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Parameterizing Coefficients of a POD-Based Dynamical System
This parameterization enables accurate prediction of temporal evolution of certain 
flow dynamics.
Goddard Space Flight Center, Greenbelt, Maryland

A method of parameterizing the coeffi-
cients of a dynamical system based of a
proper orthogonal decomposition (POD)
representing the flow dynamics of a vis-
cous fluid has been introduced. (A brief
description of POD is presented in the im-
mediately preceding article.) The present
parameterization method is intended to
enable construction of the dynamical sys-
tem to accurately represent the temporal
evolution of the flow dynamics over a
range of Reynolds numbers.

The need for this or a similar method
arises as follows: A procedure that in-
cludes direct numerical simulation fol-
lowed by POD, followed by Galerkin pro-
jection to a dynamical system has been
proven to enable representation of flow
dynamics by a low-dimensional model at
the Reynolds number of the simulation.

However, a more difficult task is to ob-
tain models that are valid over a range of
Reynolds numbers. Extrapolation of low-
dimensional models by use of straightfor-
ward Reynolds-number-based parameter
continuation has proven to be inade-
quate for successful prediction of flows.

A key part of the problem of con-
structing a dynamical system to accu-
rately represent the temporal evolution
of the flow dynamics over a range of
Reynolds numbers is the problem of un-
derstanding and providing for the varia-
tion of the coefficients of the dynamical
system with the Reynolds number. Prior
methods do not enable capture of tem-
poral dynamics over ranges of Reynolds
numbers in low-dimensional models,
and are not even satisfactory when large
numbers of modes are used.

The basic idea of the present method is
to solve the problem through a suitable
parameterization of the coefficients of
the dynamical system. The parameteriza-
tion computations involve utilization of
the transfer of kinetic energy between
modes as a function of Reynolds number.
The thus-parameterized dynamical sys-
tem accurately predicts the flow dynamics
and is applicable to a range of flow prob-
lems in the dynamical regime around the
Hopf bifurcation. Parameter-continua-
tion software can be used on the parame-
terized dynamical system to derive a bi-
furcation diagram that accurately
predicts the temporal flow behavior.

This work was done by Virginia L. Kalb of
Goddard Space Flight Center. For further infor-
mation, contact the Goddard Innovative Partner-
ships Office at (301) 286-5810. GSC-15131-1

performance of the communication sys-
tem as quantified in the word-error rate
and the undetected-error rate as func-
tions of the SNRs and the total latency of
the interleaver and inner code. The
method is embodied in equations that de-
scribe bounds on these functions.
Throughout the derivation of the equa-
tions that embody the method, it is as-
sumed that the decoder for the outer
code corrects any error pattern of t or
fewer errors, detects any error pattern of s
or fewer errors, may detect some error
patterns of more than s errors, and does
not correct any patterns of more than t er-

rors. Because a mathematically complete
description of the equations that embody
the method and of the derivation of the
equations would greatly exceed the space
available for this article, it must suffice to
summarize by reporting that the deriva-
tion includes consideration of several
complex issues, including relationships
between latency and memory require-
ments for block and convolutional codes,
burst error statistics, enumeration of
error-event intersections, and effects of
different interleaving depths.

In a demonstration, the method was
used to calculate bounds on the per-

formances of several communication sys-
tems, each based on serial concatena-
tion of a (63,56) expurgated Hamming
code with a convolutional inner code
through a convolutional interleaver. The
bounds calculated by use of the method
were compared with results of numerical
simulations of performances of the sys-
tems to show the regions where the
bounds are tight (see figure).

This work was done by Bruce Moision and
Samuel Dolinar of Caltech for NASA’s Jet
Propulsion Laboratory. Further information
is contained in a TSP (see page 1). NPO-
44652

Confidence-Based Feature Acquisition 
Selective acquisition of data values enables higher classification performance at lower cost. 
NASA’s Jet Propulsion Laboratory, Pasadena, California

Confidence-based Feature Acquisition
(CFA) is a novel, supervised learning
method for acquiring missing feature
values when there is missing data at both
training (learning) and test (deploy-
ment) time. To train a machine learning
classifier, data is encoded with a series of
input features describing each item. In
some applications, the training data may
have missing values for some of the fea-

tures, which can be acquired at a given
cost. A relevant JPL example is that of
the Mars rover exploration in which the
features are obtained from a variety of
different instruments, with different
power consumption and integration
time costs. The challenge is to decide
which features will lead to increased clas-
sification performance and are there-
fore worth acquiring (paying the cost). 

To solve this problem, CFA, which is
made up of two algorithms (CFA-train
and CFA-predict), has been designed to
greedily minimize total acquisition cost
(during training and testing) while aim-
ing for a specific accuracy level (specified
as a confidence threshold). With this
method, it is assumed that there is a non-
empty subset of features that are “free;”
that is, every instance in the data set in-
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cludes these features initially for zero
cost. It is also assumed that the feature ac-
quisition (FA) cost associated with each
feature is known in advance, and that the
FA cost for a given feature is the same for
all instances. Finally, CFA requires that
the base-level classifiers produce not only
a classification, but also a confidence (or
posterior probability).

CFA trains an ensemble of classifiers
M0 . . . Mf that use successively larger
subsets of the features to classify in-
stances. M0 uses only the “free” (zero
cost) features, and M1 additionally in-

corporates costly features F1 through Fi .
CFA reduces FA cost in that model Mi is
trained only on instances that cannot be
classified with sufficient confidence by
model Mi – 1. Therefore, values for fea-
ture Fi are acquired only for the in-
stances that require it. At test time, each
test instance is successively classified by
M0, M1, M2 . . . until its classification is
sufficiently confident (i.e., until the con-
fidence of the prediction reaches the
confidence threshold). Again, features
are acquired for the new instance only as
required. In an empirical comparison

with an existing method (Cost-Sensitive
Naive Bayes) that makes acquisition de-
cisions only during test time (and there-
fore requires that all training items be
fully acquired), CFA achieves the same
(or higher) level of performance at a
much reduced cost (by at least an order
of magnitude).

This work was done by Kiri L. Wagstaff of
Caltech and Marie desJardins and James Mac-
Glashan of the University of Maryland for
NASA’s Jet Propulsion Laboratory. For more in-
formation, contact iaoffice@jpl.nasa.gov.
NPO-46886

A two-stage predictive method was de-
veloped for lossless compression of cali-
brated hyperspectral imagery. The first
prediction stage uses a conventional lin-
ear predictor intended to exploit spatial
and/or spectral dependencies in the
data. The compressor tabulates counts
of the past values of the difference be-
tween this initial prediction and the ac-
tual sample value. To form the ultimate
predicted value, in the second stage,
these counts are combined with an

adaptively updated weight function in-
tended to capture information about
data regularities introduced by the cali-
bration process. Finally, prediction
residuals are losslessly encoded using
adaptive arithmetic coding.

Algorithms of this type are commonly
tested on a readily available collection of
images from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyper-
spectral imager. On the standard calibrated
AVIRIS hyperspectral images that are most

widely used for compression benchmark-
ing, the new compressor provides more
than 0.5 bits/sample improvement over the
previous best compression results.

The algorithm has been implemented
in Mathematica. The compression algo-
rithm was demonstrated as beneficial on
12-bit calibrated AVIRIS images.

This work was done by Aaron B. Kiely and
Matthew A. Klimesh of Caltech for NASA’s Jet
Propulsion Laboratory. For more information,
contact iaoffice@jpl.nasa.gov.  NPO-46547 

Algorithm for Lossless Compression of Calibrated
Hyperspectral Imagery 
NASA’s Jet Propulsion Laboratory, Pasadena, California

A recently developed algorithm for de-
modulation and decoding of a pulse-posi-
tion-modulation (PPM) signal is suitable
as a basis for designing a single hardware
decoding apparatus to be capable of han-
dling any PPM order. Hence, this algo-
rithm offers advantages of greater flexi-
bility and lower cost, in comparison with
prior such algorithms, which necessitate

the use of a distinct hardware implemen-
tation for each PPM order. In addition, in
comparison with the prior algorithms,
the present algorithm entails less com-
plexity in decoding at large orders.

An unavoidably lengthy presentation of
background information, including defi-
nitions of terms, is prerequisite to a mean-
ingful summary of this development. As

an aid to understanding, the figure illus-
trates the relevant processes of coding,
modulation, propagation, demodulation,
and decoding. An M-ary PPM signal has M
time slots per symbol period. A pulse (sig-
nifying 1) is transmitted during one of the
time slots; no pulse (signifying 0) is trans-
mitted during the other time slots.

The information intended to be con-

Universal Decoder for PPM of any Order
Complexity can be reduced and flexibility increased, at small cost in performance.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Processing of Information in an M-ary PPM communication system includes the sequence of steps depicted here. The l-bit marginalizer is a feature of the
innovation reported here; the other features are typical of PPM systems in general.
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