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Abstract 

 A new system has been developed to obtain fatigue crack growth rate 

data from a series of images aquired during fatigue testing of specimens 

containing small surface cracks that initiate at highly-polished notches.  

The primary benefit associated with replica-based crack growth rate 

data methods is preserving a record of the crack configuration during 

the life of the specimen.  Additionally, this system has the benefits of both 

reducing time and labor, and not requiring introduction of surface 

replica media into the crack.  Fatigue crack growth rate data obtained 

using this new system are found to be in good agreement with similar 

results obtained from surface replicas. 

Introduction 

Damage tolerance fatigue life predictions rely on experimentally-measured relations between the crack-

tip driving force ( K) and the fatigue crack growth rate (da/dN).  The accuracy of these life predictions 

relies on the validity of experimental test data and the concept of crack-tip similitude, which presumes 

that crack growth rates are strictly a function of K.  However, it is well known that small fatigue cracks 

propagate at higher da/dN (in comparison to long cracks at the same K) and can propagate at K values 

below the fatigue crack growth threshold observed for long cracks (refs. 1-5).  These observations suggest 

that damage tolerance life predictions should be based on crack growth data appropriate for the 

anticipated crack lengths seen in service.  Currently, automated standardized methods exist to generate 

long-crack data in a variety of specimen configurations (refs. 6-9), but no automated test methods exist 

for small surface cracks.  Typically, fatigue crack growth rate data for small cracks are obtained using a 

series of surface replicas (refs. 3, 5).  The primary drawback of using surface replicas to obtain crack 

growth rate data is that the method is both time and labor intensive.  

In response to the need for an automated method to generate small fatigue crack growth rate data, a small 

crack monitoring system has been developed.  This automated system captures high-resolution digital 

images of the crack starter notch region at regular intervals during fatigue tests.  After the fatigue test is 

terminated, the digital images are analyzed to determine crack-length-versus-cycle-count data.  From 

these data sets, da/dN-versus- K data are calculated.  The objective of this report is to present test data 

obtained using the small crack monitoring system and to validate this automated system by comparing 

those results with data obtained using a well-established surface replica method. 

Description of the Small-Crack Monitoring System 

The small crack monitoring system (SCMS) tracks the growth of small cracks in fatigue specimens using 

the concept of fringe deflectometry.  Here, a series of white-light sinusoidal fringes, at 90
o
 offsets are 

projected onto a highly-polished specimen surface.  A camera captures the images of the fringe pattern 

that is reflected off of the specimen surface, as shown schematically in Figure 1.  Any changes in the 

curvature of the specimen surface will result in a distortion of the reflected fringe pattern.  The highly 

localized stress state at the tip of a loaded crack and the residual deformation after crack growth result in a 

deformation field that can be seen as changes in the surface curvature.  This system processes the fringe 

patterns into a picture representing the curvature of the surface as different grey levels.  The cracks are 

visible in the curvature images, allowing crack lengths to be determined from the processed images.   

   



 

 2 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic of Small-crack monitoring system. 

A typical image captured by the SCMS is shown in Figure 2a.  Here, the entire notch root region (see 

schematic; right side of Figure 2a) of an edge notch specimen is shown (specimen thickness = 5.1 mm).  

The notch surface has been polished to a near-mirror finish and the alternating white and black horizontal 

lines are the fringe pattern reflected off of the specimen.  A distortion in the fringe pattern (local change 

in the thickness of the fringe pattern lines) is indicated in Figure 2a.  Once analyzed by the SCMS, these 

digital images of the fringe patterns are used to create a curvature map.  Essentially, the analysis 

determines the surface curvature that must be present to create the distortion observed in the fringe 

pattern.  The curvature map corresponding to the image in Figure 2a is shown as Figure 2b.  The shape of 

the surface curvature in the region of distortion indicated in Figure 2a appears to be typical of a crack.  

For the applied loads (for the orientation of Figure 2b, specimen is loaded in the vertical direction), a 

crack would be expected to propagate horizontally.  A higher-magnification image of the curvature map 

surface crack region is shown as Figure 2c.  Here, the curvature image appears to have a central 

horizontal line character, typical of surface cracks.  The locations of the crack tips (ends of the central 

horizontal line section) are indicated in Figure 2c.  The regions of curvature beyond the crack tips 

(highlighted with dashed circles) are the result of crack-tip deformations.  The appearance of shear bands, 

lines of intense deformation emanating from the crack tip at near-45
o
 angles, is typical of crack-tip 

deformation (refs. 10-13).  Based on distortions in the horizontal fringe patterns, the raw images are 

converted into surface curvature maps and, analyzed to determine crack length at a specified cycle count.  

These data sets are then, ultimately, converted into crack-length-versus-cycle-count data. 

Test Plan for System Validation 

Specimens used in this study were untested specimens from a previous small crack study (ref. 5) made 

from AISA 4340 steel plates, 9.5 mm thick supplied in the annealed condition.  Specimens were 

machined such that the loading axis coincided with the rolling direction of the plate and were ground to a 

thickness of 5.1 mm.  See Figure 3 for a schematic of the specimen configuration.  Specimens were heat 

treated to a hardness of 45 HRC, by way of a one-hour soak at 840
o
C, vacuum tempering at 440

o
C for two 

hours, followed by furnace cooling in nitrogen gas.  Average tensile properties of this material for 
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(a) Typical digital image of notch root region captured using small-crack monitoring system. 

 

 

 

 

 

 

 

(b) Curvature map showing regions of local deformations near a fatigue crack. 

 

 

 

 

 

 

(c) Higher-magnification curvature map image of surface crack. 

Figure 2.  Typical image obtained from small-crack monitoring system. 
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Figure 3. Specimen configuration. 
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ultimate stress, yield stress (0.2% offset), and elastic modulus were 1505 MPa, 1413 MPa, and 190 GPa, 

respectively.  A description of the final microstructure, chemical composition, and results of individual 

tensile tests can be found in reference 5.  

The notch (3.18 mm radius) in the specimen side has a stress concentration factor of 3.30, as calculated 

by the Boundary Force Method (ref. 14), and provided a compact high-stress region for crack initiation.  

The notch radius was achieved by final milling cuts of 0.25 mm, 0.13 mm, and 0.05 mm to minimize 

machining-induced residual stresses.  Prior to testing, the specimen notch was polished to a near-mirror 

finish (approximately 8 RMS, meaning a surface roughness of 8 microns using the Root Mean Square 

method) to enhance crack detection. 

Experimental Results 

Fatigue tests were conducted on AISA 4340 steel specimens (Figure 3) under constant amplitude loading, 

at a load ratio (ratio of minimum to maximum load) of R = 0 and a cyclic load frequency of 1 Hz.  

Testing was interrupted every 500 cycles by the automated test system to acquire digital images of the 

crack starter notch root region, where crack initiation is expected to occur.  This sequence of 500 load 

cycles followed by image acquisition was repeated automatically until specimen failure occurred.  

Following specimen failure, the series of images acquired during testing were analyzed to determine 

distortions in the horizontal fringe patterns.  These relative distortions between the series of four fringe 

images were used to determine curvature maps and, eventually, crack-length-versus-cycle-count data.  

From these results, the fatigue crack growth data were calculated. 

The fatigue crack growth rate, da/dN, was calculated using the secant method and the incremental 

polynomial method described in ASTM E647.  Using the secant method, fatigue crack growth rate was 

calculated as, 

 
i1i

i1i

NN
/dNd

aa
a  (1) 

where ai is a crack length corresponding to cycle count Ni, and ai+1 and Ni+1 are crack length and cycle 

count values corresponding to the next available data.  The crack length used to calculate K, from this 

two point linear fit method, is taken as the midpoint (average a) of the crack growth increment.  Using the 

incremental polynomial method helps reduce error induced by noisy experimental data by averaging over 

more data points.  In comparison, the Secant Method (equation 1) uses only two data points.  The 

incremental polynomial method fits a parabola to successive sets of seven points of data.  The fatigue 

growth rate is calculated as the derivative of this fit evaluated at the center point.  The crack length used 

to calculate K is taken from the center of the fit.  Refer to reference 6 for additional information on the 

incremental polynomial method. 

The corresponding value of K is calculated with assumptions that (1) the crack is a semi-circular surface 

crack, (2) the crack does not interact with other cracks, and (3) the crack length is small relative to the 

specimen dimensions of thickness, width, and notch radius.  Values of K are computed as, 

 aπ
A

P
k73.0ΔK t  (2) 
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where kt is the stress concentration factor associated with the notch (equal to 3.30 for the specimens 

used), P is the cyclic applied load, A is the cross sectional area of the specimen at the notch, and the 

factor of 0.73 corresponds to the geometry correction factor associated with a surface crack (ref. 15). 

Crack length data from two tests are plotted in Figure 4 and 5 (open symbols) along with data obtained 

from a previous study (ref. 5) using surface replicas (closed symbols).  The crack growth results reduced 

with the secant method are plotted in Figure 4 and similar data obtained using the incremental polynomial 

method are plotted in Figure 5.  The maximum loads used during the first test (SCMS test #1) and second 

test (SCMS test #2) were 46.7 kN (10.5 kips) and 40.0 kN (9.0 kips), respectively.  The second test was 

performed at a lower load in an effort to generate crack growth data at lower K values to match the near-

threshold performance of the surface replica method. Based on the fatigue crack growth rate data of 

Figure 4, the results obtained using the small-crack monitoring system are in good agreement with data 

obtained using surface replicas.  The variability or “scatter” in the fatigue crack growth rate data is typical 

of small cracks (refs. 1-5).  Typically, at low K, where crack sizes are smaller, microstructural features 

are thought to be significant contributors to this scatter.  The surface crack length for three data points of 

the first SCMS test are shown in the figure.  Here, the SCMS tracked the crack from an initial crack 

length of approximately 50 m (corresponding to K = 7.8 MPa m) until the crack grew to failure.  The 

results of Figure 5 show similar agreement with the replica-based data of reference 5 (AGARD), although 

these sets of data appear to diverge at low values of K ( K < 8 MPa m).   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Crack growth data for small surface cracks in 4340 steel using the secant method. 
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4340 Steel, Room temperature, lab air
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Figure 5.  Crack growth data for small surface cracks in 4340 steel the incremental polynomial method. 

Discussion of Results 

The experimental results shown in Figure 4 indicate that the SCMS produces the same crack growth rate 

data as the surface-replica method of reference 5, at least for K > 8 MPa m.  Fatigue tests were 

attempted at loads below Pmax = 40.0 kN (9.0 kips), but these loads did not result in fatigue cracking 

before testing was terminated.  Based on the results presented in this paper, the SCMS produces the same 

fatigue crack growth data (Figure 4 and 5) as a well-established surface replica method, but has the 

significant advantage of being automated reducing both the labor and time associated with generating 

small-crack data.  Additional study is needed to conclusively demonstrate that the system can deliver 

results consistent with replica-based methods for a wide range of loading and alloys. 

The impact of an automated small-crack system on damage tolerance life management is significant.  

Although many (perhaps even a majority of) service failures are the result of initiation and propagation of 

small cracks, the majority of available crack growth data in the literature are generated using long-crack 

specimens.  One reason for the relative scarcity of small-crack data is the labor burden associated with 

small-crack testing.  Automated systems like the one described in this paper would make obtaining small-

crack data easier to obtain and, eventually, should increase the available small-crack data for analysis.  
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Summary 

Experimental fatigue crack growth results, obtained using a newly-developed automated small-crack 

monitoring system, are presented here and compared with results obtained using surface replicas, a trusted 

and well-established method of obtaining small-crack growth data.  The results presented showed both 

methods to be in good agreement, suggesting that the automated small-crack system is capable of 

reproducing small-crack results of a well-established method known to produce reliable results. 
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