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Abstract 

An Excavation System Model has been written to simulate the collection and transportation of 
regolith on the Moon. The calculations in this model include an estimation of the forces on the digging 
tool as a result of excavation into the regolith. Verification testing has been performed and the forces 
recorded from this testing were compared to the calculated theoretical data. A prototype lunar vehicle 
built at the NASA Johnson Space Center (JSC) was tested with a bulldozer type blade developed at the 
NASA Kennedy Space Center (KSC) attached to the front. This is the initial correlation of actual field test 
data to the blade forces calculated by the Excavation System Model and the test data followed similar 
trends with the predicted values. This testing occurred in soils developed at the NASA Glenn Research 
Center (GRC) which are a mixture of different types of sands and whose soil properties have been well 
characterized. Three separate analytical models are compared to the test data. 

Introduction 

An Excavation System model has been developed to simulate the excavation and transportation of 
regolith on the lunar surface. This system model includes equations that have been derived from terrestrial 
soil mechanics that are used to predict blade forces. The equations are coded in visual basic with an 
Microsoft Excel (Microsoft Corporation) spreadsheet used for the code input and output. Vehicle 
geometry, soil parameters, blade parameters and operating conditions are all specified in the input. The 
blade force is calculated using the equations developed by V.I. Balovnev (Ref. 1). The predicted blade 
force was then compared to test data obtained from field testing at the Johnson Space Center. Figure 1 
shows a diagram of a blade illustrating the variables that are used in the force equations. 
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Figure 1.—Blade diagram showing variables used in the equations (Ref. 4). 

Nomenclature 

b blunt edge angle 
 rake angle 
 soil density 
 internal friction angle 
 external friction angle 
c cohesion 
d vertical cut depth 
eb blunt edge thickness 
g gravitational constant 
h soil prism height 
l blade height from tip 
ls blade side plate length 
q surcharge mass 
r blade radius 
s side plate thickness 
v vehicle velocity 
w blade width 

Background 

In July 2005, a task was initiated by the NASA Exploration Technology Development Program, In-
Situ Resource Utilization Project to develop a computer code to simulate excavation and transportation of 
regolith on the Moon. The code, designated the Excavation System Model, is a subset of an overall In-
Situ Resource Utilization (ISRU) System Model. The Excavation System Model consists of a separate 
Force Model and a Mass Model (Refs. 2 and 3). The force model calculates vehicle and bucket forces and 
the mass model performs structural calculations to size the required individual components based on 
inputs from the force model. A top level flow chart of the system model is shown in Figure 2. This system 
model can either size a vehicle based on a number of input parameters or can use the parameters of an 
existing vehicle that have been defined in the code.  

The Excavation Model has evolved over the past four years by refining the coding methods and 
adding new capabilities. Testing of various excavation implements has begun and the data collected from 
the first tests has been compared to the results from the code. This testing will help validate the code so 
that vehicle operation on the Moon can be predicted with confidence. 
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Figure 2.—Top level flow chart of excavation system model. 
 

Testing 

Figures 3 and 4 show a terrestrial prototype of the Lunar Vehicle with a 4.1 m wide bulldozer blade 
attached to the front. The vehicle was developed at the Johnson Space Center to test concepts for a 
multipurpose lunar rover when astronauts return to the Moon. The blade was developed at the Kennedy 
Space Center as part of the ISRU project. Two series of tests were performed at the Johnson Space 
Center. The first occurred during the week of May 5, 2008, and was performed in soil designated as 
GRC-1 which is a special blend of sands developed at the Glenn Research Center to mimic the lunar 
regolith particle size distribution. The second series of tests occurred during the week of November 17, 
2008, in soil designated as GRC-3 which has a different mixture than the GRC-1 soil to yield different 
properties. The purpose of the testing was to drive the vehicle to push the soil simulating the grading of a 
lunar road or preparation of a landing pad. There are five load cells attached at the interface of the blade 
to the frame. Figure 5 shows the layout of the five load cells connected to the frame and Figures 6 and 7 
show the vertical location of the two rows of load cells for the May and November test series. The force 
exerted on these load cells was recorded during the test along with the vehicle velocity and the blade 
depth into the soil at approximately 0.40 sec intervals for the May test and 0.02 sec intervals for the 
November test. Results from two of the May tests and four of the November tests are presented here. 
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Figure 3.—Vehicle showing blade attachment in the lab 
at KSC. 

 

Figure 4.—Vehicle pushing GRC-1 soil at the JSC test 
site in May 2008. 

 
 
 

 

Figure 5.—End view behind blade showing five load cell locations (dimensions in centimeters). 
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Figure 6.—Side view of blade showing top and bottom load cells for May test (dimensions in centimeters). 
 
 

 
 

Figure 7.—Side view of blade showing top and bottom load cells for November test (dimensions in centimeters). 
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Data Post Processing 

The data from the field tests was tabulated in an Microsoft Excel spreadsheet and any data points 
where the vehicle stopped or went backwards or the blade lifted up were removed. This was necessary 
because the theoretical equations are not valid if the vehicle is traveling backwards or for a depth of cut 
above the soil which are negative values in the equations. 

The data consisted of forces from the two top and three bottom load cells along with velocity and cut 
depth. The forces from the three bottom load cells were combined to get one bottom force (FB) and the 
two top load cell forces were combined to get one top force (FA) as shown in Figure 6 for the May test 
and Figure 7 for the November test. The load cell data was then reduced to get a horizontal and a vertical 
force at the blade tip by summing moments at two locations both in the same vertical plane of the 
interface plate where the load cell forces are applied. The first location (point B) was halfway between the 
load cells and the second location (point C) was at the intersection of the interface plate plane and the soil 
surface. 

Moments were summed at point C to get blade force FY (Newtons) and at point B to get blade force 
FX. The moment equations used to calculate the forces from the free body diagram are shown below in 
Equations (1) through (4) (dimensions are in centimeters). The weight of the blade was not included in the 
calculations since it was zeroed out before load cell data was taken. The blade force calculated here acts 
at a single point on the blade which is a combination of the forces along the length of the blade. This 
single blade force will allow the experimental forces to be compared to the theoretical forces predicted by 
the Balovnev model. 

May Test Moment Equations 

 MC = 31.79 FA + 14.96 FB + 37.49 FY = 0 (1) 
 

 MB = 8.42 FA – 8.42 FB + 37.49 FY + 23.38 FX = 0 (2) 

November Test Moment Equations 

 MC = 37.15 FA + 20.32 FB + 43.0 FY = 0 (3) 
 

 MB = 8.42 FA – 8.42 FB + 43.0 FY + 28.73 FX = 0 (4) 

Results 

The Excavation System force model predicts blade forces using the Balovnev equations (Ref. 4). Two 
separate equations were used. One derived for a bucket and the other for a blade. The horizontal force 
equation for the Balovnev bucket method is shown in Equation (5) and for the Balovnev blade method in 
Equation (7). The vertical force is calculated from Equation (6) for both methods using the horizontal 
force vector and the blade angles. 

The experimentally measured horizontal blade force and the force predicted by the Balovnev bucket 
equations compare reasonably well given the assumptions and simplifications made in the data analysis. 
The Balovnev blade equations, as originally translated into the force model, did not compare as well as 
the Balovnev bucket equations. The calculated blade force diverged from the measured blade force as 
time increased. This is due to the soil pile increasing in front of the blade as the vehicle travels. The 
height of this pile is the soil prism height and is a variable in the blade equations that has a dominating 
effect on the calculated force which increased at a much greater rate than the actual measured forces for 
both test series. 

Since this anomaly in the theoretical calculation from the Balovnev blade equations occurred for both 
test series, the soil prism height was studied in more detail. Balovnev uses the total height of the soil 
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prism, which is shaped as a right triangle, in calculations. For curiosity, the soil prism height value input 
to the equations was reduced by three which would be the distance measured from the base of the soil pile 
to the centroid of the triangle. This would approximate the location of the vertically distributed blade 
horizontal force reduced to a single point force applied to the soil pile. A force applied to the top of a 
triangle would tip the triangle over rather than provide the necessary force for horizontal translation. 

For the Balovnev bucket equations, there is an equivalent term in the equations called surcharge mass 
which is the mass per unit area of soil in front of the blade. This value was estimated for the bucket 
equations from the measured surcharge mass on the blade so both the blade and bucket equations include 
this effect. However, the surcharge mass does not have as great of an effect on the calculated force in the 
bucket equations as the soil prism height has in the blade equations. 

Once this change was made to the soil prism height variable, the force predicted by the modified 
Balovnev blade equations followed the trend of the experimental data well. Without this modification, the 
Balovnev blade equations could not be used for comparison to the experimental data due to the significant 
divergence that was seen on both the May and November tests. 

The soil properties, which were measured at the site prior to testing, and blade dimensions used in the 
equations are shown in Table 1. The measured and calculated forces from the Balovnev bucket equations, 
along with the blade depth, are plotted versus time for the May tests in Figures 8 and 11 and for the 
November test in Figures 14, 17, 20, and 23. The measured and calculated forces from the modified 
Balovnev blade equations, along with the blade depth, are plotted versus time for the May tests in 
Figures 9 and 12 and for the November test in Figures 15, 18, 21, and 24. 
 

TABLE 1.—INPUT DATA TO BLADE FORCE EQUATIONS 

Description Variable Value Units 

Blade dimensions 

Blade width w 4.1148 meter 

Blade side plate length ls 0 meter 

Blade height from tip l 0.51 meter 

Blunt edge thickness eb 0.01524 meter 

Blunt edge angle b 40 degrees 

Side plate thickness s 0 meter 

Rake angle  72.1 degrees 

Blade radius r 0.66 meter 

Soil parameters GRC-1 GRC-3  

Soil density  1600 1676 kilogram/meter3 

Cohesion c 0 1500 Newton/meter2 

Internal friction angle  33 44 degrees 

External friction angle  25 28 degrees 

Surcharge mass q variable vs. time kilogram/meter2 

Soil prism height h variable vs. time meter 

Test variables 

Vertical cut depth d variable vs. time meter 

Vehicle velocity v variable vs. time meter/sec 

Constants 

Gravitational constant g 9.81 meter/sec2 



NASA/TM—2010-215591 8 

Figure 8.—Blade forces from May test 2 compared to 
Balovnev bucket equations. 

Figure 11.—Blade forces from May test 4 compared to 
Balovnev bucket equations. 

Figure 9.—Blade forces from May test 2 compared to 
Balovnev blade equations. 

Figure 12.—Blade forces from May test 4 compared to 
Balovnev blade equations. 

Figure 10.—Blade forces from May tests 2 compared to 
Luth-Wismer equations. 

Figure 13.—Blade forces from May tests 4 compared to 
Luth-Wismer equations.
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Figure 14.—Blade forces from November test 4 
compared to Balovnev bucket equations. 

Figure 17.—Blade forces from November test 5 
compared to Balovnev bucket equations. 

Figure 15.—Blade forces from November test 4 
compared to Balovnev blade equations. 

Figure 18.—Blade forces from November test 5 
compared to Balovnev blade equations. 

Figure 16.—Blade forces from November test 4 
compared to Luth-Wismer equations. 

Figure 19.—Blade forces from November test 5 
compared to Luth-Wismer equations. 
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Nov. Test 4 - Balovnev blade equation - blade force & depth vs. time

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

41 45 48 51 54 57 01 04 07 10 13 17 20

Time, sec

F
o

rc
e

, 
N

e
w

to
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
la

d
e

 D
e

p
th

, c
m

Load Cell Force Fx

Balovnev Force Fx

Load Cell Force Fy

Balovnev Force Fy

Depth

Fx Equation

Fx Load Cell

Fy Equation

Fy Load Cell

Nov. Test 5 - Balovnev blade equation - blade force & depth vs. time

-4000

-2500

-1000

500

2000

3500

5000

6500

8000

18 21 24 27 30 33 36 39 42 45 48 51 53

Time, sec

F
o

rc
e

, N
e

w
to

n

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

B
la

d
e

 D
e

p
th

, c
m

Load Cell Force Fx

Balovnev Force Fx

Load Cell Force Fy

Balovnev Force Fy

Depth

Fx Equation

Fx Load Cell

Fy Equation

Fy Load Cell
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Figure 20.—Blade forces from November test 6 
compared to Balovnev bucket equations. 

Figure 23.—Blade forces from November test 7 
compared to Balovnev bucket equations. 

Figure 21.—Blade forces from November test 6 
compared to Balovnev blade equations. 

Figure 24.—Blade forces from November test 7 
compared to Balovnev blade equations. 

Figure 22.—Blade forces from November test 6 
compared to Luth-Wismer equations. 

Figure 25.—Blade forces from November test 7 
compared to Luth-Wismer equations. 
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Nov. Test 6 - Balovnev blade equation - blade force & depth vs. time
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Nov. Test 7 - Balovnev blade equation - blade force & depth vs. time
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Nov. Test 7 - Luth-Wismer blade force and depth vs. time

-4500

-2500

-500

1500

3500

5500

7500

9500

11500

14 17 20 23 26 29 32 35 38 41 44 47 50

Time, sec

F
o

rc
e

, N
e

w
to

n

1.0

2.0

3.0

4.0

5.0

6.0

7.0

B
la

d
e

 D
e

p
th

, c
m

Load Cell Force Fx

Luth-Wismer Force Fx

Load Cell Force Fy

Luth-Wismer Force Fy

Depth

Fx Equation

Fx Load Cell

Fy Equation

Fy Load Cell



NASA/TM—2010-215591 11 

For the May series, test 2 lasted 55 sec and 136 data points were recorded while test 4 included 26 
data points over a period of 10 sec. For the November series, test 4 lasted 38 sec and 1709 data points 
were recorded, test 5 included 1626 data points over 35 sec, test 6 included 1008 data points over 23 sec 
and test 7 included 1623 data points over 36 sec. The horizontal blade force FX is the dominant force 
since the rake angle of the blade is 72. As the rake angle approaches 90, when the blade is completely 
vertical, the vertical force decreases towards zero. 

The calibration of the load cells and the analytical method used to reduce the data could be other 
possibilities as to why the force from the Balovnev blade equations diverges but, with the same effect 
resulting for both test series, these theories are doubtful. For the May tests, the load cells were calibrated 
prior to mounting on the vehicle and a calibration factor was determined and applied to the measured 
forces from the test. However, there was no calibration performed on the load cells after they were 
mounted. For the November tests, the load cells were calibrated after mounting to the vehicle by attaching 
a cable to the blade that had an additional load cell attached to measure force. The vehicle was moved and 
the force applied to the cable load cell and the blade load cells was recorded and a calibration factor was 
determined and applied to the forces recorded during the tests. 

There are five load cells located between the blade mounting structure and the vehicle. The Balovnev 
equations calculate the force at the tip of the blade in contact with the soil. The forces on the two 
horizontal rows of load cells are combined to get one equivalent load cell force for each row. This force is 
then translated to the tip of the blade through a free body diagram. The free body diagram is simple but 
there could be other factors that were not considered in the force translation. The blade force was assumed 
to be uniform along the length of the blade where in reality the force is probably variable since the cut 
depth into the sand was not constant along the blade length throughout the duration of the tests. The soil 
prism height was assumed to be constant along the length of the blade but the height varied also because 
of the nonuniform cut depth. 

A third set of equations were used to predict the forces on the blade to provide an additional 
comparison to the measured forces. These equations, designated as the Luth-Wismer equations (Ref. 5), 
were developed specifically for a bulldozer blade type operation. The horizontal force equation for the 
Luth-Wismer method is shown in Equation (8). A comparison over the entire data range can be seen in 
Figures 10 and 13 for the May tests and Figures 16, 19, 22, and 25 for the November tests. As before, the 
vertical force, FY is small because of the high rake angle. The horizontal force, FX calculated by Luth-
Wismer is roughly 10 times the force from the experimental data for the May test but tends to follow the 
experimental data for the November test. The blade vertical depth of cut into the soil has a noticeable 
effect on the results as seen from the plots. The force follows the trend of the vertical cut depth magnitude 
as time progresses. The force calculated from Luth-Wismer is a function of vehicle velocity whereas 
velocity is not a variable in Balovnev. The reasoning as to why the Luth-Wismer method predicted forces 
with such a great difference between the two test series is not known. The dependence of the equations on 
blade velocity and cut depth probably contributed to this difference. The load cell calibration and data 
collection methods were improved upon for the November test and the fact that the data was more 
accurate for the latter test could have contributed to this improvement. 
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Balovnev Bucket Force Equations 

Horizontal Blade Force =  
wd A1 (1 + cot  tan ) [dg/2 + c cot  + gq + BURIED * (d - l sin ) g (1-sin )/(1+sin ] + 
web A2 (1 + tan  cot b) (ebg/2 + c cot  + gq + dg (1-sin)/(1+sin ) + 
d A3 (2s + 4ls tan) [dg/2 + c cot  + gq + BURIED * (d - ls sin ) g (1-sin )/(1+sin ]    (5) 
 

where BURIED = 1 if entire bucket is below the soil otherwise BURIED = 0 
 

A1 = A() 
A2 = A(b) 
A3 = A(/2) 
 

Replace ‘x’ in the following equations with  for A1, b for A2 or /2 for A3 
 

if x  0.5 [sin–1 (sin /sin) - ] 
A(x) = (1- sin  cos 2x)/(1-sin ) 
 

if x > 0.5 [sin–1 (sin /sin) - ] 
A(x) = [cos(cos + (sin2  - sin2 )1/2)/(1-sin )] exp[(2x- +  + sin–1 (sin /sin )) tan  
 

Vertical Blade Force = Horizontal Blade Force * cos ( + sin( +  (6) 

Balovnev Blade Force Equations 

If (<= (0.5 sin–1(sin/sin) - /2)) 
A1 = (1-sincos(2)) / (1-sin) 

 

If (> (0.5 sin–1(sin/sin) - /2)) 
A1 = (cos (cos + (sin2-sin2)0.5)) / (1-sin) Exp((2 - + + sin–1(sin/sin)) tan) 

 

A2 = 0.8 gw (tan+tan) cos2 
A3 = sin–1(1/(2r/h)) 
A4 = A2 rh / (2tan) 
A5 = A2 cos(A3) r2 / (1+tan2) 
A6 = A2 sin(A3) r2 tan/ (1+tan2) 
A7 = Exp(2A3 tan) 
A8 = (A4 + A5) (A7 - 1) - A6 (A7 + 1) 
 

B1 = A1 wgd2 sin(+) / sin / cos 
B2 = A1 dwc sin(+) / sin / cos/ tan() 
B3 = A1 A8 sin(+) / cos / ((tan+Tan(/4-/2)) / (tan Tan(/4-/2))) 
B4 = A1 0.8 gdwh sin(+) / sin / cos 
B5 = 0.8 gwh2 cos2 / 2 
 

Horizontal Blade Force = B1 + B2 + B3 + B4 + B5  (7) 

Luth-Wismer Blade Force Equations 

Horizontal Blade Force = g w d1/2 l1.5 1.73 (d / (l sin0.77 (1.05 (d / w)1.1 + 1.26 v2 / g / l + 3.91) (8) 
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Conclusion 

The blade forces predicted by the Balovnev bucket equations compare well to the forces derived from 
the test data and the forces predicted by the Balovnev blade equations compared well once the soil prism 
height was reduced by a factor of three. The Luth-Wismer equations were also used to calculate the blade 
force to provide a third theoretical calculation for comparison. The predicted forces for the May data were 
much greater than the actual force and the forces predicted from the November data matched the 
measured data much better. But there was an inconsistency between the predicted forces using Luth-
Wismer that was not evident using the Balovnev equations. Different methods were used to calibrate the 
load cells for both test series and the blade force predicted by the Balovnev equations was consistent for 
both the May and November tests. There still may be improvements possible to the load cell calibration 
method and the force reduction to relate the measured data from the load cells to the force at the blade tip 
such as expanding the calibration and free body diagram to three-dimensions. 
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