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RELIABILITY ANALYSIS OF SYSTEMS 
SUBJECT TO FIRST-PASSAGE FAILURE 

 
 
INTRODUCTION 
 
 An obvious goal of reliability analysis is the avoidance of system failure. However, 
it is generally recognized that it is often not feasible to design a practical or useful system 
for which failure is impossible. Thus it is necessary to use techniques that estimate the 
likelihood of failure based on modeling the uncertainty about such items as the demands 
on and capacities of various elements in the system. This usually involves the use of 
probability theory, and a design is considered acceptable if it has a sufficiently small 
probability of failure. In some applications, the analysis uses some rule-of-thumb, such as 
three-sigma, six-sigma, etc., rather than numerical estimates of the probability of failure, 
but these approaches are based on known correlation between the rule-of-thumb and 
estimated probability of failure in a random-variable model.  
 
 A random variable is a mathematical concept to model the uncertainty about any 
quantity that has more than one possible numerical value. That is, it models the likelihood 
that the observed outcome will be any particular one of the possible outcomes. The 
situation becomes more complicated when the time of likely failure is also an uncertain 
quantity, such as when the demand on the system varies randomly with the passage of 
time. Then, one must use a method that models not only the uncertainty about quantities 
at any particular time, but also the uncertainty about how these quantities vary from one 
time to the next. The probabilistic model that combines these two types of uncertainty is 
called a stochastic process (or random process). Thus, the uncertain stress at one instant 
of time t will be classified as a random variable X(t) but the uncertain history of stress 
over a range of time values will be a stochastic process {X(t)}. The practice of denoting 
a stochastic process by putting the notation for the associated random variables in braces 
will be used to indicate that the stochastic process is a family of random variables—one 
for each t value. 
 
 Study of first-passage failure is appropriate when the system of interest is 
considered to have performed unsatisfactorily if some measure of response has ever 
reached some critical value. Thus, for example, first-passage failure might be considered 
to have occurred if the stress or strain at some critical location has ever exceeded the 
yield level or if a particular displacement has exceeded a value resulting in collision with 
some other element of the system, possibly causing damage.  
 
 To calculate the probability of first-passage failure during a given time interval 
[0,t], one needs terms such as P[ ˆ X (t)  xcritical ] in which ˆ X (t) is defined as the 
maximum of X(s)  over the set of values 0  s  t . For a given value of t, the first-passage 
reliability can be formulated in terms of the random variable ˆ X (t), but finding (or 
estimating) the probability distribution of ˆ X (t) requires a significant amount of 
information about the stochastic process {X(s) : 0  s  t}. 
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 A fundamental difference between a random variable and a stochastic process 
relates to what constitutes one observation of an outcome. An outcome for a scalar 
random variable is a scalar. An outcome for a vector random variable is a vector. But an 
outcome for a scalar stochastic process is a time history. Furthermore, most stochastic 
processes have the ergodic property, which assures that any particular time history x(t)  
must eventually approach every possible value of the stochastic process {X(t)}. While it 
is relatively rare that an observation of a random variable will exceed the mean plus four 
standard deviations of the variable, for example, it is expected that any one observation of 
the associated process will eventually reach that four-sigma level if the observation time 
is sufficiently long. Thus, the length of time t is a crucial variable in first-passage 
analysis. 
 
 It may be noted that there is a sort of “orthogonality” between the idea that a 
stochastic process is characterized by an “ensemble” containing all possible time histories 
and the idea that the process is a family of random variables. A time history is a single 
observation including many values of t. Many observations at a single value of t give a 
statistical sample of the random variable X(t). In most practical problems, it is not 
feasible to describe a stochastic process in terms of the probability of occurrence of 
particular time histories, but it is always possible to characterize the process by using 
information about the joint probability distribution of the random variables of which it is 
composed.  
 
 
PROPERTIES OF STOCHASTIC PROCESSES 
 
 Almost every property of a stochastic process can be viewed as a generalization of a 
corresponding property of a random variable. Of course, all the information about the 
probabilities of a single random variable X(t) can be encapsulated in a cumulative 
distribution function 
 
  FX (t )(u)  P[X(t)  u] (1) 

 
or by its derivative, which is the probability density function 
 

  pX (t )(u) 
FX (t )(u)

 u
 lim
 u0

P[u  X(t)  u   u]

 u
 (2) 

 
 Note that both the functions FX (t)(u) and pX (t )(u)  must be defined on the set of all 

possible values of X(t). In order to generalize (1) and (2) to describe a stochastic process 
{X(t)} one must consider the probabilities of events that are the intersections of 
occurrences at multiple values of t. In particular, a complete description requires 
knowledge of  
 
  


FX (t1)X (tn )(u1,,un )  P[X(t1)  u1,, X(tn )  un ] (3) 
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or 

     



pX (t1)X (tn )(u1,,un ) 
nFX (t1)X (tn )(u1,,un )

 u1 un

 lim
 u10,, un0

P[u1  X(t1)  u   u1,,un  X(tn )  u  un ]

 u1 un

 (4) 

 
and one of these functions must be known for all possible choices of n, t1,, tn , and 

u1,,un . 
 
 In many situations it is possible, and much easier, to use an analysis that requires 
less information than is given by (1)-(4). In particular, the idea of the mean and variance 
values of random variable are generalized to a mean-value function 
 

  X (t)  E[X (t)] u pX (t )(u) du




  (5)  

 
and a covariance function 
 

  
KXX (t,s)  E [X(t) X (t)][X(s) X (s)] 

 [u1 X (t)][u2 X (s)] pX (t )X (s)(u1,u2) du1du2




 (6) 

 
 Note, in particular, that the covariance function is defined on a two-dimensional set 
of (t,s)  values. It includes the much simpler variance of all the random variables, since 

 X (t)
2  KXX (t, t), but it also includes crucial information about the correlation of the two 

random variables X(t) and X(s) . In some situations it is also necessary to consider 
covariance functions involving two different stochastic processes. One such example is 
the cross-covariance of a process and its time-derivative  
 

   
s

stK
ssXttXEstK XX

XXXX 
 ),(

)]()([)]()([),(  
  (7) 

 
 The property of stationarity (or homogeneity) of a stochastic process {X(t)} always 
refers to some aspect of the description of the process being unchanged by any arbitrary 
shift along the t axis. There are many types of stationarity depending on which 
characteristic of the process has this property of being invariant under a time shift. 
 
 The simplest type of stationarity involves only invariance of the mean value 
function for the process. In particular, {X(t)} is mean-value stationary if 
X (t  r)  X (t) for any value of the time-shift parameter r. Clearly this can be true only 
if X (t)  is the same for all t values, so one can say that {X(t)} is mean-value stationary 
if X (t)  X , in which the absence of a t argument on the right-hand side conveys the 
information that the mean value is independent of time. Although the notation X  is the 
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same as for the mean value of a random variable, it is here used to refer to the mean value 
function of a stochastic process. Of course, having the mean value be independent of t 
does not imply that the {X(t)} random variables are all the same at different values of t 
or that the probability distributions of these random variables are all the same—only that 
they all have the same mean value. 
 
 Similarly, one can define a more rigorous stationarity related to the covariance 
function. The process {X(t)} is said to be covariant stationary if the covariance function 
is invariant under a time shift so that KXX (t  r,s r)  KXX (t,s)  for any value of r. 
Choosing r  s , then gives KXX (t,s)  KXX (t  s,0), showing that the stationary 
covariance function depends on only one time argument—the difference between the two 
times of interest.  Thus, one can define a covariance function of only one time argument 
as GXX ( )  KXX (t  , t) so that  
 
  KXX (t,s)  GXX (t  s)     for any values of t and s  (8) 
 
Similarly, two stochastic processes {X(t)} and {Y (t)} are jointly covariant stationary if 
KXY (t  r,s r)  KXY (t,s) , and it is convenient to define GXY ( )  KXY (t  , t) so that 
 
  KXY (t,s)  GXY (t  s)     for any values of t and s  (9) 
 
 Although a given stochastic process may simultaneously have various types of 
moment stationarity, this is not necessary. In particular, a process may be mean-value 
stationary and covariant nonstationary, and another process may be mean-value 
nonstationary and covariant stationary. It is common, however, to have situations in 
which both the mean-value and the covariance are stationary. 
 
 There are also forms of stationarity that are not defined in terms of moment 
functions. Rather, they are defined in terms of probability distributions being invariant 
under a time shift. The general relationship is that {X(t)} is jth-order stationary if 
 
  


pX (t1r)X (t j r )(u1,,u j )  pX (t1)X (t j )(u1,,u j ) (10) 

 
for all values of {t1,,t j ,u1,,u j} and the shift parameter r. This includes, as special 

cases, {X(t)} being first-order stationary if pX (tr)(u)  pX (t )(u) and second-order 

stationary if pX (t1r)X (t2r)(u1,u2)  pX (t1 )X (t2 )(u1,u2) for all values of {t1,t2,u1,u2} and 

the shift parameter r. First-order stationarity always implies mean-value stationarity, and 
second-order stationarity implies both mean-value and covariance stationarity, In some 
situations (such as the well-known Gaussian process) mean-value and covariant 
stationarity also imply second-order stationarity, but this is not true in general. 
 
 The most restrictive type of stationarity is called strict stationarity. The process 
{X(t)} is said to be strictly stationary if it is jth-order stationary for any value of j. This 
implies that any order probability density function has time shift invariance and any order 
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moment function has time shift invariance. In common usage, one can also say that the 
word stationary without qualifier simply means that all moments and/or probability 
distributions being used in the given problem are invariant under a time shift. 
 
 An ergodic stochastic process is one for which any infinitely long time history is 
representative of the entire process. For example, any expected value of some function of 
the process can be written as the limit of a time-average obtained from one time history 
of the process. Thus,  

  X  E[X(t)]  lim
T

1

T
x(t) dt

0

T  (11) 

and 

  
GXX ( )  E [X(t   ) X ][X(t) X ] 

 lim
T

1

T
[x(t  ) X ][x(t) X ]dt

0

T
 (12) 

 
 with x(t)  representing any one time history of {X(t)} in both (11) and (12). Note 
that the process is required to be mean-value and covariant stationary in (11) and (12), 
respectively, since the infinite time average could not possibly converge to a function of 
t. Similarly, strict ergodicity implies that the probability distribution can also be found 
from one time history: 
 

  FX (t)(u)  E U[u  X(t)]  lim
T

1

T
U[u  x(t)]dt

0

T /2  (13) 

 
 in which the unit step function U()  is defined to be zero when its argument is 
negative and unity otherwise. Thus, the integral gives exactly the amount of time for 
which x(t)  u  within the interval [0,T]. This condition that the probability that X(t)  u 
at any time t is the same as the fraction of the time that any time history x(t)  is less than 
or equal to u is the basis of the statement in the introduction that any time history of an 
ergodic process must eventually approach every one of its possible values. Although it is 
not necessary for all processes to be ergodic, it is common practice to assume ergodicity 
unless there is some obvious physical reason why that would be inappropriate for the 
problem of interest. 
 
 In the remainder of this presentation, the process {X(t)} will be considered to be 
mean-zero. The primary motivation for doing this is that it simplifies the presentation 
without losing any generality in almost all instances. In order to analyze a process {Y (t)} 
that is not mean-zero, one simply defines X(t) Y (t) Y (t). Furthermore, this 
transformation is generally not difficult, since the evaluation or estimation of the mean-
value function is generally much easier than evaluation of other quantities such as 
covariance. This is illustrated in (11) and (12) for the stationary ergodic situation, and it 
is also generally true in the analysis of the response of dynamical systems [e.g., Lutes and 
Sarkani, 2004]. 
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 The Gaussian stochastic process occupies a very special place in analysis of 
practical problems. It has been found that it both gives a reasonable model of many 
physical processes and has some very desirable mathematical characteristics. The 
definition of a Gaussian stochastic process {X(t)} is simply that any finite set 

{X (t1), X(t2),, X (tn )} of random variables from that process has the jointly Gaussian 
distribution. The general form for the joint probability density function for a vector V of 
jointly Gaussian mean-zero components is 
 

  pV (u) 
1

(2 )n /2 KVV
1/2 exp 

1

2
uT KVV

1 u






 (14) 

 

which is a function of the square covariance matrix KVV  E(VT V) . Applying this 
model to the Gaussian process, then, only involves using the vector 

V  [X(t1), X(t2),,X(tn )]T . 
 
 The jointly Gaussian distribution, of course, implies that each of the random 
components is Gaussian (normal), but it also specifies much more about the 
interrelationships among the components. One of the very desirable features of the mean-
zero Gaussian process is that the distribution depends only on the covariance function 
KXX (t,s)  or GXX ( ), which provides all components of KVV  for the process. Among the 
unusual features of the distribution are the facts that a mean-zero covariant stationary 
Gaussian process is always strictly stationary, and that a mean-zero covariant ergodic 
Gaussian process is always strictly ergodic. 
 
 Particularly important for many applications is the fact that any linear combination 
of jointly Gaussian random variables is itself Gaussian, and it is also jointly Gaussian 
with other such linear combinations. This ensures that linear operations on a Gaussian 
stochastic process always yield other Gaussian processes and that these new processes are 
jointly Gaussian with the original process. Such linear operations include input-output 
relationships for any linear dynamical system and calculus operations such as finding the 
derivative process )}({ tX  corresponding to a given process {X(t)} or integrating to find 

the {X(t)} corresponding to a given )}({ tX . It should also be noted, though, that there 
are some processes for which the random variables X(t) are all individually Gaussian, 
but not jointly Gaussian. These are not Gaussian processes, and applying a linear-
combination operation to them generally does not yield a Gaussian output. 
 
 
FREQUENCY, BANDWIDTH, AND AMPLITUDE 
 
 The Fourier transform provides a classical method for decomposing a time history 
into its frequency components, and this is often very useful in both computing and 
interpreting the results of practical models. When applied to a stochastic process {X(t)} 
the Fourier transform introduces a new stochastic process { ˜ X ()} defined by 
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  ˜ X (  1

2
X(t)



 ei t dt  (15) 

 
 The original stochastic process can then be recaptured by using the inverse 
transform 
 

  X(t)  ˜ X (


 ei t d  (16) 

 
 Note that { ˜ X ()} gives a complex random variable ˜ X () for every possible value 
of  , just as {X(t)} gives a real random variable X(t) for every possible value of t. 
 
 From (15) one can write E[ ˜ X (1) ˜ X (2)] as a double Fourier transform of GXX ( ). 
A major difficulty in applying the Fourier transform procedure to many problems of 
interest, though, is the fact that E[ ˜ X (1) ˜ X (2)] does not exist for all values of frequency 
when {X(t)} is a stationary stochastic process. That is, the double integral to evaluate 
E[ ˜ X (1) ˜ X (2)] may be infinite. It is important, though, to have a usable form of 
E[ ˜ X (1) ˜ X (2)]. To this end, the Fourier transform procedure has been modified as 
follows. The first step is to truncate the Fourier transform integral in (15) to be over a 
time interval of finite length T, which is found to give an approximation of 
E[ ˜ X (1) ˜ X (2)] that grows in proportion to T. This is then normalized to give a finite 
limit, and is defined as the spectral density function of the process: 
 

 

SXX ()  lim
T

2
T

E
1

2
X(t1)

T /2

T /2 ei t1 dt1






1

2
X(t2)

T /2

T /2 ei t2 dt2
















 lim
T

1

2 T
GXX (t1  t2)

T /2

T /2 ei(1 t12 t2 ) dt1T /2

T /2 dt2

 (17) 

 
 For any stationary process, though, it has been shown that (17) gives the spectral 
density as exactly the Fourier transform of the covariance function for the original 
process: 
 

  SXX() 
1

2
GXX ( )

 ei  d   (18)  

 
 Furthermore, this implies that the inverse must also be true: 
 

  GXX( )  SXX ()
 ei  d  (19)  

 
 The original idea that E[ ˜ X (1) ˜ X (2)] is a double Fourier transform of GXX ( ) 
gives 

  GXX ( )  E[ ˜ X (1) ˜ X (2)]




 ei (12 )tei1 d1d2  (20) 
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and this agrees with the expression in (19) if E[ ˜ X (1) ˜ X (2)]  SXX (1)(1 2) , in 
which ()  denotes the Dirac delta function. This degenerate form has been found to be 
useful in some calculations. 
 
 The spectral density function defined in (17), and commonly computed from (18), 
has many desirable properties. Most importantly, it does give a complete frequency 
decomposition of the covariance properties of a stationary {X(t)}. In addition, it is 
always a real, nonnegative even function of  . Furthermore, setting   equal to zero in 

(19) shows that the variance  X
2  GXX (0) is simply the area under the SXX () curve. It 

should be noted that there are other forms of spectral density that differ from (18) only by 
a multiplying factor. One such variation is found by using a cosine Fourier transform in 
place of the exponential transform used here, and obtaining a spectral density that is 
twice as large as that of (17)-(19), but exists only for   0. A less frequent variation is to 
use frequency measured in Hz (cycles per second) rather than radians per second in 

saying that  X
2  is the area under the spectral density curve, which requires a modification 

of spectral density by a factor of 2 . 
 
 The cross-spectral density between two processes, such as {X(t)} and )}({ tX  is 
defined in a parallel way, and (18) and (19) generalize to give the cross-spectral density 
and the cross-covariance function as a Fourier transform pair. Taking derivatives of (18) 
and (19) yields simple results for the cross-spectral density of {X(t)} and )}({ tX , the 

spectral density of )}({ tX , etc. In particular, )()(  XXXX SiS   and 

)()( 2  XXXX SS  . The results for higher order derivative processes can be written as 

S
X ( j )X (k ) ()  (1)k (i) jk jk SXX () , in which {X ( j )(t)} represents the jth-order 

derivative with respect to t. This includes the special case of S
X ( j )X ( j ) () 2 j SXX () 

for the spectral density function of the jth derivative process. 
 
 A process {X(t)} is said to be narrowband if the spectral density SXX () is very 
small except within a narrow band of frequencies. Because SXX () is an even function, 
this really means that the band of significant frequencies appears both for positive and 
negative   values. One way to state this narrowband condition is to say that SXX ()  0 
unless | |c  for some given characteristic frequency c . The limiting narrowband 

process has the spectral density SXX ()  ( X
2 /2)[( c) ( c)]. The 

corresponding covariance function is GXX ( )  X
2 cos(c ). Furthermore, the time 

dependence of the process is of the form X(t)  Acos[ct ] with the amplitude and 
phase A and  , respectively, being random variables. That is, any time history is a pure 
cosine wave with fixed amplitude and frequency. This situation, of course, is not often 
encountered in practice, but the harmonic nature of X(t) and GXX ( ) is approximated by 
all narrowband processes. The time histories of X(t) for a narrowband process generally 
are of the form of cosine waves with slowly varying amplitude and phase, as shown in 
Figure 1. Similarly, the corresponding GXX ( ) has the form of a cosine wave with 
amplitude (or envelope) that decays slowly with increasing |  |.  
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 At the opposite extreme from a narrowband process is the white noise (or delta-
correlated) process for which all Fourier components contribute equally, such that the 
spectral density is the same for all   values. For a process {X(t)} of this type with 
SXX ()  S0 , the covariance function is the degenerate case of GXX ( )  2 S0( ). The 
time histories of any delta-correlated process, of course, must be extremely erratic, since 
they are uncorrelated at times separated by any finite value  . Any practical broadband 
process has a spectral density that varies slowly with  , a covariance function that tends 
rapidly to zero with increasing | |, and very erratic time histories.  
 
 Many stochastic processes encountered in practice are not near either the 
narrowband or the broadband limits. Some of these may be considered to be between 
narrowband and broadband, while others have distinctly different forms, such as a 
multimodal spectral density containing a sequence of narrow peaks at distinct values of 
 . In this case, many but not all frequencies make significant contributions to the time 
histories. One physical phenomenon that leads to narrowband or multimodal spectral 
densities relates to the deterministic idea of resonance in dynamical systems. If a system 
has a resonant frequency, then exciting that system with a broadband process will lead to 
a response for which the spectral density has a high peak at the resonant frequency. In the 
same way, multiple resonant frequencies in the system can lead to multimodal spectral 
densities. In essence, any dynamical system can be regarded as a filter. Some frequencies 
components of the excitation are attenuated because the system is not sensitive to those 
frequencies, while other components are amplified due to resonance-like behavior. For a 
linear system or filter with stochastic input {Y (t)} and output {X(t)} there exists a 
complex transfer function HXY () such that the Fourier transforms satisfy 
˜ X ()  HXY () ˜ Y (). This then gives SX ()  | HXY () |2 SY ()  as the description of 

the filtering effect on the spectral density. 
 
 The concepts of characteristic frequency, amplitude and phase that were introduced 
in discussing narrowband processes can be usefully generalized to provide an alternate 
characterization of any mean-zero stationary stochastic process. In particular, let  
 
  X(t)  A(t)cos[c t  (t)] (21)  

X( t)

t

A(t)

−A(t)

≈ 2 π
ωc
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 The definition of c  should ideally be chosen such that 0)]([ tE  , because a 

nonzero value for )]([ tE   should, in itself, be a contribution to the characteristic 
frequency of the {X(t)} process. Next the amplitude and phase are defined as 
 

  A(t)  [X 2(t)  Z 2(t)]1/2  (22)  
and 

  (t)  tan1[Z(t) / X(t)]ct  (23)  
 
in which {Z(t)} is a process for which every frequency component is 90° out of phase 
with the corresponding component of {X(t)}. Specifically, this is done by choosing 
˜ Z ()  i g() ˜ X () for some odd real function g() with g(c) 1. This definition of the 

amplitude and phase is consistent with the intuitive ideas introduced for a narrowband 
process for which ˜ X () is nearly zero except in the neighborhood of c , and there are 
many g() functions satisfying the necessary conditions. One of the popular choices is 
g()  sgn() , which gives Z(t)  as the Hilbert transform of X(t). The amplitude defined 
in this way was used by Cramer and Leadbetter [1967] and is commonly associated with 
their names. It will be denoted as A1(t) . Another commonly used amplitude follows from 

using g()  /c, which gives ctXtZ /)()(  . This amplitude, which will be denoted 

as A2(t) , is often referred to as the energy-based amplitude, since it can be related to the 
sum of potential and kinetic energy in some simple oscillators. The c  values 
corresponding to the Cramer/Leadbetter and energy-based amplitude are 1 / 0 and 

( 2 / 0)1/2, respectively, in which the spectral moment  j  is defined as 

 

   j  | | j SXX () d


  2  j SXX ()d
0

  (24) 

 
 The term bandwidth parameter is used to refer to any characteristic of a stochastic 
process that gives an indication of how strongly the process resembles the narrowband or 
broadband limit. There are many such parameters, but only two will be mentioned here. 
One natural way to introduce this idea is to consider the rates of change of A(t) or (t), 
as defined in (22) and (23). In particular, these quantities should change slowly for a 
narrowband process, but more rapidly for a broadband process. For the Cramer/ 
Leadbetter amplitude it can be shown [e.g., Lutes and Sarkani, 2004] that the rates of 
change of A1(t)  and of the corresponding phase are governed by the parameter 
 

  1  1 /( 0 2)1/2  (25) 

 
 Similar results apply for the energy-based amplitude and phase, but the controlling 
parameter is  

  2   2 /( 0 4 )1/2 (26) 
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 It may be noted that the even spectral moments have direct physical meaning since 

0
2  X , 2

2  X , 4
2  X , etc. This shows that the value of 2 can be found directly 

from these variance quantities, which is something of an advantage over 1. On the other 
hand, 2 depends rather heavily on the high-frequency tail of the spectral density, which 
is sometimes a disadvantage in comparison to 1. Both 1 and 2 are defined such that 
they are in the interval [0, 1] and tend to unity for narrowband processes. 
 
 Note that if {X(t)} is a Gaussian process, then { ˜ X ()}, { ˜ Z ()}, and {Z(t)} are all 
jointly Gaussian processes, because they are obtained from linear operations on {X(t)}. 
The Gaussian property then allows evaluation of additional properties of the amplitude 
and phase. It can be shown that both the Cramer/Leadbetter and energy-based definitions 
give the random variable Z(t)  to be independent of X(t) for the same t value and to have 
the same variance. This then leads to A(t) having the common Rayleigh distribution: 
 

  FA (u) 1 eu 2 /(2 X
2 ) pA (u)  (u / X

2 ) eu2 /(2 X
2 ) (27) 

 
 The corresponding phase angle (t) is independent of A(t) for the same t value and 
is uniformly distributed on [0,2 ]. These simple distributions are sometimes quite useful 
in evaluating properties of {X(t)} from the amplitude and phase form of (21). 
 
 
CROSSING PROBABILITY AND CROSSING RATE 
 
 The reliability of a system is closely related to the concept of level-crossings. This 
is particularly true for first-passage failure, in which the system is considered to fail only 
when a particular stress process or displacement {X(t)} reaches a critical level b. In 
particular, failure cannot then occur before X(t)  crosses b. Similarly, a crossing of the 
level zero by the derivative )(tX  coincides with a local maximum or minimum of X(t) , 
and failure will not occur when all these extrema are below b. The following paragraphs 
review important results related to these crossing probabilities, with special emphasis on 
the stationary Gaussian process so commonly used in practical applications. Rigorous 
analytical results will be presented for the expected rate of occurrence of such crossings 
for this process, and for the corresponding probability distribution of local maxima. 
These results, however, cannot provide an analytical solution for the first-passage 
probability so further approximations will be introduced for that purpose. 
 
 An upcrossing at time t of the level u by the process {X(t)} is simply the 

intersection of the events X(t)  u and 0)( tX . Similarly, a downcrossing occurs 

whenever X(t)  u with 0)( tX . These ideas are illustrated in Figure 2. The 
probabilities of such crossings during a small time increment will be written as 
 

   X
 (u, t) t  P upcrossing in [t, t   t]  (28) 
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and the corresponding relationship between a downcrossing and a term  X
 (u,t). Thus, 

 X
 (u,t) and  X

 (u,t) are the limits of P(crossing in [t, t + t])/ t  as  t  tends to zero. 

Note that  X
 (u,t) and  X

 (u,t) have units of crossings per unit time, and are exactly the 
expected rate of crossings of the level X  u . The terms upcrossing rate and 
downcrossing rate will be used to refer to these quantities, even though the interest here is 
more focused on the probability of occurrence of the crossing than on the rate. 
 

 It is easily seen that there can only be an upcrossing of the level u within the 
interval [t,  t + t] if X(t) at the beginning of the interval is less than u, but close to u, 
and has a positive derivative. Inasmuch as  t is infinitesimal, one may consider the 

derivative to be constant at the value )(tX  throughout the time interval and conclude that 

there will be an upcrossing within the interval if utXttXu  )()( . This event is 

shown shaded on the space of possible values of X( t)  and X (t)  in Figure 3. The 
probability of this event can now be found by integrating the joint probability density of 
X(t) and )(tX  over the shaded region. However, the fact that  t  is infinitesimal can be 

used again to argue that ),(),( )()()()( vupvwp tXtXtXtX    for u v t  w  u, giving: 

 

 
 

0 )()(0 )()(
])(|[)(),(),( dvutXvpvupdvvupvtu

tXtXtXtXX   (29)  

 

 The second form in (29) has been obtained simply by writing, the joint probability 
density function as the product of a marginal and a conditional density function. 
Similarly, the downcrossing rate is 
 

   
 

0

)()(
0

)()( ])(|[||)(),(),( dvutXvpvupdvvupvtu tXtXtXtXX   (30)  

 
 The results in (29) and (30) are rigorous for any stochastic process for which the 
integrals exist. It should be noted, though, that the values obtained might be infinite if the 
conditional probability density function of )(tX  does not decay sufficiently rapidly. For 

example, if ])(|)([ utXtXE   does not exist then  X
 (u, t)  may be infinite. For a 

stationary {X(t)}  process these rates, of course, are independent of time, and will be 

denoted simply as  X
 (u)  and  X

 (u) . 
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Figure 3.  Phase Diagram showing the Event of Upcrossing 
 

 For any covariant stationary process, the random variables X( t)  and )(tX  are 
uncorrelated. In the special case of a Gaussian process, they are then uncorrelated 
Gaussian random variables, and Gaussian random variables are uncorrelated if and only 
if they are independent. Thus, X(t)  and )(tX  are independent for the stationary Gaussian 
situation. The integrals can be evaluated explicitly, giving  
 

  )2/( 22

2
)( Xu

X

X
X eu 




   
 (31) 

 

 Note that the ratio XX  /  is exactly the c  characteristic frequency defined in 

connection with the energy-based amplitude A2  in the preceding section. Also note that 
the maximum value of the crossing rate occurs when u  0 and it is simply 

 X
 (0) c /(2 ) . Thus, the rate of upcrossings of zero by a mean-zero stationary 

Gaussian process is simply the energy-based average frequency divided by 2 . The 
factor of 2 , of course, comes from the fact that c  represents a frequency in radians per 
second, while the rate of mean-upcrossings represents a frequency in cycles per second, 
or Hz. This relationship between mean-crossing rate and characteristic frequency could 
have been anticipated for any narrowband process, but it holds exactly for a stationary 
Gaussian process regardless of the bandwidth. 
 

 Since a peak of X(t)  occurs whenever 0)( tX and 0)( tX , the rate of 
occurrence of peaks of {X(t)}  is exactly the rate of downcrossings of the level zero by 

)}({ tX :  
 

 
 

0

)()(

0

)(),( )0)(|(||)0(),0(||),0()( dwtXwpwpdwwpwtt tXtXtXtXXP


  (32) 

 

Similarly, the rate of occurrence of valleys of {X(t)} is ),0()( tt XV
  . For a stationary 

Gaussian process )2/( XXVP    , just as )2/()0( XXX   . 

 
 Knowledge of the rates of occurrence of peaks and crossings can also be used to 
define a measure of bandwidth of a stochastic process. In particular, any sufficiently long 

X(t) = u

X( t)

Ẋ( t)

X( t) = u− Ẋ(t) Δ t
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continuous time history of a process must have at least as many peaks as it has 
upcrossings of any level, and the number of peaks is expected to be only slightly larger 
than the number of upcrossings of zero for a mean-zero narrowband process. Thus, the 

irregularity factor, defined as IF   X
 (0,t) /P (t) can be used as a bandwidth measure for 

any stochastic process. Its range of possible values is from zero to unity, and it tends to 
unity for a narrowband process, just as for the previously defined bandwidth parameters. 

For a stationary Gaussian process the irregularity factor becomes )/(2
XXXIF   . 

Somewhat surprisingly, IF for this class of processes is exactly the same as the 2  
bandwidth parameter defined in (26). This allows estimation of its value from occurrence 
rates for crossings and peaks of a time history, as well as from integrals in the frequency 
domain, provided that 

X
  is finite and 2  0. 

 
 
PROBABILITY DISTRIBUTION OF PEAKS 
 
 The probability distribution of the peaks (local maxima) of {X(t)}  can be found by 
a procedure that is basically the same as that used in deriving the rates of occurrence of 
crossings or peaks. An occurrence rate P[t;X (t)  u] for peaks below a level u is defined 
as P peak   u during [t,t + t] / t  just as P (t)  P peak during [t,t + t] / t . What 
is commonly called the distribution of peaks is really the conditional distribution given 
the existence of a peak at that time: 
 

  

 
 


 



 









0

)()(

0

)()()(

)(

),0(||

),0,(||
 

)(

])(;[

]+,[ duringpeak 

]+,[ during  peak 
)(

dzzpz

dzdwzwpz

t

utXt

tttP

tttuP
uF

tXtX

u

tXtXtX

P

P
tP








 (33) 

 
and taking a derivative with respect to u gives the probability density function as 
 

  







0

)()(

0

)()()(
)(

),0(||

),0,(||
)(

dzzpz

dzzupz
up

tXtX

tXtXtX
tP




 (34)  

 
 Either (33) or (34) describes the probability distribution of any peak that occurs 
within the vicinity of time t. The probability that the peak is within any given interval can 
be found directly from (33) or from integration of (34), and these formulas are also 
convenient for evaluating other quantities such as the mean value and variance of P(t) . 
 
 Note that the probability distribution of the peak P(t)  depends on the joint 
probability distribution of )( and ,)( ,)( tXtXtX  . This joint distribution is relatively 
simple for the special case of a stationary mean-zero Gaussian process. All that is needed 
is the covariance matrix of the three random variables, and this involves only the three 
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standard deviations and the correlation coefficient between X(t) and )(tX , since )(tX  is 

uncorrelated with the pair )](,)([ tXtX   for any stationary process. It is easily shown, 

however, that the correlation coefficient between X(t) and )(tX  is exactly the negative 
of the 2  bandwidth parameter. Thus, this bandwidth parameter plays an important role 
in the distribution of the peaks of {X( t)}. The resulting formulas are 
 

 pP (u) 
(12

2)1/2

(2 )1/2 X

eu2 /[ 2 X
2 (12

2 )]  
2u

 X
2

eu 2 /(2 X
2 ) 2u

(12
2)1/2 X









 (35) 

and 

   FP (u)  u

(12
2)1/2 X









2 eu 2 /(2 X

2 ) 2u

(12
2)1/2 X









 (36) 

 

in which (y)  [1 erf(y /21/2Y )]/2  is the cumulative distribution function FY (y) for a 
mean-zero random variable Y. The formulas in (35) and (36) are commonly referred to as 
the Rice distribution, in recognition of  Rice’s pioneering work on this problem [1945].  
 
 The limiting forms of this distribution for 2 1 and 2  0  yield important results 
regarding the peak distribution. For the narrowband situation with 2  approaching unity, 
some of the arguments in pP (u)  and FP (u)  tend to infinity and the limit for 2 1 is 
exactly the Rayleigh distribution of (27) that describes both the A1(t)  and A2(t)  
amplitudes of the Gaussian process. The agreement of the peak distribution and the 
amplitude distribution of the limiting narrowband process is consistent with the fact that a 
narrowband process can be considered to be a harmonic function with slowly varying 
amplitude and phase. Because the narrowband amplitude varies slowly, each peak of the 
narrowband process is equal to the amplitude of the process at that instant of time, so it is 
not surprising that the two quantities have the same probability distribution. For the 
opposite extreme situation with 2  0 , the probability distribution of the peaks becomes 
exactly the Gaussian distribution of X( t) , which is consistent with the fact that the rate of 
occurrence of peaks is infinite for 2  0 . That is, there may be peaks everywhere along 
the process so the distribution of peaks is same as the distribution of X(t).  
 
 A convenient feature of the Rice distribution in (35) and (36) is that it also describes 

a random variable R  2 R1  (12
2)1/2 R2 , in which R1 and R2  are independent 

random variables with R1 having the Rayleigh distribution of the A(t) amplitude and R2  

having the mean-zero Gaussian distribution of X(t) [Krenk, 1978]. 
 
 The distribution of peaks of a mean-zero narrowband process is sometimes 
approximated by a function that can be obtained from knowledge only of the crossing 
rates of X(t). The rationale is that in the narrowband case one can ignore the possibility 
of peaks below zero or valleys above zero. With this simplification, a peak occurs within 
the interval [u,u   u] if and only if there is an upcrossing of the level u that is not 
followed by an upcrossing of the level u  u. This approximation then implies that the 
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expected number of peaks within an interval [u,u  u] is the difference between the 
number of upcrossings of the level u and the number of upcrossings of the level u   u, 

and the expected rate of occurrence of peaks in the interval is  X
 (u)  X

 (u   u). After 
normalization this gives 
 

  pP(t )(u) 
1

 X
 (X )

d X
 (u)

du
 (37)  

 
for u  0. For the special case of a stationary Gaussian process this result is exactly the 
Rayleigh distribution, which is the true answer only in the limiting case with 2 1. For 
a non-Gaussian process, as well, one can anticipate that (37) will be asymptotically 
correct for 2 approaching unity. The approximation may be significantly inaccurate for 
some more broadband situations.  
 
 
FIRST-PASSAGE AND GLOBAL MAXIMUM 
 
 Finding the probability distribution of a global maximum within an interval [0,t] is 
considerably more complicated than finding the distribution for a peak (i.e., a local 
maximum). The extreme value distribution for the process {X( t)}  and any fixed time t is 
defined to be the distribution of the random variable 
 
  ˆ X (t)  max

0  s  t
X (s)  (38)  

 
which makes { ˆ X (t)} a stochastic process. Note that even for a stationary {X(t)} , one 

must expect that { ˆ X (t)} will be nonstationary, since larger and larger values of X(t)  will 
generally occur if the period of observation is extended. Letting LX (u,t) denote the 

cumulative distribution function of ˆ X (t) gives 
 
  LX (u,t)  F ˆ X (t)

(u)  P[ ˆ X (t)  u]  P[X(s)  u: 0  s  t] (39)  

 
in which the notation on the final term means that the X(s)  u  inequality holds for all 
the given s values. This LX (u,t) function is sometimes called the probability of survival, 
which is certainly appropriate if u denotes a critical value for {X(t)} corresponding to 
some failure mode of the system. The probability density function for the extreme value 
is simply the derivative  LX (u, t) / u, and from this information one can also calculate 
the mean and variance of the extreme value.  
 
 An alternative problem that is almost equivalent to extreme value analysis involves 
the random quantity called first-passage time.   Let  TX (u)  denote the first time (after 
time zero) at which X(t) has an upcrossing of the level u. That is, 
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0)]([ ,)]([  uTXuuTX XX
 , and there has been no upcrossing in the interval 

0  t  TX (u). This TX (u)  quantity is a random variable for any given u value. 
 
 It should be noted that some caution is necessary in analyzing either the global 
maximum response or the first-passage time for a process {Y (t)} that has a nonstationary 
mean-value function Y (t) . In this situation the event {Y (s)  v : 0  s  t} is 
{X (s)  v  Y (s): 0  s  t} for the mean-zero process X(t) Y (t) Y (t). Similarly a 
crossing of the level v by Y(t) coincides with a crossing of v Y (t)  by X(t). This 
amounts to a problem with a variable barrier level, and such problems are not explicitly 
studied here since they are less frequently encountered in practice. 
 
 To see the relationship between the first-passage time and the extreme value 
distribution consider the event {X(s)  u : 0  s  t} that appears in (39). This event can 
also be written as {X (0)  u, TX (u)  t}, since X(s)  can be less than u throughout the 
time interval only if it starts below u and does not have an upcrossing during the time 
interval. Thus 

  
LX (u, t)  P[X(0)  u]P[TX (u)  t | X (0)  u]

 LX (u,0) P[TX (u)  t | X(0)  u]
 (40)  

and 

  pTX (u )[t | X(0)  u] 
1

LX (u,0)


 t

LX (u,t) (41) 

 
Thus, the partial derivative of LX (u, t)  with respect to t gives the conditional probability 
density of the first-passage time, just as the partial derivative with respect to u gives the 
probability density of the extreme response ˆ X (t). This close relationship between the 
extreme value problem and the first-passage problem is not always mentioned in the 
literature, with some authors using only one terminology and some using only the other. 
 
 In some problems, one can neglect the conditioning in (40) and (41), treating TX (u)  
as independent of X(0) . In particular, this is true in problems with an initial condition of 
P[X(0)  u] 1, such as when the system is known to start at X(0)  0 . Even in situations 
in which there is no specific information of independence, it is usually true that the effect 
of the initial-value conditioning is significant only for small values of t.  
 
 It is often convenient to write the probability of survival in an exponential form of 
 

  LX (u, t)  LX (u,0)exp  X (u,s) ds
0

t



 (42)  

 
which follows directly from a definition of X (u, t)  [1/ LX (u,t)] LX (u,t) / t . This 
gives 
 
  tuXtttPttuX  prior to upcrossing no,)0(|]+,[in  upcrossing),(   (43)  
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Comparing (43) with the upcrossing rate in (28) shows that X (u,t) is a conditional form 

of  X
 (u,t). Thus, X (u,t) can be considered to be the conditional rate of upcrossings of 

the level u, given the initial condition and the fact that there has been no prior upcrossing. 
The idea of a first-crossing rate seems contradictory, though, since there can only be one 
first-crossing for a given time history. If exceeding the level u is considered to 
correspond to a failure of the system, then X (u,t) is what is called the hazard function in 
reliability theory.  
 
 Unfortunately, it is not easy to calculate X (u,t) in order to find the probability 

distribution of either the first-passage time TX (u)  or the extreme value ˆ X (t). The only 
rigorous, general relationship for X (u, t)  is the so-called  inclusion-exclusion series, 
which involves an infinite sequence of rather complicated integrals involving the joint 
distribution of X  and X  at multiple time values [e.g., see Madsen et al., 1986]. 
 
 In many practical situations X (u,t) tends asymptotically to a function X (u)  that 
is independent of t as t becomes large. In particular, this asymptotic behavior is likely if 
{X(t)} is stationary, or becomes stationary for large values of t. The reason is that most 
physical processes have only a finite memory, in the sense that conditioning by an event 
far in the past has little effect on the current behavior of the process. When this is true 
one can use an approximation 
 

  LX (u,t)  L 0 eX (u ) t for large t  (44)  

 
 If there exists a time value T0  such that X (u,t) X (u)  for t  T0 , then (44) 
agrees with (42) for t  T0  if 

  L0  LX (u,0)exp  [X (u,s) X (u)]ds
0

T0

 


 (45)  

 
 The value of L 0  then depends on the way in which X (u,t) for small t differs from 

X (u) . For example, if {X(t)} is stationary for all time t, then X (u,t) for small time is 
usually greater than the stationary value X (u)  and L 0  is smaller than LX (u,0) 1. On 

the other hand, a common nonstationary process has the “zero-start” condition of 
X(0)  0 and 0)0( X , as applies to the response of a dynamical system that starts from 
a condition of rest. In this case, X (u,t) starts from zero and increases as the response 
grows, giving L0  LX (u,0) 1. These behaviors are illustrated in Figure 4.  
 
 Note that (42) and (45) divide the probability of failure into two parts. The 
exponential terms relate to the probability of crossing the level u, while the multiplier 
LX (u,0) accounts for the fact that a process may start above the level u, which is given 
by P[X(0)  u]. For the mean-zero narrowband process, note that there is a high 
probability of an early upcrossing if A(0)  u . Since the narrowband amplitude varies 
slowly with time, it is very likely that any X(t) sample with A(0)  u  will exceed u 
during the first cycle. One way to approximate this effect is to treat the event A(0)  u  as 
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though it were failure at time zero, so that the multiplier LX (u,0) in (42) and (45) is taken 
as P[A(0)  u]. Clearly, this approximation does not accurately describe the reliability 
during the first cycle of the mean-zero narrowband process, but it can give useful results 
for later times, which are generally of greater interest. 
 
 Any error in estimating L 0  in (44) results in a proportional error in the predicted 

reliability LX (u,t). An error in X (u) , though, is much more important since it leads to 
an error in LX (u,t) that grows exponentially. Thus, there has been considerable effort 
invested is estimating this limiting X (u)  function. The following section summarizes 
some of the results obtained by direct consideration of the first-passage time. 
 
 
FIRST-PASSAGE FORMULATIONS 
 
 The simplest approximation of X (u,t) is related to the similarity between (43) and 
(28). Since X (u,t) is a conditional form of the upcrossing rate, simply neglecting the 

conditioning gives X (u,t)  X
 (u, t). For any process this gives 

 

  LX (u, t)  LX (u,0)exp   X
 (u,s)ds

0

t

 


 (46)  

 
and in the particular case of a stationary mean-zero process it reduces to the form in (44) 
with L0  LX (u,0) which may be taken as either P[X(0)  u] or P[A(0)  u]. The 
formula in (46) is commonly called the Poisson approximation of the first-passage 
problem. This name comes from the fact that if the integer-valued process that counts the 
number of upcrossings by X(t) were a Poisson process, then the crossing rate would be 
independent of the past history of the process and the conditioning neglected in (46) 
would be irrelevant.  
 
 For a stationary {X(t)} process, the Poisson approximation gives the first passage 

time TX (u)  as having a simple exponential distribution with P[TX (u)  t] 1 e X
 (u ) t . 

This then gives the mean and standard deviation of TX (u)  as both being equal to 
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[ X
 (u)]1. In the particular case of a stationary mean-zero Gaussian process, the crossing 

rate in (31) then gives 
 

  LX (u,t)  LX (u,0)exp
ct

2
eu 2 /(2 X

2 )





 (47) 

 
in which c  is again the characteristic frequency defined in connection with the energy-
based amplitude A2 . Also, the value of P[X(0)  u] or P[A(0)  u] for use as LX (u,0) is 
easily calculated for the Gaussian process, for which A has the Rayleigh distribution. It 
should be noted that (47) can only be considered to be an approximation of LX (u,t) for 

u  0. In particular, P[ ˆ X (t)  u]  LX (u, t) must be an increasing function of u, and this 
condition is not met by (47) for u  0. Thus, one must consider (47) to give a finite 

probability that ˆ X (t) is equal to zero: P[ ˆ X (t)  0]  LX (0,0)ec t /(2 ) . This discontinuity 
in F ˆ X (t)

(u) decays toward zero as t increases. 

 
 The error of the Poisson approximation is most serious when the {X(t)} process is 
very narrowband. In that situation, an upcrossing of level u at time t is very likely to be 
associated with another upcrossing approximately one period later, due to the slowly 
varying amplitude of {X(t)}. Such a “clumping” of the upcrossing times is inconsistent 
with the Poisson approximation that the times between upcrossings are independent. On 
the other hand, when u is very large it is found that the independence assumption seems 
to be better. There are few general results that apply to all {X(t)} processes, but for 
stationary Gaussian processes it has been demonstrated that X (u,t) does tend 

asymptotically to  X
 (u)  as u tends to infinity [Cramer 1966]. Thus, the Poisson 

approximation is best when the {X(t)} process is very broadband and/or the level u is 
very large. In some narrowband situations, it may be significantly in error.  
 
 From the form of (42) it is clear that an overestimation of X (u,t) results in an 
underestimation of LX (u,t). An error of this type is usually considered to be 
conservative, because it overestimates the probability of failure due to large excursions. 

Furthermore, in most practical situations it is true that X (u,t)  X
 (u,t), so that the 

Poisson approximation does underestimate LX (u,t). Some caution is appropriate, though, 

since there are situations in which X (u,t)  X
 (u,t). In particular, if the level u is so 

small that P[X(t)  u] is also small and if there is an initial condition that X(0)  u , then 
it is very likely that X(t) will quickly have an upcrossing of u. Mathematically this 
requires that LX (u,t) approach zero as u  , for any finite t value. This is ensured for 
any choice of LX (u,0) only if X (u,t) tends to infinity for u  , at least for t  0, 

clearly requiring that X (u,t)  X
 (u,t). This small-u situation, though, is not often of 

practical importance in reliability analysis.  
 
 There are several ways in which the Poisson estimate has been modified to give 
somewhat better results. One of the simplest is an attempt to address, in an approximate 
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way, the noted underestimation of X (u,t) for situations in which u is so low that the 
average time between upcrossings may be much larger than the time until the first 
upcrossing. Instead of the usual Poisson assumption that the probability distribution of 
the first-passage time TX (u)  for a stationary process is the same as that of the total time 
interval between successive upcrossings, the modification is based on the idea that TX (u)  
has more in common with the time spent below the level u between successive 
upcrossings. This reduces the estimate of the time until first passage and gives more 
conservative estimates of failure probabilities for small values of u but has little effect for 
large u values. A simple approximation of this time increment below u gives 

X (u,t)  X
 (u, t) /FX (t)(u) [Lutes and Sarkani, 2004]. This approximation does give the 

desired behavior that LX (u,t) tends to zero as u tends to negative infinity. This same 
approximation of X (u,t) was earlier obtained by Ditlevsen [1986] by a somewhat 
different method of reasoning. 
 
 Attention will now be focused on more significant modifications to the Poisson 
approximation. In particular, the aim of these approaches is to give better results for 
X (u)  for a narrowband process, in which the upcrossing times cannot be independent 
because of the slowly varying amplitude {A(t)}. The simplest extreme value 
approximation based on the slowly varying amplitude process amounts to assuming that 
the extreme value of the mean-zero {X(t)} process is the same as that of {A(t)}, and that 
the Poisson approximation applies to {A(t)}. This gives LX (u,t)  LA (u,t), in which 

LA (u,t) is the same as (46) except that  X
 (u)  is replaced by A

 (u) . By exactly the same 

reasoning as was used in suggesting that  X
 (u) /FX (t )(u) was preferable to  X

 (u)  for the 

original Poisson approximation, one can also say that A
 (u) /FA (t )(u) is preferable to 

A
 (u)  for this Poisson-amplitude approximation.  

 

 For the special case of a stationary mean-zero Gaussian process, the A
 (u)  crossing 

rate has been evaluated for both the Cramer/Leadbetter and energy-based amplitude [e.g., 
Lutes and Sarkani, 2004]. The results are 
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and the probability estimate for first-cycle crossing of a narrowband process is 

FA(t )(u) 1 eu2 /(2 X
2 ). Thus, implementation of the Poisson-amplitude approximation 

is very straightforward. 
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 It is generally presumed that the Poisson assumption is much better for {A(t)} than 
for {X(t)}, and that the amplitude-crossing approach is conservative, since the maximum 
of X(t) cannot exceed the maximum of A(t). Numerical studies show that the Poisson-
amplitude approximation does give significantly improved estimates of X (u,t) for small 
to moderate values of u values, but it is seriously in error when u is large. Whereas the 

original Poisson approximation of )()( uu XX
  becomes asymptotically correct as u 

goes to infinity, A
 (u) / X

 (u)  grows without limit as u increases, giving grossly overly 
conservative estimates of X (u) .  
 
 An improved approximation of the extreme value distribution can be obtained by 
estimating the fraction of the upcrossings by A(t) that are accompanied by upcrossings 
by X(t). The X (u,t) conditional crossing rate can then be taken to represent the rate of 
occurrence of this subset of the amplitude-upcrossings. Vanmarcke introduced such a 
scheme [Vanmarcke, 1972; Corotis et al., 1972; Vanmarcke, 1975] and Madsen et al. 
[1986] derived a very similar result. Some of the assumptions in these approximations 
will be summarized here, along with the formulas. 
 
 Let the random variable T1  denote the time between an upcrossing of u by A(t) and 
the subsequent downcrossing by A(t). Then T1 represents the duration of an interval with 
A(t)  u. If T1 is large, then it seems almost certain that X(t) will have an upcrossing of 
u within the interval, but if T1 is small, then it seems quite likely that no upcrossing by 
X(t) will occur. Vanmarcke approximated this relationship by 
 

  P[no upcrossing by X(t) | T1   ]  [1 X
 (0, t)]U[1 X

 (0, t)] (50)  
 

 Considering [ X
 (0, t)]1 to represent the period of an average cycle of the {X(t)} 

process, this approximation amounts to saying that an upcrossing by X(t) is sure if T1 
exceeds the period, and the probability of its occurrence grows linearly with T1 for T1 
less than the period. Even though this approximation is crude, it is substantially better 
than simply assuming that an upcrossing by X(t) occurs in connection with every 
upcrossing by A(t). To calculate the unconditional probability of an upcrossing in the T1 
interval, it is necessary to have a probability distribution for T1, and this is assumed to be 

the exponential distribution pT1
()  e /E(T1) / E(T1). Based on the usual formulation that 

the mean time between upcrossings is [A
 (u, t)]1, the mean time below u during the 

interval is estimated as E(T1)  P[A(t)  u]/A
 (u,t). Using this along with 

X (u, t) A
 (u, t)P[upcrossing by X(t) during T1] gives 

 

  X (u, t)  P[A(t)  u] X
 (0,t) 1 exp

A
 (u,t)

P[A(t)  u] X
 (0, t)



















  (51)  
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 In the limit as u tends to zero, P[A(t)  u] tends to unity and X (u,t) tends to 

A
 (u,t), as when considering each upcrossing by A(t) to correspond to a crossing by 

X(t). For large values of u, P[A(t)  u] is very small, so A
 (u, t)  P[A(t)  u] X

 (0, t)  

and (51) gives X (u, t)  P[A(t)  u] X
 (0, t) .  For the special case of a Gaussian process 

it can be shown that this latter limit is identical to  X
 (u,t), so the approximation agrees 

with the results from the assumption of Poisson crossings by X(t). For a non-Gaussian 
process, these two results for large u values may not be identical, although they are 
expected to be quite similar. 
 
 As in our other approximations, one can expect to obtain better results for small u 
values by including the effect of the initial condition. Because this estimate of X (u,t) is 
a modified version of the amplitude-crossing rate, it is reasonable to do this by dividing 
by P[A(t)  u], giving 
 

  X (u,t) 
P[A(t)  u] X

 (0,t)

P[A(t)  u]
1 exp

A
 (u, t)

P[A(t)  u] X
 (0,t)



















 (52)  

 

which agrees with A
 (u,t) /FA(t)(u)  in the limit for u near zero. 

 
 It should be noted that for a general non-Gaussian {X(T)} process, (52) is not 
identical to Vanmarcke’s result and that his derivation uses somewhat more sophisticated 
assumptions about the behavior of {X(T)}. For the special case of the Gaussian process, 

though, it can be shown that P[A1(t)  u] X
 (0,t)   X

 (u,t), so (52) with the Cramer and 
Leadbetter definition of amplitude does become identical to Vanmarcke’s form of 
 

  X (u,t)  X
 (u, t) 1 exp

A1

 (u, t)

 X
 (u, t)























 1

 X
 (u,t)

 X
 (0, t)










1

 (53)  

 
 It can be expected that the two approximations will also give similar results for 
other processes that do not differ greatly from the Gaussian distribution. 
 
 For the special case of a stationary, mean-zero, Gaussian {X(t)} process, 
Vanmarcke [1975] also offered an empirical correction that improves the approximation 
of the conditional crossing rate, at least for small to moderate values of u. For this 

situation, the ratio A
 (u) / X

 (u)  of (53) is [2 (11
2)]1/2(u / X )  in which the term 

(11
2) introduces the effect of the bandwidth of the process. As an empirical correction 

for effects not included in the derivation of these equations, Vanmarcke suggested 

replacing the (11
2) term with (11

2)1.2 . This gives the modified Vanmarcke 
approximation as 
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 1 exp (11
2)0.6(2 )1/2 u
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2 X
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 (54) 

 
 In many problems, failure may occur due to large excursions of X(t) in either the 
positive or negative direction, whereas all the development up until now has been 
concerned only with the probability that X(t) remains below u . However, the event of 
X(t) remaining within [u,+u] is exactly the same as the event of | X(t) | remaining 
below the level u, and this allows the new problem to be written in the form of (42), but 
with L |X |(u,0) and  |X |(u,s) used in place of LX (u,0) and X (u,s) , respectively. The 

terms double-barrier problem and single-barrier problem are often used to distinguish 
between upcrossings by | X(t) | and X(t), respectively. Of course, one can also consider 
double-barrier problems in which the levels of interest are not symmetric. Modifications 
to the various first-passage approximations will be summarized for the symmetric 
double-barrier problem. 
 

 The double-barrier Poisson approximation is that  |X |(u,s)   X
 (u,s)  X

 (u,s). If 

the distribution of X(t) and )(tX  is symmetric, this then gives  |X |(u,s)  2 X
 (u,s), 

indicating that the decay of L with increasing t is twice as fast as for the single-barrier 

problem. The small-time modification of dividing  |X |
 (u,s)  by F|X |(u) has more effect 

than the corresponding adjustment for the single barrier problem, since F|X |(u) tends to 

zero as u tends to zero. The approximation of  by A
 (u,s)  or A

 (u,s) /F|X |(u)  is equally 
valid for the double-barrier problem as for the single-barrier situation. That is, for the 
mean-zero process, the extreme distribution of A(t) can be considered an approximation 
of the extreme distribution of | X(t) |, just as well as for the extreme distribution of X(t). 
In fact, it seems likely that the approximation will be better for | X(t) | than for X(t).  
 
 Adapting the Vanmarcke approximation to the double-barrier problem requires 
estimation of the probability that an upcrossing by A(t) is accompanied by an upcrossing 
by | X(t) | during the interval of length T1 between an upcrossing of u by A(t) and the 
subsequent downcrossing. This probability is estimated as zero for T1  0 and growing 

linearly to unity for T1 equal to the half-period [ X
 (0,t)]1 /2. Other assumptions are the 

same as for the single-barrier situation and the result corresponding to (52) is 
 

   |X |(u,t) 
2P[A(t)  u]  X

 (0,t)

P[A(t)  u]
1 exp

A
 (u, t)

2P[A(t)  u] X
 (0, t)



















 (55)  

 
The corresponding modification of Vanmarcke’s formula in (53) is 
 

   |X |(u,t)  |X |
 (u, t) 1 exp

A1

 (u,t)

 |X |
 (u, t)























 1

 X
 (u,t)

 X
 (0,t)










1

 (56)  
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which is identical to using the Cramer and Leadbetter amplitude in (55) for a mean-zero 
Gaussian {X(t)} process. Using the empirical adjustment in (54) for a stationary process 
changes this to 

  
|X |(u)

 |X |
 (u)

 1 exp (11
2)0.6( /2)1/2 u

 X



















 1 exp

u2

2 X
2





















1

 (57)  

 
 An illustration is given in Figure 5 of the effects of the various assumptions on the 
double-barrier estimates of |X |(u)  for a stationary, mean-zero, Gaussian, narrowband 

process with 1  0.994 . The results are presented as the ratio |X |(u) / |X |
 (u) , a 

normalization introduced by Crandall et al. [1966] and commonly used since then. Thus, 
the results for the assumption of Poisson crossings by X(t) appear as unity on this plot, 

even though they are inaccurate for such a narrowband process. The results for the A
 (u)  

approximation are based on the Cramer/Leadbetter amplitude. There are two curves each 
for Poisson X crossings and Poisson A crossings, showing the increase in the value of  
when the crossing rates are divided by F|X |(u)  and FA (u), respectively. Only the results 

for Vanmarcke’s approximation give all the desired tendencies of X (u) : tending to 

infinity for u going to zero, being less than  X
 (u)  for intermediate values of u, and 

tending to  X
 (u)  for large values of u. 

 
 The plot in Figure 5 also includes some simulation results for one particular 
stationary, mean-zero, Gaussian process with the specified value of 1 [Lutes and 

Sarkani, 2004]. It is seen that the simulated values of X
 (u)  are smaller than the 

predictions from any of the approximations, except when u is less than about 1.2 X . 

Also, the simulation data clearly show that the X (u) / X
 (u)  ratio has a minimum value 

when u is approximately 2 X . The analytical form due to Vanmarcke comes closest to 
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fitting the simulation data. In particular, the modified Vanmarcke form of (57) gives a 

minimum value of  |X |(u) / X
 (u) at approximately the right u value, and the values it 

gives for the ratio in this vicinity are better than those of any of the other approximations 
that have reasonable behavior for smaller u values. Nonetheless, it must be noted that 
there is sometimes a significant discrepancy between Vanmarcke’s formula and the 
simulation data. For u  2X , for example, the approximation is about 70% above the 
value of 0.10 or 0.11 obtained from simulation, even though the modified approximation 
agrees almost perfectly with the data point from simulation for u  4X . Any 
overestimation of  |X |(u) gives LX (u,t) values that decay more rapidly with increasing t 

than do the values from simulation. For u  2 X  and large values of time, Vanmarcke’s 
formula will significantly overpredict the probability that | X(t) | has ever reached the 
level u, but this discrepancy is much smaller than that of the commonly used assumption 
of Poisson crossings by X(t). Also, the discrepancy is smaller when u is large, and this is 
often the region of primary interest in predicting failure. It should also be noted that the 
simulation data suggest the possibility that the modified Vanmarcke approximation in 
(57) may be nonconservative for u values greater than 4 X . That is, the empirical 
adjustment in (54) consistently improves the results for moderate values of u, but it may 
be excessive for very large values of u. 
 
 
GLOBAL EXTREME FORMULATIONS 
 
 Recall that ˆ X (t) was defined in (38) as the maximum value of the process {X(t)} 
within the interval [0,t]. There is an obvious relationship between the problem of 
describing this global maximum and the classical problem of describing the maximum of 
a set of random variables: 

ˆ R  max{R1,R2,,Rn}. The simplest version of this problem 
is when the R j  random variables are independent and identically distributed, which gives 

the distribution of ˆ R  as 

  F ˆ R 
(u)  FR

n (u) p ˆ R 
(u)  n FR

n1(u) pR (u) (58) 

 
 The fact that FR (u) must tend from zero to unity as u increases, means that 

FR
n1(u) has a similar form, but is shifted further and further to the right along the u axis 

as n increases. Thus, the probability distribution of ˆ R  for very large n values depends 
only on the behavior of the right-hand tail of pR (u). 
 
 One way to apply this random variable idea to the stochastic process problem is to 
note that ˆ X (t) is the maximum peak of {X(t)} during the interval [0,t]. For the mean-
zero Gaussian process, c /(22) is the expected peak-occurrence rate, with 

XXc  / . Thus, the expected number of peaks is nP  (ct) /(22). If one now 

assumes that these nP  peaks are all independent random variables then  
 

  LX (u,t)  F ˆ X (t )
(u)  FP

nP (u)  exp ct ln[FP (u)]/[22]  (59) 
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which is exactly the same as the asymptotic crossing-rate form in (44) with L0 1 and 
X (u)  [c /(22)] ln[FP (u)] .  
 
 It has been shown that the large-u results of the Poisson-crossings approximation 
can also be obtained by assuming that all the peaks within the [0,t] interval are 
independent random variables [Crandall, 1970]. To see this, recall that the Rice 
distribution of the peak P of a Gaussian process, as given in (36) is exactly the same as 
the weighted sum of two independent random variables, one having the Rayleigh 
distribution of the amplitude of {X(t)} and the other having the Gaussian distribution of 
{X(t)}. The weighting factors for the Rayleigh and Gaussian components, respectively, 

are the bandwidth parameter 2 and (12
2)1/2 . The probability density of the Rayleigh 

distribution, as given in (27), is proportional to ueu 2 /(2 X
2 )  whereas that of the Gaussian 

distribution is proportional to eu 2 /(2 X
2 ). From this comparison it is clear that the Rice 

distribution will be dominated by the Rayleigh component when u is very large. Since 
large-u is the situation of interest when n is large, this gives FP (u) from (36) tending to 

12 eu 2 /(2 X
2 )  and ln[FP (u)] tending to (2 eu2 /(2 X

2 )) . The asymptotic first-

crossing rate is then X (u)  (c /2 )eu 2 /(2 X
2 )  X

 (u) , which is exactly the same as 
the result of the Poisson-crossings assumption for X(t).  
 
 For a narrowband Gaussian process there is an even simpler approach that gives 
asymptotic equivalence between (58) and the Poisson X-crossing approximation. 
Consider the interval [0,t] to be divided into nc cycles of period (2 /c), giving 
nc  (ct) /(2 ). Assume that the amplitude A(t) can be considered to be constant over 
each of these cycles and independent in different cycles so that (59) applies, giving 
 

  LX (u,t)  FA
nc (u)  exp ct ln[FA (u)]/[2 ]  (60) 

 

For the Rayleigh random variables, ln[FA(t )(u)] ln[1 eu2 /(2 X
2 )] and for large u this 

tends to (eu2 /(2 X
2 )) . Again the asymptotic behavior is the same as the Poisson-

crossings result with X (u)   X
 (u) . The formulas in (59) and (60) both give 

X (u)   X
 (u)  for small values of u. In fact, the curves are generally similar to those for 

X (u)   X
 (u) /FX (u) . 

 
 Naess and Gaidai [2008] recently introduced another approximation that may be 
viewed as a modification of the formula in (58). The approximation is based on the peaks 
of the time history, as in (59), but including conditioning based on the values of prior 
peaks. In particular, the approximation is that  
 

  LX (u, t)  FPn

(nP k )(u | Bk ) (61) 
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in which the conditioning event for peak Pn  is Bk  {Pn1  u,Pn2  u,,Pnk  u} (i.e., 
the preceding k peaks have all been below u). The method used by Naess and Gaidai to 
estimate the critical quantity FPn

(u | Bk )  involves simulation of one or more relatively 

long time histories of X(t). It is easy to create a computer program to count peaks in a 
simulated time history and determine the fraction of peaks above u for which there are k 
preceding peaks that are all below u. This fraction is used as the estimate of 
[1 FPn

(u | Bk )]. One difficulty of such a simulation approach is that it may require a very 

long time history to find any significant number of peaks above a high u level. Naess and 
Gaidai, though, found that [1 FPn

(u | Bk )] for large u is approximated by the form 

q0 exp[a(u b)c]. After evaluating the parameters to fit observed data, this form could 
be used to extrapolate [1 FPn

(u | Bk )] to larger u values. The method has been 

demonstrated to give very good approximations of empirical data for k values of 3 or 4. It 
also has been demonstrated for a process with bimodal spectral density comprised of two 
narrow-band components. In this situation, though, the value of k must be large enough to 
include peaks over a selected number of lower-frequency periods. This can be a 
significant number when the frequencies of the components are well separated. 
 
 A modified version of the largest cycle-amplitude approach is based on including 
some effect of correlation of the cycle amplitudes [Lutes, 2008]. The major simplification 
is to include only the effect of knowing that A(t   c)  u when estimating the probability 
of A(t)  u, in which  c  is a representative period of the process. Obviously, this is very 
similar to the peak conditioning in (61) with k 1, but with the advantage of working 
with the distribution of amplitudes rather than peaks. The only new information needed is  
 

 q(u)  P[A(t)  u |A(t   c)  u] 
1

FA (u)
pA (t c )A (t )(v1,v2)

0

u0

u dv1dv2  (62) 

 
or, in a form that is more accurate for numerical evaluations, 
 

  q(u) 
1

FA (u)
1 2 pA (t c )A (t )(v1,v2)

0

v2u

 dv1dv2


 


 (63) 

 
The result of this approximation is  
 

 LX (u,t)  F ˆ X (nc c )
(u)  FA (u)q(nc1)(u)  [FA (u) /q(u)]exp t ln[q(u)]/ c  (64)  

 
which gives the asymptotic first-crossing rate as X (u)  ln[q(u)]/ c . Note that q(u)  is 
bounded as FA (u)  q(u) 1, and it approaches the upper limit for a narrowband process. 
This gives an estimate of X (u)  that can be significantly smaller than that of the Poisson 
assumption for a narrowband process.  
 
 Under certain circumstances the joint probability density for the amplitudes in (62) 
and (63) reduces to a relatively simple form. In particular, if the {X(t)} process is 
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Gaussian so that the amplitude has the Rayleigh distribution, and if GZZ ( c)  GXX ( c) , 
for the {Z(t)} used in defining the amplitude, then the jointly Rayleigh distribution is 
 

  pA(t )A(t)(u1,u2) 
u1u2

(1 ) X
4

exp
(u1

2  u2
2)

2(1 ) X
2









I0

1/2u1u2

(1 ) X
2









 (65) 

 
in which I0() denotes the modified Bessel function of order zero. The new parameter   

in (65) is the correlation coefficient of A2(t) and A2(t   /c), so is always in the range 

[0,1]. It can also be written as   [GXX
2 ( c)  GXZ

2 ( c)]/ X
4 . Although no closed-form 

solution has been found for the double integration in (62) or (63) for this probability 
distribution, numerical evaluation is relatively simple. For the Cramer/Leadbetter 
amplitude, GZZ ()  GXX ()  for all values of   so that the GZZ ( c)  GXX ( c)  condition 
on (64) is automatically satisfied and one can use the natural choice of  c  2 /c. For 
the energy-based amplitude, the condition can sometimes be met by making a small 
adjustment in  c  [Roberts, 1976].  
 
 For the Cramer/Leadbetter amplitude, the quantity GXZ ( )  is the negative of the 
Hilbert transform of GXX ( ) and for the energy-based amplitude it is  G XX () /c. 
These quantities can be further simplified for the situation of a narrowband process. In 
particular, it is known that GXX ( ) is nearly harmonic with period  c  for a narrowband 
process, and this nearly harmonic nature of the functions gives GZZ ( c)  GXX ( c) and 

GXZ ( c)  GXX ( c). Thus, the distribution in (64) with   GXX
2 ( c) / X

4  is a good 
approximation for any narrowband process. 
 
 This method of considering conditioning of cycle-amplitudes as opposed to peaks, 
as in (64), has the advantage of avoiding numerical simulation of time histories. On the 
other hand, the method does require numerical integration of (63). In principle, the 
method can also be extended to include some amplitude-correlation over multiples of  c , 
giving something even closer to (61), but this would be significantly more difficult. 
 
 The modifications needed in order to apply the methods in this section to the 
double-barrier problem are quite straightforward.  The independent peak approximation 
of (59), now counts both peaks and valleys and half-cycles replace cycles in the cycle-
amplitude approaches. This requires replacing nP  with 2nP  in (59) and replacing nc with 
2nc for cycle-amplitudes. The only change in the Naess and Gaidai approach is in the 
simulation to find the conditional distribution function in (61). 
 
 Numerical results for the independent-amplitude method of (60) and the correlated-
amplitude method of (64) are shown in Figure 6, along with the same simulation data as 
in Figure 5. The independent-peaks method of (59) and the correlated-peaks method of 
(61) are not useful for the process producing this simulation data, since the data are for a 
process with 2  0 due to X . This limiting condition gives the peak distribution 

as Gaussian, so that it does not have the necessary tendency to the Rayleigh form for 
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large u, as in all other situations. Figures 5 and 6 show that for this narrowband process 
the correlated-amplitude approach gives  values that are quite similar to those of the 
Vanmarcke method, but are somewhat more conservative for large u values. 
 
 
NUMERICAL RESULTS 
 
 The significance of the preceding analytical results will now be illustrated by 
presenting figures and tables demonstrating the  probability of | X(s) | exceeding a level u 
at least once during the interval 0  s  t : 
 
  Pe(u, t) 1 L|X |(u, t)  P[ ˆ X (t)  u] P[TX (u)  t] (66) 
 
in which, ˆ X (t) is the largest value of | X(s) | within the set 0  s  t  and TX (u)  is the 
time at which | X(t) | first exceeds the level u.. These results will be limited to the 
situation in which it is given that the process begins with | X(0) | u and initial conditions 
will be ignored, so that (44) gives L|X |(u,t)  exp[|X |(u) t]. 
 
 The most comprehensive results will be presented for the Poisson approximation of 
the double-barrier first-passage probability, since it is relatively simple and is 
asymptotically correct for large u values. In particular, letting |X |(u)  2 X (u)  and 
solving for time gives 
 

  
ct

2

1

2
ln[1 Pe(u, t)] eu 2 /(2 X

2 )  (67) 

 
Note that the left-hand side of (67) is a normalized time that can be taken as the number 
of “cycles” (or upcrossings of zero) of the mean-zero Gaussian process during the time 
interval [0,t]. Figure 7 then shows this cycle-count versus Pe for several integer values of 
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u / X . This can be viewed as the time required for P[ ˆ X (t)  u] to reach level Pe for a 
stationary process or, equivalently, as the duration of a finite time history for which 
P[ ˆ X (t)  u]  Pe . As would be expected, the time value grows with increasing u and also 
with increasing Pe. What is more interesting is the magnitude of the numerical values. 
For the 5-sigma level, for example, there is a 0.1% probability of exceedance within a 
time history of about 134 cycles, increasing to 1% probability for 1,350 cycles, and to 
50% probability for 93,000 cycles. Thus, there may be many situations in which 
exceeding 5-sigma should not be considered to be a very rare event. Similarly, the 
exceedance of 3-sigma may be considered to be quite common, having a 50% probability 
of occurrence within a time history of only 31 cycles. 
 
 The likelihood of seemingly large extreme values can be illustrated in another way 
by using (67) to find the probability distribution of the largest extreme for a given value 
of t. In particular, the probability density of ˆ X (t) is simply the derivative of L|X |(u,t) 
with respect to u, but with the modification that the Poisson approximation requires a 
finite value for L|X |(0, t), as discussed following (47). For the Poisson approximation of 
the double-barrier problem, this gives the probability density as 
 

  p ˆ X (t )
(u)  ec t /(u) 

ct










u

 X
exp

u2

2 X
2

ct


eu 2 /(2 X

2 )








 (68) 

 
This probability distribution can then be used to evaluate numerically the mean ( ˆ X 

) and 

the standard deviation ( ˆ X 
) of the largest extreme within a time history of a given length. 

For illustration consider a time history of 1,350 cycles, for which it was previously found 
that there is a 1% probability of finding an extreme exceeding 5 X . The probability 

density of ˆ X (t) for this situation is shown in Figure 8, and it is found numerically that 
 ˆ X 

 4.03 X  and  ˆ X 
 0.31 X . Thus,  ˆ X 

 3 ˆ X 
 5 X . For this particular example 
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there is a 1% probability of the largest extreme exceeding  ˆ X 
 3 ˆ X 

—the mean plus 

three standard deviations of the random extreme. Again, it seems that 5 X  may be 
viewed as a value that is relatively likely to be exceeded in many studies of extreme 
values.  
 
 Recall that the Vanmarcke approximations and the correlated-amplitude 
approximation all give results with L|X |(u,t) decaying exponentially as |X |(u)t . Thus, 
any of these methods gives results similar to Figure 7 except that the time for ])(ˆ[ utXP   
to reach level Pe is increased by the ratio  |X |(u) /|X |(u) . For the Vanmarcke 
approximations this ratio depends on the bandwidth parameter 1 of X(t), and for the 

correlated-amplitude approximation it depends on   [GXX
2 ( /c)  GXZ

2 ( /c)]/ X
4 . 

 
 Tables 1 and 2 show the extent to which the time until exceedance is increased by 
use of the Vanmarcke approximations instead of the Poisson approximation. In particular, 
the numbers in the tables are multipliers to apply to the Poisson time values, as in (67) 
and Figure 7, to obtain a Vanmarcke estimate of the time for P[ ˆ X (t)  u] to reach level 
Pe for several values of u, and for several different narrowband processes. Note that 
Table 1 is for the original version of the Vanmarcke approximation, without the empirical 
correction factor introduced in (54) and (57), with this latter form being shown in Table 
2. Table 3 presents the same information for the approximation of correlated amplitudes, 
as in (64) and (65). 
 
 The values of the parameters 1 and   in the tables, of course, are related to the 
bandwidth of the process. To illustrate their significance, it may be helpful to consider a 
relatively well-known problem that does yield such narrowband processes as those 
presented here. In particular, consider the response of a single degree-of-freedom 
oscillator subjected to a white noise excitation, for which the bandwidth is governed by 
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the fraction of critical damping   in the oscillator. For this example, the parameter 1 is 
found to be  

  1 
1

(1 2)1/2
1

2


tan1 

(1 2)1/2



















 (69) 

 
 Similarly, the correlated-amplitude approximation is easily applied to this situation 
by using the A2 definition of amplitude and choosing the time increment  c  for one half-

cycle to be given by 0 c   /(1 2)1/2 , in which 0 is the undamped frequency of the 
oscillator. This gives 
 

    exp[2  /(1 2)1/2] (70) 
 
 The results in (69) and (70) are also approximately correct for any broadband 
excitation of the simple oscillator, and they tend to 1 1 2 /  and  1 2   for 
very small values of  . 
 
 
  Table 1. Increase in time for Vanmarcke correction of (55) and (56)  

  u  3 u  4 u  5 u  6 u  7 u  8 
        

1  0.999  6.39 4.98 4.09 3.50 3.08 2.77 
1  0.99  2.40 1.97 1.70 1.53 1.41 1.32 
1  0.95  1.43 1.26 1.16 1.11 1.07 1.05 
1  0.9  1.23 1.13 1.07 1.04 1.02 1.01 

 
 
  Table 2. Increase in time for Vanmarcke correction of (57)  

  u  3 u  4 u  5 u  6 u  7 u  8 
        

1  0.999  11.45 8.81 7.16 6.05 5.26 4.67 
1  0.99  3.28 2.63 2.22 1.95 1.76 1.62 
1  0.95  1.63 1.41 1.27 1.18 1.13 1.09 
1  0.9  1.32 1.19 1.11 1.07 1.04 1.03 

 
 
  Table 3. Increase in time for correlated-amplitude correction of (64) 

  u  3 u  4 u  5 u  6 u  7 u  8 
        

  0.99  8.27 6.29 5.05 4.23 3.65 3.17 
  0.9  2.64 2.07 1.72 1.49 1.34 1.24 
  0.6  1.38 1.18 1.08 1.03 1.01 1.00 
  0.3  1.11 1.03 1.01 1.00 1.00 1.00 
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 The values of 1 in Tables 1 and 2 and the values of   in Table 3 have been chosen 
to correspond to similar values of   in the single degree-of-freedom oscillator. In 
particular, the 1 values of 0.999, 0.99, 0.95, and 0.9 correspond to   values of 0.0016, 
0.016, 0.084, and 0.18, respectively, while the   values of 0.99, 0.9, 0.6, and 0.3 
correspond to   values of 0.0016, 0.017, 0.081, and 0.19. The numbers in the first two 
rows of each table can be considered to be for very narrowband processes. Those in the 
first row (  0.0016), in particular, are for a situation that is so narrowband as to be 
extremely rare in practice. 
 
 The modified Vanmarcke results in Table 2, in particular, show that it is possible 
for this correction to give exceedance times that are an order of magnitude larger than 
those predicted by the Poisson approximation. The increases in exceedance time for the 
correlated-amplitude approximation in Table 3 are also significant for the same 
situations. However, these large increases only occur for very narrowband processes and 
a relatively low crossing level. Thus, the simple Poisson approximation is quite adequate 
for many practical situations. 
 
 
TRANSLATION PROCESSES 
 
 There is one class of non-Gaussian processes for which it is particularly simple to 
apply all the results developed for the Gaussian situation. In particular, consider a non-
Gaussian process {X(t)} that can be written as 
 
  X(t)  g[Y (t)] (71) 
 
in which {Y (t)} is a normalized stationary Gaussian process and g() is a monotonically 
increasing function. The cumulative distribution of such a so-called translation process 
{X(t)} [Grigoriu, 1995] is then given by 
 
  FX (t)[g(y)] P[X(t)  g(y)] P[Y (t)  y](y) (72) 

 
 Furthermore, the peaks of X(t) occur at the same time as those of Y(t) and the 
relationship between the peak magnitudes is PX  g(PY ) . In addition, the global maxima 

within a time interval [0,t] satisfy ˆ X (t)  g[ ˆ Y (t)], with a similar relationship for the 
global minima. Note that the global maximum and the global minimum of X(t) may 
have quite different probability distributions if g() is not an odd function. 
 
 In practice it is often useful to apply the translation procedure of (71) in order to 
approximate a non-Gaussian process {X(t)} by a translation process {g[Y (t)]}. One can 
always find an appropriate translation process by choosing g() to match the cumulative 
distribution function of g[Y(t)] to that of X(t). In particular, the inverses of the two 

distribution functions give u  FX
1[P(X  u)] and y 1[P(Y  y)]. Plotting u versus y 

for a range of probability values then gives the desired g() function. It should be noted, 
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though, that this procedure does not necessarily give {g1[X(t)]} as a Gaussian process. 

Rather, it assures that {g1[X(t)]} can be viewed as a collection of Gaussian random 
variables, but these random variables may or may not be jointly Gaussian, as is required 
for a Gaussian process. 
 
 It is known that the peaks of the normalized Gaussian process {Y (t)} are given by 
the Rice distribution 
 

  P(Y  y)  y

(12
2)1/2









2ey 2 /2 2y

(12
2)1/2









 (73) 

 
The fact that g(y)  is a monotonically increasing function assures that every peak of Y(t) 

maps into a peak of g[Y (t)]. If {g1[X(t)]} truly is a normalized Gaussian process, then 
the probability distribution of the peaks of g[Y(t)] agrees with that of the peaks of X(t). 
Otherwise, {X(t)} is not truly a translation process. Of course, the Rice distribution of 
peaks is a necessary but not sufficient condition for Gaussianity, but it is one of the easier 
tests to apply in practice.  
 
 Even in a situation in which the translation concept gives only an approximate 
description of the data being analyzed, it is fairly likely that the approximation will be of 
some value in predicting the probability of first-passage failure for a non-Gaussian 
process. 
 
 
SUMMARY 
 
 The reliability problem can be formulated either as finding an estimate of the first-
passage time TX (u)  for a given value u of the stochastic process {X(t)}, or as estimating 

the largest value ˆ X (t) of {X(s) : 0  s  t} for a given value of t. The probability 
distributions of these two random quantities are governed by the one function 
LX (u,t)  P[ ˆ X (t)  u], since the probability density of ˆ X (t) is the u-derivative of 
LX (u,t) and the probability density of T(u) is proportional to its t-derivative. The role of 
time is critical in the evaluations. For an ergodic unbounded process, such as a Gaussian 
process, the mean value of ˆ X (t) grows without limit as t becomes very large. 
 
 One can always write LX (u,t) as an exponential function containing a time-integral 
of a quantity X (t,u). For a stationary process, this new quantity depends on t only when 
t is small. Thus, it is efficient to concentrate on estimating the stationary value X (u) . 

For other than very small values of t this gives LX (u,t)  L0eX (u ) t . Since LX (u,t) can 
be viewed as a probability of survival, a conservative procedure is one that under-
estimates LX (u,t), and for large u this requires an over-estimation of X (u) . On the same 
basis, it is desirable to under-estimate the value of L0. For a zero-start process that tends 
to a stationary condition this conservative estimate can be taken as L0 1. For a truly 
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stationary process a reasonable estimate is L0  P[A(t)  u] based on the amplitude of the 
process. This is more conservative than using P[X(t)  u] to estimate L0. 
 
 The most commonly used method for approximating X (u)  involves Poisson 
crossing times for X(t), and gives X (u)  as the same as the expected up-crossing rate 

 X
 (u) . This approximation is conservative for all but small values of u, and is 

asymptotically correct for a Gaussian process as u becomes very large. A more 

conservative and better estimate for small u is obtained by using X (u)  X
 (u) /FX (u). 

The major shortcoming of the Poisson X-crossings approach is that its conservatism may 
be regarded as excessive for some narrowband processes for some values of u, with the 
greatest discrepancy occurring for u  2 X . Using an alternate assumption of Poisson 

crossing times by A(t) leads to X (u) A
 (u) /FA (u). This approximation provides a 

significant improvement for some values of u, but it can give the nonconservative result 

of X (u)   X
 (u)  for large u values. A conservative estimate of X (u)  can be written as 

min[A
 (u) /FA (u), X

 (u)], but this slightly complicates the computation of such 

quantities as the mean or standard deviation of ˆ X (t), since they involve integrations of 
the probability density of ˆ X (t) overall positive values of u. 
 
 The Vanmarcke approximation of (52)-(57) provides the best available estimates of 
X (u)  using only analytical expressions. The formulas are significantly more 
complicated than for the Poisson crossing approaches, and they involve a factor 1 that 
relates to the bandwidth of the spectral density of {X(t)}. Nonetheless, the method is 
easily implemented in a computer program. Similar, but slightly more conservative 
results are obtained from the correlated-amplitude approach of (62)-(65), which involves 
some straightforward numerical integration. 
 
 The recently introduced correlated-peaks method of Naess and Gaidai seems to be 
capable of providing very good estimates of X (u)  for a variety of processes, including 
ones that are narrowband. Significant simulation of time histories of {X(t)} is required, 
though, to determine the values of key parameters in the formulation. 
 
 Other analytical techniques summarized herein show the similarities and differences 
between the results of various assumptions, but none show improvements over the 
Poisson, Vanmarcke, and correlated-amplitude approximations. A plot and tables have 
been included to provide a simple overview of the length of time history for which 
P[ ˆ X (t)  u]  Pe  for chosen values of u and Pe for each of these approximations. 
 
 The simple concept of a translation process has been introduced to provide an 
approximate method for applying the Gaussian techniques of first-passage analysis in a 
situation in which the process of interest is found to be non-Gaussian. 
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