of accuracy is therefore essential
to assess the reliability of the vessel accurately.

In general when dealing with reliability one must assess and account for two types of uncertainties:
epistemic uncertainty and aleatory uncertainty. Epistemic uncertainty arises due to lack of knowledge, or
insufficient data. Such uncertainties can be reduced over time with more experiments and experience. On
the other hand aleatory uncertainty is the so called physical variability that is present in almost all the
systems and is unlikely to be reducible. Various publications address these two types of uncertainty and
the importance of separating and resolving them (Refs. 9 and 10).

These uncertainties are especially critical for the COPVs because of the risks and costs involved.
Parameter or epistemic uncertainty can be reduced by collecting more data and by developing better
analytical models. Here we attempt to show how the model form uncertainties affect the reliability
estimates via Monte Carlo simulations of the conditional probability of survival. As an example a typical
vessel made of T1000G is chosen which has been successfully on flight for the past 7 yr. The parameters
that are considered uncertain with the respective distribution statistics are given Table I. These values are
taken from the References 3 and 11. An observation of interest is the fact that the variability in parameters
is rather high. This is due to very limited stress rupture data that is available for this class of materials
(Ref. 11). The variability in parameters is established based on this limited data and one can expect to
reduce this when more data is available thus improving the reliability considerably.

The proof stress ratio is taken to be 0.75 and proof test time tp = 5 min. The stress ratio for the vessel
is taken as 0.478. These values are typical of the highest loaded COPV on the ISS. Reliability conditional
upon surviving successfully the past history of 7 yr is computed using both classic model and the fiber
breakage model and are reported in Table II. The calculations are repeated for missions up to the year
2016, 2020 and 2030 starting from year 2009 which represents a past history of 7 yr. In these calculations
it has been assumed that the vessel is at the maximum expected operating pressure (MEOP).

ensitivities to Conditional Reliability
75%; stress ratio 50%; time 10,000hrs.

Z^ 0.9998

A
0.9996
	 k'

^a
c
r 0.9994

c
	 tp ,tc

0
V 0.9992

0.999
0.7	 0.8	 0.9	 1	 1.1	 1.2	 1.3

Parameters (ζ, k',tc,tp,θ)

Figure 3.—Reliability of a T1000G Carbon fiber COPVs for 10,000 hr as
a function of various model parameters.
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However, typical COPVs experience a ramp reduction in pressure with time as the gas is used. The
assumption that the COPVs maintain MEOP is conservative for operation beyond the conditional point
and unconservative for the past history. However, in this example case, the assumption of MEOP
operation before the conditional point did not contribute significantly to the reliability and was neglected.

TABLE I.—PARAMETERS USED FOR CLASSIC AND FIBER BREAKAGE
MODELS IN THE UNCERTAINTY SIMULATION STUDIES

Classic Model Parameters
Parameter Mean COV Distribution

p 114 0.25 Lognormal
P 0.22 0.3 Lognormal

tref 0.001 1.0 Lognormal
Fiber Breakage Model Parameters

Parameter Mean COV Distribution

S 5 0.25 Lognormal
0 0.11 0.25 Lognormal
k' 5 0.3 Lognormal
to 0.01 1.0 Lognormal

TABLE II.—RELIABILITY PREDICTIONS FOR A TYPICAL CARBON COPV ON SERVICE
CONDITIONAL ON SURVIVAL OF 7 YR OF PAST HISTORY AT MEOP TO OUT YEARS

2500 psi operating 2016 2020 2030
(Stress ratio = 0.478) (70,080 hr) (105,120 hr) (192,720 hr)

Point 0.999943 0.999925 0.99988
Mean 0.999521 0.999279 0.99894
95% 0.99768 0.99738 0.99615

Three different estimates point, mean and the 95 percent confidence are computed by running
thousands of Monte Carlo simulations Reliabilities are conditional on successful past history of 7 yr. As
seen in the table, the classic model does predict a slightly higher reliability (three effects. The classic
model predictions are based on neglecting the proof test effects because if proof test were included, the
reliability would be very high as suggested in Figure 2. The 95 percent confidence estimates, however,
fall slightly short off the three nine mark in this example. As can be expected the reliabilities can be
increased by reducing the pressure if the three nine reliability to the end of the mission is absolutely
critical to the program.

The second example in this section pertains to hypothetical reliability assessment of next generation
launch vehicle. Here the various models and predictions are assessed and compared for a system of
COPVs made of T1000G fiber. Because the vessels have not been manufactured, the exact stress ratio is
not known. For purposes of this initial analysis, a proof factor of 1.25 and a design burst factor (DBF) of
2.0 are assumed. The stress ratio is given approximately by. In Figure 4, the DBF is varied from 1.5 to 3.0
and proof factor is scaled appropriately from the 2.0 DBF case. Reliability is computed for both classic
and fiber breakage models. Tables III and IV show the details of the classic and fiber breakage model
parameter values chosen in the reliability computations.

TABLE III.—CLASSIC MODEL CASE 1 AND 2 PARAMETER VALUES
Classic Model 1

Parameter Nominal value
ρ.......................................... ........................................................... 	 114
β..................................................................... ............................... 	 0.22
tref........................................ ......................................................... 	 0.001

Classic Model 2
Parameter Nominal value
p......................................................................... ............................... 72
P...................................................................... ...............................	 0.35
tref.................................................................. ............................... 0.001
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Fiber Breakage Model Parameters
(High variability)

S 5 0.25 Lognormal
0 0.11 0.25 Lognormal
k' 5 0.25 Lognormal
tc 0.01 0.3 Lognormal

Fiber Breakage Model Parameters
(Low variability)

S 5 0.05 Lognormal
0 0.11 0.05 Lognormal
k' 5 0.05 Lognormal
tc 0.01 0.05 Lognormal

The simulation results based on the above four models are shown in Figure 4. The two classic models
are chosen to represent the case of no prior proof test and the case where proof stress induced damage is
accounted. Thus the classic model case 2 parameters are chosen to simulate reduced performance due to
possible proof test fiber damage. Two fiber breakage models one with a high degree of variability and one
with low variability are considered to represent the current state of knowledge and a future state of
knowledge with better understanding of carbon stress rupture behavior and the availability of a
comprehensive stress rupture database. Thus, the high variability of fiber breakage model represents the
current status of the limited data and knowledge of carbon stress rupture behavior. The low variability
case represents what we can expect for reliability in future when our knowledge base of stress rupture
behavior for T1000G fiber is enhanced through substantial stress rupture testing and establishing a
comprehensive data base. As can be seen from the figure, for a COPV system of 13 vessels, and a DBF of
2, the reliability can vary from a little over one nine to five nines depending upon the model chosen. The
uncertainty in reliability high lights the overwhelming need for a formal development of an experimental
stress rupture testing program

Total number of vessels 13 	 n
Classic Model Case 1	 n
Rho = 114, Beta = .22	 / /
Classic Model Case 2
Rho = 72, Beta = 0.35	 `— =—f	 ------n

FB Models are based on Case 1 _f}___________
PLN/May 11,2008	 a

---------------------- ------------

-----------------2' ^ -----------=•

n 	 /

'	 •

__
--+T---7t---'^_- - - - - ---------

_±--- -":^ - - - - - - - - - - - - - - - - - -

--^^'^ ---- ------------------

------------------ -
Classic Model Case 2
Classic Model Case 1

- o- FB Model No Proof
— • FB Model With Proof
--- FB Mean High Variablity
•%9 FB 95% High Variability
---- FB Mean Low Variability
• • FB 95% Low Variability

3

2.9

2.8

2.7

2.6

N 2.50 
2.4

o 2.3
V
LL 2.2

2.1
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m 2

1.9

1.8

1.7

1.6
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Reliability in # of Nines

Figure 4.—Various model predictions of reliability of a system of vessels on board a launch
vehicles for a total mission time of 1 yr.
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Summary

Stress rupture life and reliability of COPVs for space applications are assessed by using two different
models with some illustrative examples. The classic model while simple to use has the short comings of
not able to represent directly the proof test induced fiber damage. The conditional reliability based upon
survival of proof test shows unrealistically high value when classic model is used. The reliability appears
to increase as the proof stress ratio increases and its effect lasts for thousands of years. This is clearly an
artifact of the model which is purely phenomenological model and lacks physics. Proof tests performed at
higher loads induce fiber damage due to scatter in fiber strength and that is not captured in this
phenomenological model. In order to address this micromechanics based fiber breakage model is
proposed. The model accounts for possible fiber damage due to proof test. However, this model gives
overly conservative reliability estimates. Some of this conservatism is due to lack of sufficient data for the
T1000G carbon fiber that is considered in the simulations. This introduces huge uncertainty in the
parameter estimates which translate into substantial reductions in reliability estimates.

The wide range of reliability estimates depending upon which model is used warrants immediate
attention to the development of a formal experimental test plan to reduce this uncertainty and narrow
down the differences between the models or formulate better analytical models based on the
comprehensive test data. Furthermore, the fiber breakage model is based on progressive damage theory
which has not been rigorously tested and validated. Currently the NESC is planning to address some of
these issues by a detailed stress rupture testing that include proofed strands and vessels as well as un-
proofed test articles. It is anticipated that the tests will provide more clarity to various models and help
reduce the uncertainties as well as improve some of the models. The results will be reported in subsequent
papers.
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Appendix A
Stochastic Fiber Breakage Model Development

Micromechanics and Statistics of Fiber Failure Process

To gain a deeper understanding of the issue we first discuss the failure process in the composite in
terms of fiber stress redistribution around fiber breaks (i.e., load sharing) and local break cluster
formation among a large number of fiber elements of length, δe, which is the characteristic elastic load
transfer length from a broken fiber to an intact neighbor. This length will be compared later to a length
δ( t) that grows with time beyond a characteristic time scale tc for matrix creep in shear around initial and
evolving fiber breaks in a cluster. Note that tc is of the same order of magnitude as the “proof hold time”,
tn, in a proof test. Also δe depends on many mechanical and geometric quantities, the most important
being the fiber diameter, df, the fiber Young’s modulus, Ef, the matrix shear modulus, Gm, and the
effective width of matrix between the fibers, wm, which depends on the fiber volume fraction, Vf. For fully
elastic behavior δ e ≈ 2df Efwm l ( Gmd f ) and since 140 ≤ E f Gm ≤ 200, wm l d f ≈ 0.3 , and
d f ≈ 5 µm we obtain δ e ≈ 20d f ≈ 0.1 mm .

There are a large number of such fiber elements in the overwrap of a typical carbon/epoxy pressure
vessel. A single yarn or tow typically has 12,000 fibers, and one wrap covers about 2.5 mm of width
around the vessel circumference and is 0.25 mm thick. For a COPV of diameter 75 cm, the overwrap
thickness may be 4 mm corresponding to 8 overwrap layers. Thus for a typical carbon/epoxy pressure
vessel there are of the order of 10 12 fiber elements of length δe in the overwrap. Later in the analysis, the
volume, V, of the overwrap will be the number of such fiber elements of length δe that it contains.

The probability that a fiber element of length δe breaks under stress σ is well approximated by a
Weibull distribution of the form

Fδ e
(σ)= 1 − exp t −δ e /l0)(σ/σ l0)

ζ } ,

l	 (A.1)

= 1 − exp { −(σ/σ δ
e 111)

ζ 1 , 	 6> 0111
where l0 is a typical tension test gage length for fiber testing (e.g., 1 cm) with associated Weibull scale
parameter σ l0

 , and shape parameter ζ estimated from such testing. Also σ δe 
is the Weibull scale

parameter for the strength of a fiber element of length, δe . Implicit in the above formula is the scaling of
fiber strength with length following

σδ e
 =σ l0(δ e /l0)

−1/ζ 	(A.2)

which reflects the fact that that carbon fibers typically follow Weibull weakest-link statistics. Typically
ζ ≈ 5 for carbon fibers so the length effect is fairly strong. A ten-fold decrease in length increases the
strength by about 58 percent. A useful approximation for Fδ e 

(σ), especially in the lower tail, is

r	 r	 ρ
F

%
( σ ) ^ \G/G% ) , 0 <σ<σδ e

	(A.3)

The characteristic strength, σ δ e 
, is typically about 3 times the effective stress level, σV , or 6δ e

 Pz 3σ V .
Next we consider the fiber stress level σ << σ δe 

and proceed towards calculating the probability of
formation of a cluster of size k emanating from a given fiber element of length δe in the composite. Note
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that the number of such “initial” breaks is a random variable that is binomially distributed with
parameters V and Fδ e (σ) . The mean number of such breaks is n( σ ) ≈ VFδ e (σ), and thus, does not
depend on the calculated value of δe since σ << σδ so that breaks are far apart. In fact only a small
proportion of the fiber elements fail under the applied stress, σ. For instance, for σσV = 0.50 , or a fiber
stress ratio of 50 percent, we have 6δ e 

Pz 3σ V ≈ 6σ and for ζ ≈ 5 the probability of failure of a given fiber
element is approximately ( σ/σ δ )ρ

≈ (1/6)
5
 z 1.3 x 10

-4 .  Thus, about one in every 8,000 fiber elements
e

fails under stress σ and along a fiber the breaks are about 78 cm apart. While this may seem to be a large
spacing, the number of such broken fiber elements in the overwrap is roughly n( σ ) ≈ VFδ e (σ)
≈ (1.3 × 10−4 )(1012 ) = 1.3 x 108 , still a very large number.

All of this assumes a homogeneous or uniform stress field. If there are areas of stress concentration,
say near a boss where failure is more likely to occur, then a relatively smaller volume of material might
be at a higher stress concentration, and thus, the breaks may be more concentrated. There still will be a
large number of fiber elements in this region of higher stress and the breaks will be more frequent, i.e.,
more closely spaced. By themselves these initial breaks obviously do not cause composite failure and
some micromechanical interaction is necessary to generate break clusters that eventually become
unstable. This is pursued next.

Derivation of Composite Strength Distribution

The failure process can be characterized in simplified terms as follows: First is the growth of clusters
of fiber breaks. In order to fail the composite one of these clusters must grow to a critical size. Locally the
formation of a cluster begins with failure of a single fiber element of length δe under stress σ followed by
failure of a neighboring element under the stress concentration K1σ , and another neighbor under higher
stress concentration K2σ (since there are now two adjacent breaks) and so on until the size reaches k.

(The stress concentration factors grow unbounded and satisfy 1 < K1 < K2 < ....) The probability of
formation of such a cluster is approximately

Wk (σ) ≈ ckFδ e ( σ )Fδ e (K1σ) Fδe (K2σ)⋅⋅⋅ Fδ e (Kk− 1σ)

ck (K1K2 ⋅⋅⋅ Kk− 1 ) \ 6/Crδ e /
ζ r	 l ζk
	 (A.4)

where ck is a combinatorial factor capturing all the possible configurations (in terms of sequence of fiber
breaks) that a cluster can have. For instance, in a planar array of fibers with load shedding primarily to
nearest surviving fibers (one on each side) it can be shown that

Kj ≈ 1 + πj 4, j = 0,1,2, ⋅ ⋅ ⋅ 	 (A.5)

and

ck ≈ 2k−1 	
(A.6)

The factor ck = 2k-1 captures the fact that, except for the failure of the given fiber element to start the
cluster, there are typically two overloaded neighbors next to the growing cluster at any growth step. At
applied fiber stress level, σ, the critical value of k that triggers a catastrophic cascade is called kσ and
satisfies

Kkσ −1σ < σδ e < Kk σ 	 (A.7)
σ
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since beyond this value of kσ all neighboring fiber elements to the cluster will be overloaded well beyond
their characteristic strengths σδ e . Once this occurs, their individual probabilities of failure now exceed
0.632 and with further cluster growth rapidly approach unity so that the cascade cannot be stopped.

In a hexagonal or ‘random’ array of fibers the ideas are similar but ck will grow much more rapidly
than in above planar case and will involve products of increasing numbers of fibers around the periphery
of a growing approximately circular cluster. However the values of K1 , K2 , ⋅ ⋅ ⋅, Kk , ⋅ ⋅ ⋅ will grow more
slowly. For instance, it can be shown that

Kj ≈ 1 + D π, D ≈ 4 j π, j = 0,1,2, ⋅⋅⋅ 	(A.8)

and

k− 1

ck ≈ π k− 1∏( 4j1π + 1) 	 (A.9)
j= 1 

l

where D is approximately the cluster diameter, and j = πD2 4 is approximately the number of fiber
breaks in the cluster.

It can be shown that the distribution function for the strength of the composite at a fiber stress level σ
is approximately

HV ( σ) ≈ 1 − exp [−VWk ( σ )] 	 (A.10)

which can be written as the Weibull distribution

HV (σ) ≈ 1 − exp [−(σ1& V)6, ] 	 (A.11)

where

6V = σ δ (Vck ) 
1 (kζ

) (K1K2
 ⋅⋅⋅ K

k−1)

−

1/k	
(A.12)

and

α̂ = k̂ζ 	 (A.13)

and where

K
k− 1

6V < σδ e < Kk6V 	 (A.14)

which is equivalent to k = kaV .

In the above description we ignore the fact that kσ increases slowly as σ decreases (whereby the
probability of composite failure typically decreases by more than an order of magnitude with each integer
valued increase in kσ). Instead we have chosen the particular value, k̂ , called the critical cluster size for
catastrophic fracture, when the stress level is equal to the Weibull scale parameter for composite strength.
In this case k̂ satisfies

K
k̂

&V ≈ σδ e 	 (A.15)
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This equation implies that the predicted strength distribution for the composite is not actually a straight
line but is slightly curved on a Weibull plot and becomes steeper at lower stresses implying slightly lower
probabilities of failure than a straight Weibull line would predict. Typically the change in slope is so
small that it cannot be detected in pressure vessel testing and carbon/epoxy strand testing with typical
number of test samples. However it has been very clearly detected in the experimental testing of seven
fiber micro-composites on a repeatable basis (Refs. A.1 and A.2) and is seen also in Monte Carlo
simulations (Ref. A.3). Furthermore there is some evidence that as structures become larger their
variability in strength decreases, which is consistent with the increasing steepness feature above.

Composite Lifetime Distribution in Stress Rupture in Absence of Initial Proof Test

Stress rupture in carbon fiber composites arises mainly because the matrix creeps in shear around
fiber breaks. A useful model is that this creep follows a power law creep compliance of the form

J,n (t) = J,n , e [ 1 + (t/tc )θ 1 , 	 t ≥ 0
	

(A.16)

where J,n ,e is the instantaneous elastic creep compliance (J,n ,e = 1/G,n , e), where G,n ,e is the instantaneous
elastic shear modulus), tc is the characteristic time for creep to occur (at which time the compliance J,n (t)
has effectively doubled), and θ is the creep exponent. The creep exponent is a crucial parameter and
depends on such factors as the matrix and interface chemistry in terms of adhesion to the fiber, fiber
volume fraction, and temperature—to name the most important influences. Typically 0.1 < θ < 0.5 for
epoxies, and note that as a reference point the value θ = 1 corresponds to a Newtonian viscous material.
We note that nonlinear forms of the creep function described in terms of visco-plasticity introduce a
dependence on shear stress level between the fibers raised to some power larger than unity (i.e., 3 or 4).
However this modifies the analysis in only modest ways and does not influence the conclusions.

It can be shown that, under the power-law creep compliance, the characteristic load transfer length
around a fiber break is time dependent following

δ( t)=δ e 1 +( t/tc)t>> 0

≈δ e ( t
/
tc )

θ

/

2

	 t >> tc,
(A.17)

where δ
e 

is again the instantaneous elastic load transfer length. Thus as t increases, this overload length
grows so that increasing numbers of flaws in fibers adjacent to a break cluster of size k are exposed to
stress Kkσ and can fail despite surviving the original stress level σ.

Susceptibility to such delayed failure is greatly enhanced for carbon fibers with high variability in
strength, i.e., low values for the Weibull shape parameter, ζ, for strength. Individual carbon fibers are
virtually immune to stress rupture compared to that seen in carbon/epoxy composites. Essentially single
fibers under constant stress fail on loading or do not fail at all. Of course, in the composite matrix creep
makes it possible for the stresses on fibers next to broken fibers to increase and so the main cause of their
failure is increasing stress around growing clusters.

In stress rupture at a fixed stress level, σ < σ̂ V , and assuming no previous stress excursion above this
level (such as a proof test), the lifetime distribution function can be derived as a modification of the case
above. The distribution function for composite lifetime follows

HV ( t ; σ ) ≈ 1 − exp[−VWk( t ; σ )] , t >> tc 	 (A.18)
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where Wk (t; σ ) is a characteristic distribution function given in simplified form by

k− 1

Wk ( t; σ) ≈ q ( K
1
K

2 ⋅⋅⋅ Kk− 1
)
ζ (σ/σ δe) (FI

+tlt y
 )

(A.19)
≈ ck ( K

1
K

2 ⋅⋅⋅ Kk− 1
)ζ (σ/σ δe) ( tl tc )(k− 1 )θ/2 , 

t >> t
c

This form reflects the fact that at a given element location the creep-rupture process requires
failure of that element simply due to the applied stress, followed by the failure of some element out of
2 1 + ( tl tc )θ neighboring fiber elements along the adjacent fibers exposed to the overload K1 σ , where
the number exposed grows over time as the load transfer lengths grows. This process continues as more
and more elements fail in time and ultimately these time dependent failures in a cluster number k̂ − 1.
Fiber breaks occur sequentially so there is some time lag for growth of the new overload length at each
new fiber failure site, but this is not reflected in the above formula where time is just the original time, t.

Simulations show, however, that the effect is small compared to the long timescales involved (Ref. A.3).
A more refined analysis would lead to the need for the multiplicative factor of the form,

Θ ( k̂ ) = Γ(θ 2 + 1) Γ [(k̂ − 1) θ/2 + 1]
	

(A.20)

where Γ ( z) is the usual gamma function. However, typically 0.05 < θ < 0.25 , and unless k̂ is extremely
large, this factor is not significantly different from unity and can be neglected.

The resulting Weibull approximation is

HV ( t ; σ ) ≈ 1 − expP tliV ( σ ))
β

J , 	 t >> tc 	 (A.21)

where

β̂ =( k̂ − 1 )θ 2 	 (A.22)

and

t̂V = tc ( σ/6V )−0 	 (A.23)

are the respective Weibull shape and scale parameters for lifetime. Also

ρ̂ = [k/(k − 1)] ρ 	 (A.24)

and

ρ = 2ζθ 	 (A.25)

are the power-law exponents for lifetime versus stress level, being the effective value and large cluster
limit, respectively.

In summary, in a stress rupture setting the applied stress, σ, is much smaller than the scale parameter
for tensile strength, σ̂V , so that the probability of failure on initial loading, HV ( σ ) , is easily satisfies the
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reliability requirement. However, probabilities of failure at much larger times t >> tc become the key
concern. Essentially, the first failure at some location (necessary to start the matrix creep process) is due
to a flaw in the fiber element of elastic length δ = δ Q , and the remaining failures occur due to the time
dependent matrix creep process since the overload lengths quickly grow beyond δQ for t >> tc . Since we
assume no initial overload (such as a proof test), the initial clusters of breaks due to the initial loading are
automatically consumed by those that occur in time since any fiber that fails initially is automatically
included in time dependent failures. Another important fact inherited from linear viscoelasticity is that k̂

for stress rupture is almost the same as k̂ for strength at times near zero, so we do not distinguish
between the two.

Effect of Proof Testing

As mentioned, proof tests are often applied to pressure vessels to some fiber stress level, σp, in order
to filter out weak vessels. For all metal pressure vessels this process can be argued to be all beneficial
with no drawbacks, i.e., no new damage is introduced; however the situation is far less clear in composite
over-wrapped pressure vessels. The difference is that, because of the proof test, many fiber elements will
now fail under the higher stress σp, that would not have failed under the lower stress-rupture stress level,
σ. These additional failures now provide many additional locations for subsequent cluster growth in
stress-rupture.

For instance, the number n (σp) of fiber breaks at the proof stress level σp divided by the number n (σ )
at the stress-rupture level σ is given by

n ( σ p )l
n ( σ ) = ( σp /6V )

ζ
/( σ/6V f = (σp /σ)

ζ
	 (A.26)

For the typical value ζ = 5 and σp σ = 1.5 we obtain n ( 1.5σ )/n ( σ ) = ( 1.5 ) 5
 = 7.6. Thus, there are

7.6 times as many single fiber breaks or ‘singlets’ due to the proof test as without the proof test and these
additional singlets now become many more seeds for stress-rupture compared to those that would occur
without the proof test. The situation is made worse, however, since some singlets among the expanded
group (from the proof test) will generate many failing neighbors due to the overload K1σp that would not
occur due to the milder overload K1 σ , thus forming additional ‘doublets’ of failed fibers. Furthermore
some of the neighbors to these new doublets will fail under K2σp but not under K2σ , thus forming
additional ‘triplets’, and so on. In essence, as a result of the proof test, there will be a distribution of fiber
break multiplets of various sizes, and the numbers of such multiplets of each size will be much larger than
would have occurred without the proof test.

A proof test to stress level, σp, will eliminate any vessel that develops a cluster that reaches critical
size, which for simplicity we take to be k̂ , i.e., a weak vessel. Unfortunately it suddenly creates many
clusters that would not occur otherwise. This is very different from the model for metals or ceramics,
where the proof test may eliminate any vessels with flaws or cracks larger than critical, but anything
smaller will actually be beneficially blunted and no new ones will be created. In ceramics the model is
similar, though each smaller crack may grow slightly. It must be noted, however, that the fiber itself
benefits from the proof test in that the vast majority of the fiber elements that survive the proof stress
level, σp, cannot fail until the stress level in the future exceeds σp due to some overload Kjσ next to a
sufficiently large cluster.

Next we consider an initial proof test to fiber stress level, σp , over time 0 < t < tp (typically involving
a ‘proof hold time’ of a few minutes) and let Wk̂ ( t; σ , σ p ) be the characteristic distribution function for
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lifetime extending the concepts developed earlier, except we now have two stress levels, σ and σp . We
then have

HV ( t;σ)≈1− exp{ −VW,( t ; σp , σp )}, 	 0 <t<tp 	 (A.27)

the time period up to tp, where

ˆr 	 ⎞
k− 1

W
k ,p ( t,6 , 6p ) ^Ck(K1K2

...K
k− 1 )

ζ
( 6p/6δ e

)k

ζ 	
1+( t/tc )

θ

I , 
0 < t < tp 	 (A.28)

This is identical to the form earlier except that now σ = σp .
We now consider the effect of the stress decreasing from σp to σ for t > tp . Although further growth

of the overload length on fibers next to a break cluster continues at approximately the same rate, the
overstress itself is now reduced by the factor σσp . Thus the rate at which new breakable flaws are
encountered is reduced nominally through the Weibull factor ( σ/σ p )ζ . The overall effect is nominally
equivalent to the stress remaining at level σp , but the rate of increase of the overload length being slowed
in time by the factor ( σ/σp )ζ . This characterization, however, is not entirely correct since all fiber
elements have been proof tested to σp and any further fiber element failure requires a growing overload
length around some cluster of size j, such that Kjσ > σp . The critical size for such a cluster is denoted
kp = kp (σσp ) and satisfies

Kkp − 1σ < σp < Kkp  σ or Kkp −1 < σ p /σ < Kkp
	 (A.29.a)

Thus any cluster of size kp after the proof test will continue to grow, and smaller ones will not. We see

that σp σ > 1 requires kp ≥ 1 and using Kk ≈ 1 + πk 4, k = 1, 2,3... we can see that

⎢ 	 ⎡ 2 	 ⎤
kp = ⎢ 4 (σjp 	 − 1 ⎥ + 1 ⎥ (A.29.b)

π σ 	
⎦ ⎦ )

where [z] refers to the integer part of z. In computations, it suffices simply to use

⎤
kp ≈ 

4 (σp 2 

− 1 ⎥ + 1	 (A.29.c)
π 	 σ ⎠ 	 ⎥⎦

Thus for tp < t we obtain

((	
kp − 1

W
kp ( t ; σ , σ p c

k
( K1K2 ⋅⋅⋅ Kk

− 1 )
ζ

1σp ^
σ δ e

)k^ ( 1 +
 

( tp

I
tc )e)

(A.30)
k− kp

× 1 +( t
⎡

)⎦⎤
p/tc )θ 

+ ( σ/σ p
ζ

1 +( t/tc  − 1 + ( tpltc )θ

Using again (A.23) for σ̂V , we reduce (A.41) to
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VWk ,p ( t ' σ , σp ) ≈
 

σp σ V f 1+ ( tP/t ^ )e 
1

k−1

C	 /

/ 	 ⎛ 	 / 	 ⎞ 
k−kp

	

× 1 + I σ/σ p ^ +( t/t^ )e / 1 + I tp It^ )e − 1
J	

, t > tp

and finally

(	 1
k̂− 1

HV I
t ' σ , σp ) ≈ 1 − exp I ( σp /6V )a ( 1 + ( tp /t^ ) )

I ⎩

⎛ 	 ! 	 ⎤
k−kp ⎫

	

× ⎢ 1 + ( σ/σ p )ζ
⎜ ( 1 +( tlt^ )

θ
)/I 1 + ( tp It^ )e) − 1

)J	

⎪⎬ , t > tp

ij
⎝ 	 `

(A.31)

(A.32)

Conditional Reliability After a Proof Test

Next we must evaluate the conditional reliability given that any weak vessels removed by the proof
test. The conditional reliability given survival, is

R ( t |σ, σ p) = exp { − V ⎣
W

k, p ( 
t' σ, σ p) − Wk, p ( 

tp ' σ p , σ p 0 	 (A.33)

where the characteristic distribution function in time, t, beyond the proof time is

VW
k ,p ( t ' σ , σ p ) ≈ ( σp 1σV )α
	 + ( tp /t^ )θ

 

k−1

(^1
	

⎠
(A.34.a)

/ 	 ⎛ 	 / ⎞ k−kp

×
⎧

1 + 1 σ/σ p )^ +( t/t^ )e / 1 + 1 tp It^ )θ
− 1

J	

tp < t

whereas

k−1r	 r	 / 	 ⎞
VWk

,p \ t ' σ , σp ) ≈ \σp 1σ V )a 
⎝ 

1 + I tp /t^ )e 
J

	 0 < t ≤ tp	 (A.34.b)

Thus the conditional reliability, (A.44), becomes

r	 ⎞
k− 1

R ( t | σ , σp ) ≈ exp ⎨ − \σp /&V )a ^ 1 + ( tp /tc
yJ⎪⎩

lj

⎬
⎛ /

× ⎢ 1+(σ/σpf+(t/t^))/I1+(tplt^)
θ
	

⎤
k−kp

- 1 1 	 − 1, 0 < tp < t	

(A.35)

⎝ 	 `	 ⎠⎦

Two particular cases are of interest: If the proof time tp is such that ( tp l t^ )θ << 1, then we approximately
have
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⎧ α̂

R ( t | σ , σ 	 exp i − ⎜
6

p

	C
1 +(σYσp )

ζ
⎜ 1 +( tltc )− 1

^k−kp

 − 1 ⎟⎬ , 0 < tp < t 	 (A.36)

	

V
	 ⎝⎠⎪⎭

On the other hand if (tp tc )
θ
 ≈ 1, then approximately

⎧⎤ 	
⎫⎛

	

( k̂A/2	 σ 	 1	 t 
θ

R ( t | σ , σ p )≈ exp ⎨ −(IL

ay ⎠
2 ⎜ 1+ 

σP	
1 + ⎜

t 	

k−kp

t	
− 1 	 − 1 ⎟⎬ , tc < t 	 (A.37)

⎩ 	 J	 ⎪⎭

We can see that the behavior of the reliability in (A.48) depends on the magnitude of the time t relative to
a transition time'p ,b that solves

ζ 	 θ

	

σ 	
1 1 + tp'b − 1 = 1	 (A.38)

	

σ p 	 V 2	 tc

or

(	 l 1dθ

tp , b = tc 1 2 ( σp/σ )
z^ 

+ 2V 2 (σp/σ)
^

 }
	 (A.39)

Then for moderate times such that tc << t << im we can expand the (A.48) to obtain

⎧
⎪ 	 ⎛σ ⎞ ⎡ ⎛α

θ/2
⎤⎫

	

R ( t | σ , σp )≈ exp ⎨ −2k12− 1
( k − kp) 

n
	

σ t 	^ ⎬ , tc << t << tp ,b 	 (A.40)

⎩ 	
aV 	 σp 	 tc

 ⎦ ⎭

where again ρ = 2ζθ . On the other hand for extremely long times beyond the threshold time ip ,b , we
obtain from (A.48) a different expansion of the form

	

⎧
a 	 ⎤

β p ⎫

R(t | σ , σp ) = exp ⎨ −2k^2−1 	 5 	 t	
tp ,b << t	 (A.41)

⎪⎩ 	
(

σ

i_pV_
σ 	 6p 	 tc ⎠⎦ j

where

β̂ p =( k̂ − kp )θ 2 	 (A.42)

Proof Test and Survival to Some Long Time

Finally we consider the conditional reliability for the case where the there was originally a proof test
but the pressure vessel has also survived for a long time ts >> tc . Then the reliability can be shown to be
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⎧ 	 a	
θ ⎤

k−1 	
θ 	 θ 	 ⎤ k

− kp

RV( t |σ,σp , tp , ts )≈ exp
⎪
⎨ − p

 1 	 1 +^
t
_ 1 ⎜ 1 + 

σ
+(

t
t
	

1 + p
1

σ V t

ck—kp 	

σp 	 c ⎠ 	 tc ⎠ 	 J

⎩ 	
l	

(A.43)

⎤
	 I

ζ 	 θ 	
t ⎞

θ

− 1+ ⎜ 1 +^z
sc ⎠ 	

1
+(t J 

−1 ⎟⎬ , ts < t
σp	 c

⎝ 	 ⎥ 	 ⎟⎦ ⎪⎠⎭

For ( tp tc )θ ≈ 1 we can simplify the above to

⎧ 	 ⎛ 
⎡⎤

k− kp

RV ( t | σ , σp , tp , ts ) ≈ exp ⎨ −
⎛ σ p 

α

2( k̂−1)12 
1 + 

σ 
2−1/2 F − 1

σp

⎪⎦⎩

θ
	 fk−kp

	

⎫

− 1 + 
σ

2−1/2	 1 + ts − 1 ts < t
σp	

tc

⎟⎪⎠⎭

Also for intermediate times satisfying tc << t <<'p , b this expands to

(A.44)

σ 	
α

R ( t | σ , σ p ) ≈ exp ^ −2k/2−1 ( k − kP
)
	

ˆ
p

I ⎩ 	 l\
	 σ V

σ—
σ

t	
⎤ 

θ/2

s ⎥⎜
t

⎛⎛ t ⎞
θ/2

t ⎟
ts

− 1
J

⎬ , 	 tc << t << Zpb 	 (A.45)
pc

However, for extremely long times im << t we have

⎧ &ρ ⎤
β p 	 ⎫

σ
R t | σ , σp) = exp ⎨

	 p	 σ 	 ts 	 t
	 tp,b << t 	 (A.46)

 ip
⎪⎩
	

σ V 	 σp	
t
c ⎦ 	

ts	
⎭

where

β̂p =( k̂ − kp )θ 2 	 (A.47)

Comparison of Stochastic Fiber Breakage Model and
Classic Model in Case of a Proof Test

We can compare the results of the classic model and the stochastic fiber breakage model to see what
the key differences are. For the classic model we assume tp ≈ tref << tc and naturally let σ ref = σ̂V and
a = ȕρ. Then
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αρ ⎫

	

R ( t | σ , σp exp
⎪⎧

IL

−β(.σp 	 σ ⎞ t

σV 	 σ P t
P 

⎬ , 0 < tp «t «tpb 	 (A.48)
⎪ l

where

ρ

	

t ptp b	
σ

p

	
(A.49)

⎠

Note that the expression (A.59) for the conditional reliability contains the fundamental factor

ρ

	

⎛
Φ p 	=

β
⎜

σ ⎞ t 	
(A.50)

σ ⎟
p 

tp⎝ ⎠

In the classical model Φ p is linear in time, t, so early on when, 0 < tp << t << tp ,b , we find that Φ p is
very small and captures the reliability improvement due to the proof test.

In the stochastic fiber breakage model just developed and with a short proof test hold, 0 < tp << tc
the situation is different in that we have

⎧
σp

R ( t | σ ,σ≈ exp ⎨ −( k − kp ) ⎜ —

⎪ 	 ⎝ σ̂ V

⎩

.]θ/2 ⎫α 	
σ 	 t
	 ⎪⎬, tc << t << tpb

σp 	 tc
⎠⎦ J

(A.51)

Thus the factor Φ p now becomes a very different factor, Φ̂ p , given by

σ J t
⎤

θ
/

2

6p =( k − kp ) ⎢ —
σp t

p ⎦

(A.52)

Unfortunately θ is a very small number (e.g., 0.08 < θ < 0.16 ) for carbon fiber/epoxy composites. Thus
the benefit of the proof test is very short-lived as Φ̂ p rapidly approaches unity. Then the reliability
rapidly becomes that of surviving the proof test itself.

We also notice that the difference between the stochastic fiber breakage model and the classic model
tends to disappear for larger values of θ. In fact, for θ = 2 and noting β ≈ αρ ≈ k̂ζ( 2ζθ) ≈ k̂θ 2 = k̂
we see that (Dp . cbp so the two results become the same. Typically θ growing larger corresponds to ρ
becoming smaller, i.e. the composite is more susceptible to stress rupture overall. However the
differences are most marked for the case of large ρ.
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