
mu uuuu ui iiui iiui mu iuu uiu mil uui lull uuii uu uii mi

(12) United States Patent
Whitaker et al.

(54) OPTIMIZATION OF DIGITAL DESIGNS

(75) Inventors: Sterling R. Whitaker, Albuquerque,
NM (US); Lowell H. Miles,
Albuquerque, NM (US)

(73) Assignee: STC.UNM, Albuquerque, NM (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 453 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 11/267,587

(22) Filed:	 Nov. 4, 2005

(65)	 Prior Publication Data

US 2006/0114135 Al	 Jun. 1, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/172,746, filed on
Jun. 14, 2002, now Pat. No. 6,993,731.

(60) Provisional application No. 60/298,832, filed on Jun.
15, 2001.

(51) Int. Cl.
G06F 17150 (2006.01)

(52) U.S. Cl 716/18; 716/1; 716/2; 716/17
(58) Field of Classification Search	 716/1,

716/2, 17, 18
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,792,909 A 12/1988	 Serlet
5,128,871 A 7/1992	 Schmitz
5,299,204 A 3/1994	 Daniel
5,406,497 A 4/1995	 Altheimer et al.
5,572,437 A 11/1996	 Rostoker et al.
5,581,202 A 12/1996 Yano et al.

(1o) Patent No.:	 US 7,624,368 B2
(45) Date of Patent: 	 *Nov. 24, 2009

5,712,792 A 1/1998 Yamashita et al.

5,724,251 A 3/1998 Heavlin

5,734,582 A 3/1998 Bertolet et al.

5,801,551 A 9/1998 Lin

5,867,396 A 2/1999 Parlour

5,872,716 A 2/1999 Yano et al.

5,923,189 A 7/1999 Sasaki et al.

6,049,232 A 4/2000 Sasaki et al.

6,124,736 A 9/2000 Yamashita et al.

6,243,849 BI 6/2001 Singh et al.

6,259,276 BI 7/2001 Sasaki et al.

6,260,185 BI 7/2001 Sasaki et al.

6,313,665 BI 11/2001 Sasaki et al.

6,313,666 BI 11/2001 Yamashita et al.

6,320,421 BI 11/2001 Akita et al.

6,323,690 BI 11/2001 Yamashita et al.

(Continued)

OTHER PUBLICATIONS

Kazuo Yano et al., Top-Down Pass-Transistor Logic Design, IEEE
Journal of Solid-State Circuits, vol. 31, No. 6, Jun. 1996, pp. 792-803.

Primary Examiner Thuan Do
(74) Attorney, Agent, or Firm Townsend and Townsend and
Crew, LLP

(57)	 ABSTRACT

An application specific integrated circuit is optimized by
translating a first representation of its digital design to a
second representation. The second representation includes

multiple syntactic expressions that admit a representation of
a higher-order function of base Boolean values. The syntactic
expressions are manipulated to form a third representation of
the digital design.

31 Claims, 18 Drawing Sheets

=
-. PRE
FORI

BEGIN WITH
SYNTACTIC

EXPRESSION FOR
CELL

1pENi1^ 	 GO TO NEXT
INVERMION TO BE

RE ovEm	 TRANSFORMATION

Es

B0.' coNTMRa STATE	 eos80TTRUIH -LE	
OFFER

	

B10	 INVERT	 INVERT

	

BUFFER	
TRUTH

INTERCHANGE	
CONTROIWRH	

TABLE

STATE GROUPS	 MAP-ENTEREDOF SIZE 2"	 VARIABLE	
212	 °t

https://ntrs.nasa.gov/search.jsp?R=20100008466 2019-08-30T08:55:13+00:00Z

US 7,624,368 B2
Page 2

U.S. PATENT DOCUMENTS 6,564,364 B1 5/2003 Dahl et al.
6,588,006 B1 7/2003 Watkins

6,356,118 B1 3/2002 Rikinoetal. 6,598,209 B1 7/2003 Sokolov
6,359,468 B1 3/2002 Park et al. 6,651,223 B2 11/2003 Yamashita et al.
6,388,474 B2 5/2002 Sasaki et al. 6,690,206 B2 2/2004 Rikino et al.
6,400,183 B2 6/2002 Yamashita et al. 6,696,864 B2 2/2004 Yamashita et al.
6,433,588 B1 8/2002 Yamashita et al. 6,820,242 B2 11/2004 Yamashita et al.
6,445,214 B2 9/2002 Sasaki et al. 6,845,349 B1 1/2005 Sasaki et al.
6,486,708 B2 11/2002 Yamashita et al. 7,190,376 B1 * 3/2007 Tonisson	 345/629
6,505,322 B2 1/2003 Yamashita et al. 2002/0178432 Al 11/2002 Kim et al.
6,532,581 B1 3/2003 Toyonaga et al. 2003/0085738 Al 5/2003 Maki et al.
6,536,028 B1 3/2003 Katsioulas et al. 2003/0200510 Al 10/2003 Whitaker et al.
RE38,059 E 4/2003 Yano et al. 2003/0204822 Al 10/2003 Whitaker et al.
6,557,145 B2 4/2003 Boyle et al.
6,564,361 B1 5/2003 Zolotykh et al. * cited by examiner

U.S. Patent	 Nov. 24, 2009	 Sheet 1 of 18	 US 7,624,368 B2

100-1L 104	 108	 112

Y. Y.	 CK

I^

Mux Q D ^R Q D Buf
Q

t o 	 QN

R

Fig. 1A

100-2

L
08	 112

CK

D^R Q DBuf
Q

ON

Fig. 1 B

100-3L 104	 108

Y„
..
 Yo	CK

In

: Mux Q D
DR

a

to

R

Fig. 1C

208
1081

L

U.S. Patent	 Nov. 24, 2009	 Sheet 2 of 18	 US 7,624,368 B2

100-4
	

104
	

112

Yn ..
YO

I n	1	 Q
Mux Q D Buf

I0	 QN

Fig. 1D

rig. ZH

1081	
208

L

CK

EBN
D D Q D Q

R

Fig. 2B	 204

Cl
	 co

LO

m
LL

o	 ^

00M

d'

I.L

co

LL

U.S. Patent	 Nov. 24, 2009	 Sheet 3 of 18	 US 7,624,368 B2

N
r
M

CD

_6

L.L

O
O
(D

U.S. Patent	 Nov. 24, 2009	 Sheet 4 of 18	 US 7,624,368 B2

L.L..

co0

U.S. Patent	 Nov. 24, 2009	 Sheet 5 of 18	 US 7,624,368 B2

00

U.S. Patent	 Nov. 24, 2009	 Sheet 6 of 18
	

US 7,624,368 B2

802 %

812

820

,A)

-F-L
810 RnR R1d

804	 806

FIG. 8A

842	 860

852	 850 848	 854

/ 856
P

84
1
4	 846

V

U

FIG. 8B

U.S. Patent	 Nov. 24, 2009	 Sheet 7 of 18	 US 7,624,368 B2

872
Y[0]	 Y[1]	 Y[21

I,

FIG. 8C

U.S. Patent	 Nov. 24, 2009	 Sheet 8 of 18
	

US 7,624,368 B2

FROM PREVIOUS
TRANSFORMATION

BEGIN WITH
SYNTACTIC	

1.,
902

EXPRESSION FOR
CELL

IDENTIFY
INVERSION TO BE

REMOVED?
GO TO NEXT

TRANSFORMATION

903 CONTROL STATE	 905	 TRUTH TABLE	 907VARIABLES	 BUFFER

	

908	 910	 INVERT	 INVERT
BUFFER	 TRUTH

	

INTERCHANGE	 REASSIGN	 TABLE

	

STATE GROUPS	 CONTROL WITH
OF SIZE 2"	 MAP-ENTERED	 912	 914VARIABLE

FIG. 9A

U.S. Patent	 Nov. 24, 2009	 Sheet 9 of 18	 US 7,624,368 B2

FROM PREVIOUS
TRANSFORMATION

BEGIN WITH SYNTACTIC
EXPRESSION FOR CELL

REMOVE EXISTING
REDUNDANCIES	 918

PERFORM APPROPRIATE
PERMUTATIONS

ENTER CONTROL
VARIABLES INTO TRUTH

TABLE

ANY CHANGES	 924
TO SYNTACTIC
EXPRESSION?

NO

GO TO NEXT
TRANSFORMATION

FIG. 913

U.S. Patent	 Nov. 24, 2009	 Sheet 10 of 18	 US 7,624,368 B2

FROM PREVIOUS
TRANSFORMATION

BEGIN WITH SYNTACTIC
EXPRESSIONS FOR

MULTIPLE CELLS

NO 'ANY EXPRESSION
OUTPUT A CONTROL

VARIABLE? /

YES

CONVERT
CORRESPONDING

CONTROL VARIABLES	 932
INTO MAP-ENTERED

VARIABLES

COMBINE CONTROL

DEFINE STATES IN 	 1 936
MERGED EXPRESSION

GO TO NEXT	 I 938
TRANSFORMATION l/

FIG. 9C

U.S. Patent	 Nov. 24, 2009	 Sheet 11 of 18	 US 7,624,368 B2

FROM PREVIOUS
TRANSFORMATION

BEGIN WITH SYNTACTIC
EXPRESSION FOR CELL

944

942

PERFORM
PERMUTATIONS TO
ALIGN LOW STATES

YES	 ARE HALF OF
TRUTH-TABLE STA

LOW?

YES

CHANGE CONTROL
VARIABLE TO RESET

INPUT TO A
FLIP FLOP

NO

i ARE HALF OF
TRUTH-TABLE STA
1^	 HIGH?

PERFORM
PERMUTATIONS TO
ALIGN HIGH STATES

NO

CHANGE CONTROL
VARIABLE TO SET
INPUT TO A FLIP

FLOP

GO TO NEXT
TRANSFORMATION

FIG. 9D

REMOVE INVERTERS 1 1024

REMOVE NON-
INVERTING BUFFERS 1 1020 WITH HALF VDD?

YES

MORE VARIABLE TO	 1056
SET INPUT	 I,--,

REMOVE REDUNDANT
NODES

REMOVE INVERSIONS

GROUP BY COMMON
INPUTS	 1060

IDENTIFY	 1064
SUB-FUNCTIONS

1036

FANOUT NODES?
NO MAKE ALL BUFFERS I j068

INVERTING	 V

YES

PERMUTE NODES AND L, 040
REDUCE

TRANSLATE INTO	 1072STANDARD CELLS I i

U.S. Patent	 Nov. 24, 2009
	

Sheet 12 of 18
	

US 7,624,368 B2

TRANSLATE NETLIST
TO ULG NETLIST

SYNCHRONOUS CELL NO
WITH HALF VSS?

IDENTIFY DATA
AND CONTROL
	 YES

1048

MORE VARIABLE TO
RESETINPUT

REMOVE CONNECTION 1 1016
CELLS TO VDD/VSS V

1052

FIG. 10

U.S. Patent Nov. 24, 2009 Sheet 13 of 18 US 7,624,368 B2

1100 1110b

COMPUTER
READABLE

STORAGE MEDIA

1102 1104	 1106 1108
/	

j 110a

INPUT	 OUTPUT STORAGE COMPUTER
CPU(S) READABLEDEVICES	 DEVICES DEVICES STORAGE

-T MEDIA READER

1112
1118 1120

COMM.	 PROCESSING	 WORKING
SYSTEM	 ACCELERATION	 MEMORY

OPERATING
1114	 1116 1124	

SYSTEM

OTHER CODE
(PROGRAMS)

1122

FIG. 11

U.S. Patent	 Nov. 24, 2009	 Sheet 14 of 18	 US 7,624,368 B2

7200	 Determine Layout Rules for
	 204

L
	 Target Fabrication Process

Layout Kernel Cells with
Manual Customization

Specify Basic
Cell Configurations

Automatically Generate
if

1216

Basic Cells

Perform Verification and Any
	 220

Hand optimization of Basic Cells

Layout Any
	 1224

Specialized Cells

208

212

Fig. 12

U.S. Patent
	

Nov. 24, 2009
	

Sheet 15 of 18
	

US 7,624,368 B2

06 N

CU 0
O^U ^
a: W

.^
(D o

C F— N
U

OOMr

O
J 12

C
W

d'
OM
r

OOM
r

U M
O

a

C cn

U ^

O Q
M
r

c
O
ip

N O

a
NT-
itMr

M

CC3
cO CU

t(D J

O NUV

r

to
	 L.l..

M
e--

Nr-
M
T-

co
O
M
•--

OO

U.S. Patent Nov. 24, 2009 Sheet 16 of 18 US 7,624,368 B2

OZ$ O

O^
U ^
(u O

0
M

06

VT
cu 0

.E O M

m0C ^2
O.O U

CU O
F--

Cl)^

Ir

U to
co

C
Q r-TM

O
T

N O

Q
(^-- °6 o ^'

N p N 0•O ca cu

A Q
U)O

CDU
•N

Cl
^ o

O L T

U) 0
o

a^
U H°.

co

T
W

O

	

O	 o

	

J F-	 M

	

Q ^	 T

C

	

W	 o .—^

o	
CD

co	 ^-T

o r---4
0
LOT

U.S. Patent Nov. 24, 2009 Sheet 17 of 18 US 7,624,368 B2

c
L^

NT
co
r

Od
C

C-) U
NFL I.L

ON
M

cop
co

u—

U

CU
C U =3

O Q p a
M

•^ co
M 5

N

r

.E

O Q
CU

> O
Z+ > N

c

co co
n

U
cu

U Q
^-+

_
LL

L

(D J N co
_ Q C/)

^ U U
C)
co

^,
CD
T

06 O

o

U
•V5	 ca
N .N

cu

C7 ^

C
w

a Q
U)0 U

U

0
o JL
r

r
T

0
r

^`^
Q

1

W
M

O
co

T

T

0
co
T

U.S. Patent	 Nov. 24, 2009	 Sheet 18 of 18	 US 7,624,368 B2

_1904

Edit Design with

1900	 HDL Entry Tool

1916

Perform Dynamic	 'Yes =
Timing An	 ' Rework

1908	 1906

Synthesize & Optimize HDL Behavioral 	 Any
Netlist to Produce Structural Netlist 	 Problems?

1912

Perform Static 	
;No =

Timing Analysis 	 Continue

1916

Perform Dynamic
Timing Analysis

1920

Place &
Route Design

1912

Perform Static
Timing Analysis

1916

Perform Dynamic
Timing Analysis

1924
Fabricate
Design

Fig. 19

US 7,624,368 B2
1

OPTIMIZATION OF DIGITAL DESIGNS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/172,746, entitled "OPTIMIZATION OF
DIGITAL DESIGNS" filed Jun. 14, 2002 by Sterling R. Whi-
taker, et al. ("the '746 application"), the entire disclosure of
which is incorporated herein by reference for all purposes.
The '746 application is a nonprovisional of and claims prior-
ity to U.S. Prov. Pat. Appl. No. 60/298,832, entitled "MUL-
TIIPLEXOR-BASED DIGITAL DESIGN," filed Jun. 15,
2001 by Sterling R. Whitaker et al., the entire disclosure of
which is also herein incorporated by reference for all pur-
poses.

STATEMENTS AS TO RIGHTS TO INVENTIONS
MADE UNDER FEDERALLY SPONSORED

RESEARCH AND DEVELOPMENT

This invention was supported by U.S. Government under
an award by NASA under Grant No. NAGS-9152, which
outlines certain rights in the invention given to the U.S. Gov-
ernment.

This application is also related to the following commonly
assigned, concurrently filed U.S. patent applications, each of
which is also incorporated herein by reference in its entirety
for all purposes: U.S. patent. application Ser. No. 10/172,742,
now issued U.S. Pat. No. 6,829,750, issued Dec. 7, 2004,
entitled "PASS-TRANSISTOR VERY LARGE SCALE
INTEGRATION," by Gary K. Maki and Prakash R. Bhatia;
U.S. patent application Ser. No. 10/172,494, now issued U.S.
Pat. No. 6,792,589, issued Sep. 14, 2004, entitled "DIGITAL
DESIGN USING SELECTION OPERATORS," by Sterling
R. Whitaker, Lowell H. Miles, and Eric G. Cameron; U.S.
patent application Ser. No. 10/172,745, now issued U.S. Pat.
No. 6,892,373, issued May 10, 2005, entitled "INTE-
GRATED CIRCUIT CELL LIBRARY," by Sterling R. Whi-
taker and Lowell H. Miles ; U.S. patent application Ser. No.
10/172,743, now issued U.S. Pat. No. 6,779,158, issuedAug.
17, 2004, entitled "DIGITAL LOGIC OPTIMIZATION
USING SELECTION OPERATIONS," by Sterling R. Whi-
taker, Lowell H. Miles, Eric G. Cameron, and Jody W.
Gambles ; and U.S. patent application Ser. No. 10/172,744,
now issued U.S. Pat. No. 6,779,156, issued Aug. 17, 2004,
entitled "DIGITAL CIRCUITS USING UNIVERSAL
LOGIC GATES," by Sterling R. Whitaker, Lowell H. Miles,
Eric G. Cameron, Gregory W. Donohoe, and Jody W.
Gambles. These applications are sometimes referred to herein
as "the Universal-Logic-Gate applications."

BACKGROUND

This invention relates in general to digital circuits and,
more specifically, to design of digital circuits that are laid-out
with cells.

Mathematics is one attempt for humankind to understand
the universe around them. As technological advancement
occurs, mathematical concepts and algorithms grow to enable
and/or support those advancements. Within the context of
digital design, Boolean logic is the mathematical construct
used to manipulate and optimize digital circuits. Nearly every
electronic device today relies upon some type of Boolean
logic for any embedded digital circuits. Other mathematical
constructs, however, are possible that allow further optimiza-

2
tion of digital designs. Changes to the processing of digital
design are necessary when avoiding Boolean logic elements.

Today application specific integrated circuit (ASIC) are
specified using netlists of library cells for a particular process

5 of a foundry or fabrication facility. These netlists are used to
fabricate integrated circuits made up of the library cells. A
few hundred library cells are typically available for a particu-
lar process that includeAND gates, OR gates, flip-flops (F/F),
and buffers. When a new fabrication process is developed,

10 engineers custom layout each of the library cells to get the
most optimal performance from each cell.

BRIEF DESCRIPTION OF THE DRAWINGS

15	 The present invention is described in conjunction with the
appended figures:

FIG. 1A is a block diagram of an embodiment of a basic
cell composed of kernel cells;

FIG. 1B is a block diagram of another embodiment of a
20 basic cell composed of a memory and a buffer kernel cells;

FIG. 1C is a block diagram of yet another embodiment of
• basic cell composed of a selection and memory kernel cells;

FIG. 1D is a block diagram of still another embodiment of
• basic cell composed of a selection and a buffer kernel cells;

25 FIG. 2A is a block diagram of an embodiment of a memory
cell with a synchronous reset;

FIG. 2B is a block diagram of another embodiment of a
memory cell with an asynchronous reset;

FIG. 3 is a block diagram of an embodiment of a universal
so logic gate layout;

FIG. 4 is a block diagram of an embodiment of a memory
kernel cell layout;

FIG. 5 is a block diagram of an embodiment of a buffer
35 kernel cell layout;

FIG. 6 is a block diagram of an embodiment of a basic cell
abutted together from the kernel cells of FIGS. 3-5;

FIG. 7 is a block diagram of an embodiment of two basic
cells laid out together;

40	 FIG. 8A provides a schematic illustration of an enhance-
ment-mode transistor;

FIG. 8B provides a schematic illustration of a depletion-
mode transistor;

FIG. 8C provides a circuit layout for a universal logic gate
45 according to an embodiment of the invention that uses deple-

tion-mode transistors;
FIG. 9A is a flow diagram illustrating how inversions may

be removed in logical expressions implemented in embodi-
ments of the invention;

50 FIG. 9B is a flow diagram illustrating how nodes may be
reduced in logical expressions implemented in embodiments
of the invention;

FIG. 9C is a flow diagram illustrating how nodes may be

55
combined in logical expressions implemented in embodi-
ments of the invention;

FIG. 9D is a flow diagram illustrating how set and reset
inputs may be used in performing optimizations according to
embodiments of the invention;

60	 FIG. 10 is a flow diagram illustrating an embodiment for a
ULG netlist optimization;

FIG. 11 provides a schematic illustration of a computer
system on which methods of the invention may be embodied;

FIG. 12 is a flow diagram of an embodiment of a process
65 for preparing a ULG ASIC cell library;

FIG. 13 is a block diagram of an embodiment of a design
flow that uses syntactic manipulation after synthesis;

US 7,624,368 B2
3

FIG. 14 is a block diagram of another embodiment of a
design flow that uses syntactic manipulation and the ULG
ASIC cell library;

FIG. 15 is a block diagram of another embodiment of a
design flow that uses the ULG ASIC cell library for the final
netlist;

FIG. 16 is a block diagram of yet another embodiment of a
design flow that combines synthesis and syntactic manipula-
tion into a single tool;

FIG. 17 is a block diagram of still another embodiment of
a design flow that uses a verification tool throughout the
design flow;

FIG. 18 is a block diagram of still another embodiment of
a design flow that uses a verification tool throughout the
design flow and after fabrication; and

FIG. 19 is a flow diagram of an embodiment of a design
process.

In the appended figures, similar components and/or fea-
tures may have the same reference label. Further, various
components of the same type may be distinguished by fol-
lowing the reference label by a dash and a second label that
distinguishes among the similar components. If only the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second reference
label.

DETAILED DESCRIPTION

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the invention. Rather, the
ensuing description of the preferred exemplary
embodiment(s) will provide those skilled in the art with an
enabling description for implementing a preferred exemplary
embodiment of the invention. It is to be understood that
various changes may be made in the function and arrange-
ment of elements without departing from the spirit and scope
of the invention as set forth in the appended claims.

In some embodiments, a method is provided for optimizing
an application specific integrated circuit. A first representa-
tion of a digital design for the circuit is translated to a second
representation of the digital design. The second representa-
tion comprises a plurality of syntactic expressions that admit
a representation of a higher-order function of base Boolean
values. The plurality of syntactic expressions are manipulated
to form a third representation of the digital design. In some
embodiments, the third representation is translated to a fourth
representation of the digital design, with the first and fourth
representations expressed in the same syntax. For example,
the common syntax may correspond to netlist representa-
tions. In some instances, manipulation of the syntactic
expressions is aidedby identifying data and control in the first
and/or second representations. Examples of manipulations
include removing logical inversions, reducing a number of
nodes, and reassigning data and control.

The methods of the present invention may be embodied in
a computer-readable storage medium having a computer-
readable program embodied therein for directing operation of
a computer system. Such a computer system may include a
communications system, a processor, and a storage device.
The computer-readable program includes instructions for
operating the computer system as part of optimizing a digital
design in accordance with the embodiments described above.

4
I. Cells

In one embodiment, a basic cell is a construct that includes
one or more of a universal logic gate (ULG), a memory
element or flip-flop (F/F), and/or a buffer. In this embodiment,

5 the ULG is a multiplexor or select circuit. The ULG, memory
element, and buffer are implemented with a relatively-small
number of kernel cells, which typically have layouts that are
individually optimized, and often, by hand. The kernel cells
are arranged into the higher-level basic cells having at least

10 one of the ULG, memory element, and buffer, but the basic
cells do not have more than one of any type of kernel cell in
this embodiment. For a given semiconductor process, there is
a ULGASIC cell library which is composed of the basic cells
and specialized cells. These specialized cells may differ from

15 the basic cell construct and could include, for example, clock
dividers, memory arrays, analog circuits, phase-locked loops,
oscillators, analog circuits, etc.

Referring first to FIG. 1A, an embodiment of a basic cell
100 is shown in block diagram form. This embodiment

20 includes all three of a ULG or selection circuit 104, a memory
cell 108 and a buffer 112. Some of the kernel cell components
of the basic cell 100 are shown in a generalized manner. The
ULG 104 is shown having any number of data and selection
control inputs, however the relationship between the maxi-

25 mum data inputs for a number of selection control inputs
follows the following relationship 2''=I. The memory kernel
cell 108 shown is a resetable D F/F. A buffer kernel cell 112
shown has both an inverting and non-inverting output,
although, other buffer implementations will have either an

30 inverting or non-inverting output.
The ULG 104 in this embodiment is implemented with a

multiplexor. Multiplexors can be used to implement any
Boolean function, but are not Boolean operators. Combina-
torial logic in conventional designs is not implemented with

35 selection functions, but uses Boolean logic gates. Further,
multiplexors in conventional circuits are converted to Bool-
ean equivalents during synthesis.

The below Table I shows the fourteen kernel cells used in
one embodiment:

40

TABLE

ULG Component	 Symbol Description

ULG	 U 8 to 1 (U8), 4 to 1 (U4) or 2 to 1 (U2)
45 Multiplexors

Memory Cells	 D D F/F (Dl)
DR Resetable D F/F - Synchronous (DRI),

Clock Edge Synchronization (DR2) or
Asynchronous (DR3)

DS Setable D F/F - Synchronous (DSI),

50 Clock Edge Synchronization (DS2) or
Asynchronous (DS3)

Buffers	 B Non-inverting buffer (BI) or Hybrid
Inverting and Non-inverting buffer (132)

BN Inverting buffer (BNI)
CB High-drive buffer (CBI)

55	
ZB Tristatable buffer (ZBI)

The embodiment of the kernel cells in the above Table I
could be augmented in other embodiments to include other
cells. The ULGs could include multiplexors of any size, for

60 example, 16 to 1, 32 to 1, 64 to 1, etc. Larger multiplexors
could be formed with a number of smaller multiplexors if a
larger multiplexor is not supported in the kernel cells. Various
other types of memory cells could also be supported such as
EEPROM, EPROM, PROM, DRAM, SRAM, NVRAM,

65 magnetic core memory, 7-K F/Fs, setable and resetable F/Fs,
various F/F with scan ATPG capability, etc. The 7-K, setable,
or resetable functionality of a F/F can be implemented by a D

US 7,624,368 B2
5

F/F and logic that can be embedded in the mux before or after
the D F/F. The F/Fs could also be falling edge triggered in
some embodiments. Also the buffers could be of various
strengths and sizes. Some buffers could support input and
output pins of the chip with various thresholds, voltages, etc.

Table II lists the various configurations in which kernel
cells are used to create basic cells 100-1 that use all of a ULG
104, a memory cell 108 and a buffer cell 112 such as the
example in FIG.1A. Thesebasic cells 100-2 are the variations
found in one embodiment of the ULG ASIC cell library.

TABLE II

6
form an embodiment of the ULG ASIC cell library. Other
possible configurations are enumerated in Table IV below.

TABLE IV
5

Basic Cell Configuration
Type Mux - Mem Various Basic Cell Layout Names

UD U - D U2D1, U4D1, U8D1
UDR U - DR U2DR1, U4DR1, U8DR1, U2DR1, U4DR2,

10 U8DR2 U2DR3, U4DR3, U8DR3
UDS U - DS U2DS1, U4DS1, U8DS1, U2DS2, U4DS2,

U8DS2, U2DS3, U4DS3, U8DS3

Configuration
Basic Cell	 Mux - Mem
Type	 Buf various Basic Cell Layout Names

UDB	 U - D - B U2D1B1, U4D1B1, U8D1B1,
U2D1B2, U4D1B2, U8D1B2,

UDBN	 U - D - BN U2D1BN1, U4D1BN1, U8D1BN1
UDZB	 U - D - ZB U2D1ZB1, U4D1ZB1, U8D1ZB1
UDRB	 U - DR - B U2DR1B1, U2DR2B1, U2DR3B1,

U2DR1B2, U2DR2B2, U2DR3B2,
U4DR1B1, U4DR2B1, U4DR3B1,
U4DR1B2, U4DR2B2, U4DR3B2,
U8DR1B1, U8DR2B1, U8DR3B1,
U8DR1B2, U8DR2B2, U8DR3B2

UDRBN	 U - DR - BN U2DR1BN1, U2DR2BN1, U2DR3BN1,
U4DR1BN1, U4DR2BN1, U4DR3BN1,
U8DR1BN1, U8DR2BN1, U8DR3BN1

UDRZB	 U - DR - ZB U2DR1ZB1, U2DR2ZB1, U2DR3ZB1,
U4DR1ZB1, U4DR2ZB1, U4DR3ZB1,
U8DR1ZB1, U8DR2ZB1, U8DR3ZB1

UDSB	 U - DS - B U2DS1B1, U2DS2B1, U2DS3B1,
U2DS1B2, U2DS2B2, U2DS3B2,
U4DS1B1, U4DS2B1, U4DS3B1,
U4DS1B2, U4DS2B2, U4DS3B2,
U8DS1B1, U8DS2B1, U8DS3B1,
U8DS1B2, U8DS2B2, U8DS3B2

UDSBN	 U - DS - BN U2DS1BN1, U2DS2BN1, U2DS3BN1,
U4DS1BN1, U4DS2BN1, U4DS3BN1,
U8DS1BN1, U8DS2BN1, U8DS3BN1

UDSZB	 U - DS - ZB U2DS1ZB1, U2DS2ZB1, U2DS3ZB1,
U4DS1ZB1, U4DS2ZB1, U4DS3ZB1,
U8DS1ZB1, U8DS2ZB1, U8DS3ZB1

With reference to FIG. 113, a block diagram of another
embodiment of a basic cell 100-2 composed of memory and
buffer kernel cells 108,112 is shown. This is but one example
of a basic cell 100-2 of this general configuration. Otherbasic
cells of this general configuration that could be found in an
embodiment of a ULGASIC cell library are listed in Table III.

TABLE III

Basic Cell
Type

Configuration
Memory - Buffer various Basic Cell Layout Names

DB D - B D1B1, D1B2
DBN D - BN D1BN1
DZB D - ZB D1ZB1
DRB DR - B DR1B1, DR2B1, DR3B1, DR1B2,

DR2B2, DR3B2
DRBN DR-BN DR1BN1, DR2BN1, DR3BN1
DRZB DR-ZB DR1ZB1, DR2ZB1, DR3ZB1
DSB DS - B DS1B1, DS2B1, DS3B1, DS1B2,

DS2B2, DS3B2
DSBN DS - BN DS1BN1, DS2BN1, DS3BN1
DSZB DS - ZB DS1ZB1, DS2ZB1, DS3ZB1

Referring next to FIG. 1C, a block diagram of yet another
embodiment of a basic cell 100-3 is shown that is composed
of ULG and memory kernel cells 104, 108. This is just one
example of the various similar basic cells 100-3 that might

With reference to FIG. 11), a block diagram of still another
15 embodiment of a basic cell 100-4 composed of ULG and

buffer kernel cells 104,112 is shown. There are other possible
configurations of this type of basic cell 100-4. The variations
of this basic cell 100-4 for one embodiment of the ASIC
library are listed in Table V. From Tables II-V, around 80% of

20 the 142 available basic cells include ULG circuits. The 142
basic cells are based upon the 14 kernel cells of Table I.

Although the embodiment in Tables II-V show some pos-
sible basic cells, other embodiments could include additional
basic cells. These additional basic cells could be optimized

25 for output power, power consumption, layout area, response
time, leakage, etc. such that there are multiple cells with the
same logical properties, but that are optimized for particular
circumstances. For example, there may be three non-invert-
ing buffers of having different drives to support larger fanout

3o and/or higher speeds. In various embodiments, there could be
less than, for example, 100, 75, 50, 40, 30, 20, or 10 kernel
cells. At the lower limit, there is three kernel cells in one
embodiment with just one of each of the types of kernel cells.

35	
TABLE V

Basic Cell	 Configuration
Type	 Mux - Buf	 Various Basic Cell Layout Names

UB	 U - B	 U2B1, U4B1, U8B1, U2B2, U4B2, U8B2
40 UBN	 U - BN	 U2BN1, U4BN1, U8BN1

The building blocks of a digital circuit could be abstracted
beyond the ULGASIC cell library. In some embodiments, the

45 ULG ASIC cell library components could be combined in
higher-level macro cells such as adders, multipliers, registers,
barrel shifters, ALUs, comparators, decoders, state machines,
counters, etc. There could be thousands of possible macro
cells. Further, designs can be abstracted to a level higher than

50 the macro cells by using cores that implement higher level
functions such as microprocessors, graphics processors,
interface busses or ports, digital signal processors, etc. These
cores could use macro cells and/or components from the ULG
ASIC cell library. Often the cores are written in a hardware

55 description language (HDL) that can be easily synthesized
into any ULG ASIC cell library for a particular process.

With reference to FIGS. 2A and 213, various embodiments
of a memory kernel cell 108 are shown in block diagram form.
These embodiments divide the D F/F 208 out from the

60 memory cell and implement some functionality with a sepa-
rate buffer cell 204. In various embodiments, the buffer cell
204 could be used to customize the D F/F 208 with synchro-
nous reset of FIG. 2A or asynchronous reset of FIG. 2B. In
other embodiments, a separate circuit could be used to make

65 a D F/F 208 behave as a setable D F/F, a 7-K F/F or a F/F with
scan capability. In other embodiments, the separate circuit
could be implemented with a selection circuit.

US 7,624,368 B2
7

This buffer cell 204 in an ASIC cell library could be used
for other purposes also. For example, an 8 to 1 mux function
could be implemented with a buffer cell 204 and a 4 to 1 mux
104 in some circumstances to reduce the chip area needed to
implement the functionality. Table VI shows the thirteeen
kernel cells used in this embodiment. Table VII shows a truth
table for the enable buffer 204 where the enable input is R, the
input is D and the output is Q.

TABLE VI

Kernel Cell
Component Symbol Description

ULGs U 8 to 1 (U8), 4 to 1 (U4) or 2 to 1 (U2)
Multiplexors

Memory Cells D D F/F (Dl)
DS Setable D F/F - Synchronous (DSI),

Clock Edge Synchronization (DS2) or
Asynchronous (DS3)

Buffers B Non-inverting buffer (BI) or Hybrid
Inverting and Non-inverting buffer (132)

BN Inverting buffer (BNI)
EBN Inverting buffer with an enable input (EBNI)
CB High-drive buffer (CBI)
ZB Tristatable buffer (ZBI)

TABLE VII

R D	 Q

0 0	 1
0 1	 1
1 0	 1
1 1	 0

II. Layout of Cells
Each fabrication process at a fab or foundry generally has

a conventional ASIC cell library that is customized for that
process. Each of the hundreds of cells in the conventional
ASIC cell library is typically manually laid out to optimize its
configuration. In this embodiment, however, a small number
of customized kernel cells are used to automatically or manu-
ally compile the basic cells 100. For a target fabrication
process, care is taken to optimize the layout of kernel cells
104, 108, 112 for factors such as power consumption, chip
area, number of masks, number of process steps, yield,
capacitance, inductance, resistance, glitches, I/O placement,
etc. In some cases, the fabrication processes are similar
enough to other fabrications processes that only minor tweak-
ing to kernel cells is done.

With reference to FIG. 3 a block diagram of an embodi-
ment of a ULG layout 300 is shown. A cloud graphic is used
to represent the layout of the circuit to implement the 2 to 1
ULG 104. Input ports 316, 320 and I/O 324 are detailed
within the circuit cloud, more specifically, ports for the inputs
(Io and I i) 316 and the select (Yo) 320 and a trace is shown for
the Q output 324. For the ULG kernel cell, the input and select
signals are ports 316, 320 within the ULG layout 300. The
ULG circuit 304 is attached by traces to latitudinal power
traces 308, 312.

Abutment is used to link certain signals by coupling adja-
cent kernel cells. Adjacent placement of the cells may j oin the
abutted I/O or a small conductive trace may join the abutted
I/0. The kernel cells have a uniform height and differing
depths such that the power traces 308, 312 for each kernel cell
align with the next kernel cell. Also, certain I/O signals use a
uniform latitude. For example the Q output 324 of the ULG

8
layout 304 would align latitudinally with an input for an
adjacent memory or buffer kernel cell.

Referring next to FIG. 4, a block diagram of an embodi-
ment of a memory kernel cell layout 400 is shown. This

5 memory circuit 404 implements a D F/F with a D input 412,
a clock input 408 and a Q output 416. Coupled to the memory
circuit 404 are a VDD and Vss power busses 308, 312. The
height of the memory kernel cell layout 400 is the same as the
ULG cell layout 300 such that the power busses for both

I kernel cells align latitudinally.
With reference to FIG. 5, a block diagram of an embodi-

ment of a buffer kernel cell layout 500 is shown. As with the
other kernel cell circuits 304, 404, a non-inverting buffer
kernel cell circuit 504 is coupled to power busses 308, 312

15 with a height uniform to the other kernel circuits 304, 404.
The buffer circuit includes a D input 508 and a Q output 512,
where the D input 508 is latitudinally aligned with the outputs
from either a ULG circuit 304 or a memory circuit 404. In this
embodiment, the Q output 512 is offset from the latitude of

20 the D input 508.
Referring next to FIG. 6, a block diagram of an embodi-

ment of a basic cell 600 abutted together from three kernel
cells 300, 400, 500 is shown. A U2 ULG, DI F/F and B1
non-inverting buffer kernel cells 300, 400, 500 are connected

25 in serial to form the basic cell 600. The power busses 308, 312
for each kernel cell 300, 400, 500 align to form a larger whole.
The Q output 324 from the U2 ULG circuit 304 aligns with
the D input 412 to the DI memory circuit 404, and the Q
output 416 from the D I memory circuit 404 aligns with the D

30 input 508 to the B1 buffer circuit 504. Other embodiments
could have additional power busses, for example, a substrate
bus connection.

With reference to FIG. 7, a block diagram of an embodi-
ment of two basic cells 600, 704 laid out together in a row 700

35 is shown. During layout of a chip, all the ULG ASIC cells are
arranged. The basic cells 600, 704 are aligned in horizontal
rows. In some cases (not depicted), there is routing of one or
more signals between the basic cells 600, 704. In the depicted
embodiment, an output from a first basic cell 704 is coupled

40 with a trace 712 to an input of a second basic cell 600. The
clock inputs for both basic cells 600, 704 are latitudinally
aligned such that a clock bus can pass strait across a row 700
of basic cells.

In some embodiments, additional size reductions are real-
45 ized in the ULGs by having them comprise one or more

depletion-mode transistors. Schematic diagrams are provided
in FIGS. 8A and 8B that compare enhancement-mode and
depletion-mode transistors. FIG. 8A shows the structure of an
n-type enhancement-mode transistor 802 that comprises a

50 source 804, a drain 806, and a gate 810. Connections are made
with the source 804 and drain 806 respectively through pads
812 and 814. The gate 810 usually comprises a metal formed
over an oxide such as S'0 2 . For such an n-type transistor 802,
both the source 804 and drain 806 comprise n-doped regions

55 in a p-doped substrate. The transistor operates so that when at
least a threshold voltage is applied to the gate 810, current
flows between the source 804 and drain 806 through an inter-
mediate channel region. In circuits, the enhancement-mode
transistor 802 is denoted with symbol 820.

60 The depletion-mode transistor 842 illustrated in FIG. 8B
also comprises a source 844, a drain 846, and a gate 850
formed over an oxide 848, with connections to the source 844
and drain 846 provided respectively by pads 852 and 854. For
the depletion-mode transistor, however, the channel region

65 856 between the source 844 and drain 846 is also n-doped,
allowing the flow of current even without a gate voltage. The
current can be stopped by applying at least a negative cutoff

US 7,624,368 B2
9
	

10
voltage to the gate 850. In circuits, the depletion-mode tran-
sistor 842 is denoted with symbol 860.

FIG. 8C provides an example of a circuit for a ULG ele-
ment that exploits the different properties of enhancement-
and depletion-mode transistors to allow a smaller circuit area
than a ULG design that uses only enhancement-mode tran-
sistors. The illustration is provided for the U8 cell, which acts
as an 8:1 multiplexor. The U8 cell 872 comprises eight inputs
874 labeled Io $, three selection controls 876 labeled
Y[0 ... 2], and one output 878 labeled Q. The multiplexing
functions of the cell are governed by the action of 48 transis-
tors, of which half are provided as depletion-mode transis-
tors. Each of the controls 876 and its inversion is provided to
a transistor along the path of one of the inputs 874, with the
inversions being effected by inverters 880. To effect the mul-
tiplexing functions, the depletion-mode transistors are dis-
tributed according to the level of the control. For the least
significant control, the depletion-mode transistors are posi-
tioned alternately; for the next significant control, they are
positioned alternately in pairs; for the next significant control,
they are positioned alternately in quads; etc. Thus, for the U8
cell 872, depletion-mode transistors forY[0] are provided for
inputs Io, Iz, I4, and I 6, and for the inverted control YN[0],
depletion-mode transistors are provided for inputs I 1 , I3 , I5,
and h. ForY[I], depletion-mode transistors are provided for
inputs lo, I 1, I4, and Is , and for the inverted control YN[1], they
are provided for inputs I z, I 3 , I6, and h. Similarly, depletion-
mode transistors are provided forY[2] for inputs I o , I 1 , I 2 , and
I3, and for YN[2] for inputs I4, I5 , I 6, and h.

For certain embodiments of the ULGs that comprise deple-
tion-mode transistors, this pattern may be used for a cell of
any size. For a U2"+r ULG that has 2"+1 inputs and n+1
controls, depletion-mode transistors may be provided for
each control/input combination as follows:

(i) For control Y[i=0 ... n], depletion-mode transistors are
provided for inputs Ik where k<2 1 mod 2z+1;

(ii) For control YN[i-0 ... n], depletion-mode transistors
are provided for inputs Ik, where k'? 2' mod 2`+r

In other embodiments, a different distribution of depletion-
mode transistors may be used to implement the multiplexing
functions of the ULG.

III. Logical Structures

In addition to the structural characteristics described above,
there are a number logical properties and features that may be
used both to characterize individual cells and to characterize
libraries of such cells. An example of a formalism that may be
used in one embodiment to describe the functionality of the
basic cells and from which at least some such logical charac-
terizations may be extracted is now described.

As discussed above, the selection circuits embodied by
ULGs used for forming basic cells may be implemented using
2:1, 4:1, 8:1, or perhaps even larger, multiplexors. The inputs
and control of each multiplexor are programmed to achieve
the desired logical characteristics of the cell. The following
syntax has been developed to describe the programming of
such inputs and selection controls in a general fashion:

Q <QN> .xxxx <E> Y[n-1:0] I2n_J2, z ... I6<R/S>
<CLK>(Parameter—Option);

In addition to describing the programming of the ULG kernel
cells, the syntax may be used to describe any of the basic cells,
including both those that comprise ULG kernel cells and
those that do not comprise ULG kernel cells. Optional param-
eters in the syntax are denoted with angular brackets and the
components of the syntax are summarized in Table I.

TABLE VIII

Component Meaning

5	 Q Non-inverting output
<QN> Optional inverting output
.xxxx Cell name
<E> Optional tri-state enable
Y[n — 1:0] Control variables

State variables

10	 Ix Truth-table state

Next state
<R/S> Optional reset or set input
<CLK> Optional clock input
(Parameter = Option) Selects an option

Terminator

15

There are a number of features of the syntax worthy of
comment. The first component of the syntax indicates the
output of the cell, using either Q or QN respectively to denote

20 the output Q or Q. This is followed by the name of the cell,
which is generally constructed by concatenating the names of
the kernel cells comprised by the cell. The names of the kernel
cells have been set forth above in Table VIII. Thus, for
example, a basic cell that comprises a D F/F and a non-

25 inverting buffer would be named.DB (D—B); a basic cell that
comprises a resetable D F/F and an inverting buffer would be
named .DRBN (DR—BN); a basic cell that comprises a ULG
multiplexor and a setable D F/F would be named .UDS
(U—DS); and a basic cell that comprises a ULG multiplexor,

30 a D F/F, and a tristatable buffer would be named .UDZB
(U—D^ZB). It is noted that some of these examples of basic
cells include a ULG multiplexor kernel cell while others do
not, but all of these may be described with the syntax.

In those instances where the syntax is used to describe a
35 basic cell comprising a ULG, the number of selection control

inputs provided to the ULG is n. In a specific embodiment, the
control inputs are ordered by significance, with the most
significant control on the left and the least significant control
on the right. While the syntax is equally robust for describing

40 basic cells for any value of n, for purposes of explanation the
examples provided herein generally correspond to cases in
which n^3. The states of the n control inputs Y dictate which
of 2" inputs are passed to the output of the ULG. While in
some instances, the control inputs may be identified individu-

45 ally, in other instances a range of control inputs is identified
by using a colon in the argument of Y. Specifically, "Y[a:b]"
is intended to refer to the full expression `Y[a] Y[a-1]
Y[a-2] ... Y[b+2] Y[b+l] Y[b]." The set of parameters
I2n-1 1"-2 ... Io represents the logical function to be applied by

50 the cell, and as discussed in greater detail below may com-
prise a truth table for implementing a combinational logic
device or may comprise an identification of the next state of a
sequential circuit. In some embodiments, these logical states
I2n-l In-2 ... Io may be assigned to logical 1's or 0's (some-

55 times referred to herein as "base Boolean values"), but may
more generally include map-entered variables as well. For the
basic cell, this corresponds to a connection to VDD for a logic
1, to a connection to VSS for a logic 0, and to a connection to
a signal for a mapped entered variable. Parameters such as the

60 type of reset, i.e. asynchronous, synchronous, or clock-edge,
are assigned and enclosed in parentheses at the end of the

statement.
This formalism permits the expression of a number of

manipulations that are possible with embodiments of the
65 invention and which are discussed in detail in order to enable

one of skill in the art to perform such manipulations. The
nature of such manipulations may be clarified with a simple

US 7,624,368 B2
11
	

12
example for the combinational logic function C=A+B. This	 the next significant control A is inverted in the original
logic function may be expressed in a concise hardware	 expression instead, neighboring pairs of states in the truth
description language ("CHDL") formalism as follows:	 table are interchanged:

C .UB A B VDD VDD VSS VDD;

That this is a correct implementation of the logic function in
which C is equal to "A or not B" is evident by comparing the
entries in the expression to the syntax discussed above. The
name of the cell .UB indicates that the function is imple-
mented with a cell that comprises a universal logic gate U and
a non-inverting buffer B. On either side of the name, the
parameters involved in the function are denoted, with the
left-most component of the expression C indicating the out-
put, and the variables to the right of the name A and B
indicating the inputs. The following four entries before the
terminator define the following truth table 1 2'- 1 12"-2 ... Io for
the combinational function, with VDD being equivalent to a
logic I and VSS being equivalent to a logic 0. The individual
truth-table states I are noted:

TABLE IX

A

I3=
I2=
I, =
Io

When logical operations are performed on expressions in
this formalism, they indicate directly how the resulting
expression may be implemented with basic blocks in accor-
dance with an embodiment of the invention. For example, a
simple logical operation i s inversion of the output, which may
be implemented by using an inverting buffer:

CN .UBNA B VDD VDD VSS VDD;

As can be seen, the same truth table as that defined in Table IX
is used for implementing C, but the implementation is with a
basic cell comprising a universal logic gate U and an inverting
buffer BN. An alternative implementation of C uses the same
.UB basic cell, but instead uses a different truth table by
inverting all of the input states:

CN .UB A B VSS VSS VDD VSS;

In other instances, alternative implementations of the same
logical function may be achieved by performing operations
on the control inputs. For example, the control inputs A and B
may be permuted. Permuting the control for the function acts
to rearrange the truth table. In an embodiment that includes
this example, the truth-table states I3 and Io remain in the same
position because they represent states where both controls are
high or both are low. States I2 and I1, which represent states
where one control is high and the other is low, are inter-
changed:

C .UB B A VDD VSS VDD VDD;

A permutation of the truth table may also result from inver-
sion of one or more of the control inputs. In this example,
inverting the least significant control B interchanges neigh-
boring states in the truth table:

C .UB A BN VDD VDD VDD VSS;

This alternative expression for may be viewed as defining an
implementation for C that uses the general truth table for
X+Y, but with control inputs defined so that X=A andY=B. If

C .UB AN B VSS VDD VDD VDD;
5

It is evident that this expression implements the general truth
table for X+Y, but with control inputs defined so that X=A
and Y=B. If both control inputs are inverted,

10	 C .UB AN BN VDD VSS VDD VDD;

The truth table in this expression implements the general
function X+Y, but with control inputs defined so that X=A
and Y=B.

15 The CHDL syntax also permits control variables to be
entered as elements in the truth-table states. For example, the
syntax makes it easy to recognize that the result C is high
whenever A is high and that C takes the value of BN when A
is low. This may be expressed in this CHDL syntax as

20	 C .UB A VDD BN;

and corresponding to the truth table shown in Table X:

TABLE X
25

C	 A

I,=	 1	 0
I0 =	 B	 1

30
Equally, the syntax makes it easy to recognize that the result
C is high whenever B is low and that C takes the value of A
when B is low. This may be expressed in this CHDL syntax as

C .UB B A VDD;
35

and corresponding to the truth table shown in Table XI:

TABLE XI

40	 C	 B

I,=	 A	 0
I0 =	 1	 1

45 Not only does the CHDL syntax presented here easily admit
control variables to be presented as map-entered variables,
but this same ability is manifested in the implementations
with the cells described above. In particular, either of the two
above examples may be as easily implemented using a com-

5o bination of a ULG and buffer (".UB") as is any truth table that
uses the basic Boolean variables 0 and I exclusively. Imple-
mentation of all of these logical functions is simply a matter
of assigning the truth-table states and control variables in
accordance with the universal logic elements as described

55 above.
The formalism thus makes clear that embodiments of the

invention permit the implementation of a diverse range of
logical functions. Specific examples of some of these prop-
erties are now discussed in greater detail. In discussing logi-

60 cal properties that may be exploited in certain embodiments
of the invention, reference is sometimes made to the formal-
ism explained above. Such reference is made primarily for
reasons of convenience and is not in any way intended to limit
the scope of the invention. In particular, it will be evident to

65 those of skill in the art that it is possible to implement each
legitimate syntactical expression in the formalism with the
cells discussed above. Accordingly, the logical properties of

US 7,624,368 B2
13

the formalism correspond directly to logical functions that
may be implemented with the cell arrangements in different
embodiments.

One property of the formalism, and therefore also of the
cell arrangements, is that no high-level distinction is made
between combinational and sequential circuits; both such
circuits are merely special cases of the more general types of
logical functions that may be implemented. A combinational
circuit is one in which the output(s) are predetermined func-
tions of the input(s). As such, the logic implemented by a
combinational circuit can be represented by a truth table
setting forth a mapping between all possible Boolean states of
the input(s) to the Boolean states of the output(s). This may be
contrasted with a sequential circuit in which the logical appli-
cation of the circuit relies on a history of past inputs. The
application of such logic may instead be represented with a
next-state equation that maps the past input(s) to the
output(s). Embodiments of the invention described herein are
not restricted either to combinational or sequential logic. For
example, only slight differences in cells are needed to imple-
ment the following syntactic CHDL expressions:

Q .UB A B VDD VDD C VSS;

Q .UD A B VDD VDD C VSS CLK;

The first of these expressions represents a combinational
logic function and the second represents a sequential logic
function. In other embodiments, the formalism and corre-
sponding cell implementations may include both combina-
tional and sequential aspects so that a characterization of the
function is not properly limited to either category. This addi-
tional flexibility permits certain optimizations, some of which
are discussed below, that are not available when limited to
either combinational or sequential logic.

This additional flexibility also arises in part from the more
general character of cells made in accordance with embodi-
ments of the invention to implement selection logic, in addi-
tion to combinational and selection logic. As used herein, a
"selection operation" refers to a function in which one or
more of a plurality of inputs are passed as outputs. In certain
embodiments, the selection operation passes one of a plural-
ity of inputs as an output. Such a selection operation differs
from a sequential-logic operation because it does not depend
on a past history of the inputs. It also differs from combina-
tional-logic operations, which do not require that the output
correspond to one of the inputs. This is easily seen for an
NAND gate, which produces an output 1 in response to two 0
inputs; the output does not correspond to either of the inputs.
It is also true, however, for an OR gate. Although in every
instance the output of an OR gate is equal to one of the inputs,
the gate does not act to pass one of the inputs as an output;
instead, a combinational mapping is performed from the
inputs to the outputs that happens to include some common-
ality. In addition, selection operations are not limited to
instances in which the number of inputs is two and/or the
number of outputs is one. More generally, any plurality p,„
(?2) of inputs may be accepted, of which a number pout (? 1)
are passed.

Embodiments of the invention also do not limit the inputs
and/or outputs to the base Boolean values 0 and 1. As noted in
connection with Tables X and XI and the associated syntactic
expressions, cells used in embodiments of the invention may
implement operations in which truth-table entries are instead
functions of such base Boolean values. In this respect, the
invention includes embodiments that provide for the imple-
mentation of Boolean functionals, which are defined herein as

14
operations that admit functions of Boolean variables among
their inputs and/or outputs, in addition to admitting base
Boolean values among their inputs and/or outputs.

Both the formalism presented herein and the implementa-
5 tion with the cells described above permit a further generali-

zation that increases the flexibility of digital design and its
optimization. Such a generalization may be understood with
reference to what are defined herein as higher-order Boolean
functions. Conventional digital circuit design uses only what

10 are referred to herein as zero-order Boolean functions, which
admit only base Boolean values among their input(s) and/or
output. In contrast, some embodiments of the invention use a
first-order Boolean function, which corresponds to a Boolean
functional and admits zero-order Boolean functions in addi-

15 tion to base Booleanvalues among its inputs and/or output(s).
Other embodiments use a second-order Boolean function,
which admits first-order Boolean functions, zero-order Bool-
ean functions, and base Boolean values among its inputs
and/or output(s). In still other embodiments of the invention,

20 even greater orders of Boolean functions are used, such orders
admitting all lower orders of Boolean functions among their
inputs and/or output(s) in addition to admitting the base Bool-
ean values used in conventional design. All orders of Boolean
functions other than zero-order Boolean functions are some-

25 times referred to herein collectively as "higher-order" Bool-
ean functions.

This generalization may be illustrated with an example
based on the C=A+B example discussed earlier:

30	
J.UB G H VDD VSS F C;

F.UB D E VSS C VDD C;

C .UB A B VDD VDD VSS VDD;

35 In this example, the third expression corresponds to the
zero-order function C=A+B, which admits only base Boolean
vales 0 and 1 among its arguments. Such a function uses a
combinational mapping and may be implemented using
gates, such as with an OR gate and a NOT gate. The second

40 expression corresponds to a first-order function, or func-
tional, that admits the zero-order function C as one of its
arguments, in addition to admitting the base Boolean values.
The first expression corresponds to a second-order function
that admits the first-order function F, the zero-order function

45 C, andthe base Boolean values among its arguments. The first
and second expressions thus each correspond to expressions
for higher-order functions. All three of the expressions may
be implemented in embodiments of the invention using the
cells as described above.

50 One effect of the ability to use higher-order functions may
be seen with a comparison to the exclusive use of Boolean
operations. Such Boolean operators operate only on the base
Boolean values 0 or 1, or on variables that represent the base
Boolean values 0 or 1, i.e. that have already had a value of 0

55 or 1 bound to it. Boolean minimization or optimization tech-
niques are based on decomposing the expressions being mini-
mized to consider the meaningful possible combinations of
assignment of 0 or 1 to each Boolean variable (with the
possible existence of "don't care" states for some variables

60 under some circumstances reducing the meaningful possible
combinations downward from the set of all possible combi-
nations). Higher-order functions allow one to optimize, or
minimize a circuit, without the requirement to decompose the
function result to each possible value and considering each

65 separately. In other words, when a circuit with the algorithms
described below, one need not know what the value of the
functions or variables are; optimization is performed regard-

US 7,624,368 B2
15

less. In conventional methods limited to the use of Boolean
operators, each variable and function is decomposed into all
possible values for the functions and variables, i.e. to define a
complete truth table, before any optimization can be per-
formed; in such conventional methods one must exhaustively
assign a value to all variables and functions.

IV. Optimization
The expanded availability of logical operations provided

by embodiments that use cells based on the ULGs and as
represented by the formalism described permits increased
optimization. In many instances, these logical operations may
be used to determine optimized methods of implementing a
given function. A number of such logical operations are illus-
trated, and it will be understood by those of skill in the art that
still other logical operations may derive from the formalism
in other embodiments of the invention. Moreover, while the
formalism is used as a matter of convenience to illustrate the
nature of the optimizations, it will be understood that all the
expressions that follow may be implemented using the pre-
viously described cells in the manner explained. This is true
even in instances where the expressions correspond to func-
tions not accessible by standard Boolean logic. In some cases,
use of the formalism shows how multiple manipulations may
be performed to achieve an optimization, it being necessary
only to implement the final result with the previously
described cells to achieve the optimized function.

A number of the operations that may be performed with
logical functions as expressed using the formalism described
herein are summarized in FIGS. 9A-91), which provide flow
diagrams to explain how some such operations may be per-
formed. In different embodiments, various combinations of
one or more such operations may be performed and the inven-
tion is not limited to any particular order or number of such
operations. Accordingly, each of FIGS. 9A-91) indicates that
it may be entered as part of a greater flow of operations from
a previous transformation. It is not necessary that a previous
transformation necessarily have been performed in any case,
although the indication is included to note that some embodi-
ments of the invention contemplate that previous transfonna-
tions may have been performed. Also, while the flow dia-
grams in each of FIGS. 9A-91) shows an exemplary order in
which operations may be performed, such an ordering is not
necessary and alternative embodiments permit alternative
orderings. Moreover, in some embodiments, it is possible that
some operations may be performed simultaneously, such as
when different parts of a large structure are optimized at the
same time.

FIG. 9A summarizes a number of operations that may
collectively be considered to correspond to the removal of
inversions. Accordingly, the method shown in FIG. 9A begins
at block 902 with a syntactic expression for a cell, perhaps,
but not necessarily, after certain previous logical transfonna-
tions have been effected. At block 904, an identification is
made whether there are any inversions in the syntactic expres-
sion for removal. If not, the method proceeds to a potentially
subsequent transformation at block 906. In the event that it is
desirable to remove an inversion, the method may proceed
along one of at least three branches depending on the type of
inversion. Branch 903 corresponds to inversions inthe control
or state variables Y; branch 905 corresponds to inversions in
the truth table; and branch 907 corresponds to inversions in
the buffer.

In one embodiment, inversions of the control or state vari-
able may proceed at block 908 by interchanging adjacent
groups in the truth table. The size of the groups to be inter-
changed depends on the significance of the control or state

16
variable to be inverted. Thus, if a controlY[k] is to be inverted,
groups of size 2k are inverted. This may be illustrated by
considering a cell comprising a ULG and a buffer:

Q .UB Y[2] Y[1] YN[o] A B C D E F G H;
5

In this instance, the least significant control Y[0], defined by
k-0, is to be inverted so that adjacent states are interchanged:

Q .UB Y[2] Y[1] Y[0] BAD C FEH G;

10
In a similar fashion, when k=I for the control to be inverted,
adjacent pairs of states are to be interchanged:

Q .UB Y[2] YN[1] Y[0] A B C D E F G H;

15	 Q .UB Y[2] Y[1] Y[0] C D A B G H E F;

When k=2 for the control to be inverted, adjacent quads of
states are to be interchanged:

Q .UB YN[2] Y[1] Y[0] A B C D E F G H;
20

Q .UB Y[2] Y[1] Y[0] E F G H A B C D;

The flow diagram in FIG. 9A provides a loop back to block
904 after a particular control has been inverted by interchang-

25
ing states. This contemplates the possibility of performing
Inversions on multiple controls, which are therefore effected
by performing the relevant interchanges in succession. The
interchanges are commutative so that the resulting syntactic
expression is independent of the order in which they are

30
performed:

Q .UB YN[2] YN[1] YN[o] A B C D E F G H;

Q .UB Y[2] Y[1] Y[0] H G F E D C B A;

35 The resulting expression, which may be implemented using
the cells as described above, follows from any order of per-
forming the control inversions and respective truth-table
interchanges.

The flow diagram of FIG. 9A notes at block 910 that in

40 some instances the removal of inversions may be accom-
plished by entering the control as a map-entered variable
instead of performing interchanges. In such cases, the ability
of embodiments of the invention to accommodate non-Bool-
ean selection operations is exploited to achieve greater levels

45 of optimization. Within the syntax used to illustrate the prin-
ciples described herein, the identification of an inverted con-
trol YN with a sequence VSS VDD permits removal of the
inversion by entering the control into the truth table:

Q .UB Y[1] YN[o] vss VDD A A;
50

Q .UB Y[1] Y[0] A;

As indicated, entry of the control in the truth table will usually
also require a repetition of a state A at the appropriate level.

55 In some cases, it may be desirable to permute the truth table
to achieve such VSS VDD sequences by permuting the con-
trol:

Q .UB YN[1] Y[o] vss A VDD A;

60	 Q.UBY[o]YN[1] VSS VDD AA;

Q .UB Y[0] Y[1] A;

In the above progression, optimization of the cell is achieved
65 by noting that the sequence VSS VDD may be achieved

through a permutation of the truth table and by noting the
repetition of state A. Permuting the controls results in a truth

US 7,624,368 B2

17
table identical to that of the preceding example, and therefore
the least significant control may become a map-entered vari-
able.

The same principles apply with more significant levels of
control, for which optimization may remove an inversion by
entering the more significant control as a map-entered vari-
able under some circumstances. In one embodiment, for
example, this is achieved when the less significant controls
are redundant:

Q .UB Y[2] YN[1] Y[o] AAA A vss vss VDD
VDD;

Q .UB Y[2] AY[1];

The optimization has been achieved by recognizing the exist-
ence of an analogous pattern, namely the repetition of A at a
higher significance level and the existence of the sequence
VSS VSS VDD VDD. It will now be evident to those of skill
in the art that permutation of control may be used to restruc-
ture the truth table to identify such sequences and thereby
optimize the function by removing the inversion. In addition,
it will also be evident that these principles may be applied to
any significance level for the control. For example, an eight-
fold repetition ofA coupled with the sequence VSS VSS VSS
VSS VDD VDD VDD VDD will permit removal of a YN[2]
inversion, perhaps after permuting the controls to achieve
such a sequence in the truth table.

At block 912 of FIG. 9A, it is noted that inversion of the
truth-table states may be achieved by inverting the buffer in
the cell:

Q .UBNY[0] AN BN;

Q .UB Y[0] A B;

By inverting the buffer, all entries in the truth table are
inverted. Block 914 notes the converse function in which the
buffer is inverted by inverting all elements of the truth table.
While the functional effect of blocks 912 and 914 is identical,
they are conceptually converse because in one instance the
goal of inverting the truth table is achieved by inverting the
buffer and in the other instance the goal of inverting the buffer
is achieved by inverting the truth table.

Every operation in the FIG. 9A cycles back to block 904.
As noted with respect to block 908, this aspect emphasizes
that multiple of these transformations may be used in effect-
ing optimizations and that they may be performed in different
orders. For example, for some cells, optimization might be
achieved by: (1) first, inverting a buffer to invert a truth table;
(2) second, permuting the control so that the resulting truth
table includes sequences that permit the entry of control vari-
ables; and (3) finally, performing interchanges within the
truth table to remove other control inversions.

The entry of a control variable into a truth table as a map-
entered variable, such as discussed with respect to block 910
in FIG. 9A not only has the effect of removing an inversion,
but also reduces the number of nodes in the cell. There are
other truth-table sequences that permit optimization by
accepting the entry of control variables and thereby reducing
the number of nodes. The flow diagram in FIG. 9B provides a
general explanation of how such sequences may be achieved.
Essentially, the same procedures are followed as discussed
with respect to block 910 for inversions: a truth-table having
elements of certain sequences is identified and permuted to
realize those sequences, which are then optimizedby entering
the corresponding control variable. A simple example corre-
sponds to the example discussed with respect to block 910,
but without the inversion:

18
Q UB Y[1] Y[o] VDD vss A A;

Q .UB Y[1] Y[0] A;

5 Inthis example, arepetition ofAwiththe sequenceVDDVSS
(instead of the sequence VSS VDD) is sufficient to enter the
least-significant control variable into the truth table. This is
done with the control variable directly, instead of with its
inversion as was done in block 910.

10 Thus, the general procedure illustrated in FIG. 9B begins at
block 916 with a syntactic expression for a cell, with the
figure noting that it is possible (but not required) in some
embodiments for certain other transformations to have been
performed previously with the syntactic expression. At block

15 918, existing redundancies in the control are removed. Such
redundancies are manifested by a repetition in the truth table
at the level of the redundant control, i.e. in groups of size 2k
for control Y[k]. A trivial case occurs for the lowest level of
control:

20	 Q.UBY[0]AA;

Q.BA;

This example is trivial because the cell does nothing other
25 than produce the result A for every input; control is unneces-

sary and may be removed entirely. The same principle
applies, however, for higher levels of control. For example,
when k=1, the repetition of pairs of states may permit the
removal ofY[1]:

30	 Q .UB Y[1] Y[o] A B A B;

Q .UB Y[0] A B;

This result simply uses the fact that the higher control level
35 has no effect, with the output of the cell depending solely on

the least significant control. Similarly, when k=2, the repeti-
tion of quads of states may permit the removal of Y[2]:

Q.UBY[2]Y[1]Y[o]ABCDABCD;

40
Q .UB Y[1] Y[0] A B C D;

This result expresses the fact that the output of the cell is
dependent only on the two lowest control levels and that the

45 highest control has no effect. These principles may be
extended to still larger repeated blocks and the consequent
removal of still more significant control levels.

At block 920, permutations may be performed in the con-
trol to rearrange the truth table to identify sequences that

50
permit the entry of the control variables. For the entry of a
lowest level control, sequences of VDD VSS, coupled with a
pair of repeated variables A A, is sought. For the entry of the
next level control, sequences of VDD VDD VSS VSS,
coupled with four repeated variables A A A A, is sought. For

55
the next level control, sequences of VDD VDD VDD VDD
VSS VSS VSS VSS, coupled with eight repeated variables A
A A A A A A A, is sought. Similar sequences for still higher
control levels follow the same pattern. At block 922, the
control variable(s) are entered into the truth table to account

60 for these patterns.
Thus, one example of applying blocks 920 and 922 is as

follows:

Q .UB Y[2] Y[1] Y[o] VDD VDD vss vss A B A B;

65	 Q .UB Y[2] Y[0] Y[1] VDD vss VDD vss A A B B;

Q .UB Y[2] Y[0] Y[1] Y[1] A B;

US 7,624,368 B2
19

In the initial syntactic expression, the sequence VDD VDD
VSS VSS appears, but it is not possible to remove the k=1
control because there is no corresponding sequence of four
repeated variables. The existence of duplicates of both and
B, however, suggests that the controls may be permuted to
achieve sequences of VDD VSS coupled with pairs of
repeated variables. This is achieved in the second line by
permuting Y[1] and Y[0]. Accordingly, it is possible in the
third line to enter two occurrences of the Y[1], which is now
the lowest level of control, into the truth table. The corre-
sponding cell is therefore optimized by reducing the number
of nodes and entering the original Y[1] control variable into
the truth table.

Block 924 notes that the process of identifying and remov-
ing redundancies and permuting control variables to permit
their entry into the truth table may be repeated to achieve
further optimizations. The method is thus looped until these
procedures have optimized the syntactic expression in this
way as much as desired. At block 926, the method thus pro-
ceeds to another type of transformation, if desired, to effect
further optimizations.

In addition to reducing nodes for a single cell, it is possible
in embodiments of the invention to provide optimizations by
combining nodes from multiple cells. The flow diagram
shown in FIG. 9C provides a method corresponding to one
embodiment for combining nodes. The method begins at
block 928 with syntactic expressions for multiple cells. As for
the other optimization procedures, FIG. 9C notes explicitly
that prior transformations may have taken place on these
syntactic expressions, although this is not required. In con-
sidering whether nodes can be combined, a check is made at
block 930 whether any of the syntactic expressions outputs a
control variable present in another of the expressions. If so,
the control variables are converted into map-entered variables
at block 932. Examples of combining nodes in which such
conversions are used are provided below, but the principles of
combining nodes are initially illustrated for cases where there
is no such conversion.

One method for combining nodes is thus summarized by
blocks 934 and 936 in which the control for the multiple
syntactic expressions is combined and then states in the
merged expression are defined. For example, consider the
following two syntactic CHDL expressions in which the out-
put of the second expression, A, is one of the inputs to the first
expression:

Q .UB YQ A B;

A.UBYACD;

The expressions are merged, and the nodes thereby com-
bined, in the following way. First, the control is combined at
block 934 by adding the control for the second expression to
the first expression YQ then functions as a k — I level control
andYA functions as a k-0 level control:

Q.UBYQYAAABB;

As can be seen, increasing the level of the YQ control by a
single level to k=1 acts to duplicate each of the truth-table
entries. The order in which the controls were combined was
determined by the relationship between the inputs and out-
puts of the expressions. Specifically, since the expression for
Q has the output of the expression for A as an input, YQ was
made the higher-level control andYA the lower-level control.
After combining the controls, the states are defined in the

20
merged expression in accordance with the expressions at
block 936:

Q.UBYQYAC D B B;

5 In this instance, the sequence A A is substituted with C D in
accordance with the syntactic expression for A. The final
expression achieves the optimization by permitting imple-
mentation of the resulting expression with a single cell as

10
described above.

While this example showed how two expressions could be
merged, it may be applied more generally to any number of
expressions. For example, the following three expressions
may be merged in a similar fashion with a sequential process:

15	 Q .UB YQ A B;

A.UBYACD;

B .UB YB E F;

20
The second and third expressions both have outputs that cor-
respond to inputs of the first expression. Accordingly, in
combining control pursuant to block 934, the control of the
first expression is used as the highest level control. First, the

25 first and second expressions are merged by combining their
control and defining the states in the merged expression in the
same way as for the two-expression example:

Q.UBYQYAAABB;

30	
Q UBYQYACDBB;

Subsequently, the third expression is merged into this com-
bination. First, the additional control causes YQ to become a
k=2 level control andYA to become a k=1 level control, with

35 YB remaining as a k-0 level control:

Q.UBYQYAYB C C D D B B B B;

As seen in this expression, the additional level of control
40 causes a duplication of each of the truth-table elements. The

states in this expression are now defined according to block
936 in terms of the original third expression by substituting
pairs of B's with the sequence E F:

Q.UBYQYAYB C C D D E F E F;
45

This result thus corresponds to an expression that combines
the original three expressions and may be implemented as a
cell in the manner described above.

Both of these examples have begun with expressions that
So

correspond to ULG cells that may be implemented with mul-
tiplexors of the same size. There is, however, no limitation on
embodiments of the invention that requires that they be the
same size. It is possible to perform optimizations for combin-

55
ing nodes that correspond to merging a smaller multiplexor
into a larger multiplexor or to merging a larger multiplexor
into a smaller multiplexor. This may be seen in the following
examples in which each of the initial expressions corresponds
to a different-sized multiplexor when such an implementation

60 is used. For example, in the set

Q .UB YQ[1] YQ[o] A B C D;

A .UB YA E F;

65 the second expression has an output that is used as an input in
the first expression, and corresponds to a smaller-sized mul-
tiplexor than does the first expression. The nodes are com-

US 7,624,368 B2
21
	

22
bined in the same fashion already described. First, control is	 verting control variables to map-entered variables pursuant to
combined in accordance with block 934: 	 block 932, the expression may be written

Q .UB YQ[I] YQ[o] YA A A B B CC D D;

Subsequently, states are defined in the merged expression, in
this instance by substituting pairs of A's with E F:

Q .UB YQ[1] YQ[o] YA E F B B CC D D;

This final expression may thus be implemented as a cell and
achieves optimizations resulting from merging the smaller
multiplexor into the larger multiplexor.

It is similarly possible to combine nodes in a fashion that
corresponds to merging a larger multiplexor into a smaller
multiplexor in embodiments that use multiplexors:

Q .UB YQ A B;

A .UB YA[1] YA[o] C D E F;

Q .UB YQ[o] AYQ[1] VSS YQ[I] YQ[1];

5 Essentially, this conversion recognizes the equivalence of
truth tables XIIA and XIIB:

10	 TABLE XIIA	 TABLE XIIB

Q YQ[0] YQ[1]	 Q	 YQ[0] A
0	 0	 0	 YQ111Y 11	 0	 0
1	 0	 1	 H Y 1	 0 1

0	 1	 0	 0	 1	 0

15	 A	 1	 1	 YQ[1]	 1	 1

Combining control with the second expression at block 934
results in

20

In this example the output of the expression corresponding to
the larger multiplexor is an input to the expression corre-
sponding to the smaller multiplexor. The nodes are combined
in the same way, by first combining the control of the two
expressions in accordance with block 934. Since two levels of 25
control from the second expression are to be combined with
the first expression, YQ becomes a k=2 level control:

Q .UBYQ[0] AYAYQ[1]YQ[1] VSS vsYQ[1]
YQ[1] YQ[1] YQ[1];

Finally, defining states at block 936 so that pairs ofYQ[I] are
substituted with B C as required by the original second
expression results in the merged expression

Q.UBYQ[o]AYABCVSSVSSBCBC;

Q .UB YQ YA[1] YA[o] A A A A B B B B;

Subsequently, the states are defined in accordance with block
936 by substituting quads of A's with C D E F as dictated by
the second original expression:

Q .UB YQ YA[1] YA[0] CD EFB BB B;

Each of these examples illustrates how to combine nodes in
different circumstances where the output of one of the expres-
sions is one of the inputs to another of the expressions. In
some cases, however, the output of one of the expressions
may be one of the controls of another expression, a condition
checked for a block 930. In such instances, the control vari-
able is converted into a map-entered variable at block 932
before combining control and defining states. This may be
illustrated with the following two examples, the first of which
corresponds to anAND sub-function and the second of which
corresponds to an OR sub-function.

Thus, consider merging nodes for the following two syn-
tactic expressions:

Q .UB YQ[1] YQ[o] A VDD VSS VSS;

YQ[1] .UB YA B C;

The circumstance in this example differs from the previous
examples because the output of the second expression,
YQ[1], is a control of the first expression and not an input in
the truth table entries. The ability of embodiments to accept
variables in the truth-table elements is thus exploited to re-
express the first expression withYQ[I] in the truth table. First,
the control variables are permuted so that YQ[I] is the least
significant control:

Q .UB YQ[o] YQ[1] A VSS VDD VSS;

Then, it is recognized that with YQ[1] as the least significant
control, the VDD VSS sequence in the h -I, positions simply
corresponds to YQ[I]. It is also recognized that in the I3
position,YQ[I] and Aare equivalent. Accordingly, after con-

The same procedure may also be used for the following two

30
syntactic expressions:

Q .UB YQ[1] YQ[o] VDD VDD A VSS;

YQ[1].UB YA B C;

35 In this example, the expression forYQ[I] is the same as in the
previous example, but the expression for Q is different. Per-
muting the control variables so thatYQ[I]is least significant,

Q .UB YQ[0] YQ[I] VDD A VDD VSS;

40 Recognizing that the VDD VS S sequence in the h-Io posi-
tions corresponds to YQ[I] and that YQ[I] and A in the Iz
position are equivalent results in

Q .UB YQ[o] A VDD YQ[I] YQ[I] YQ[I];

45 This conversion effectively recognizes the equivalence of
truth tables XIIIA and XIIIB:

50	 TABLE XIIIA	 TABLE XIIIB
Q YQ[0] YQ[1]	 Q	 YQ[0] A

0	 0	 0	 1	 0	 0
1	 0	 1	 H YQ111Y 11	 0	 1
A	 1	 0	 YQ111Y 11	 1	 0

55	 1	 1	 1	 YQ[1]	 1	 1

Combining control with the second expression according to
block 934 results in

60
Q .UBYQ[0] AYA VDD VDD YQ[1] YQ[1] YQ[1]

YQ[1] YQ[1] YQ[1];

Finally, defining states at block 938 so that pairs ofYQ[I] are
substituted with B C as required by the original second

65 expression results in the merged expression

Q.UDYQ[o]AYA VDD VDD BCBCBC;

US 7,624,368 B2
23

It is noted that in certain instances, the method outlined in
FIG. 9C may be combined with moving flip flops forward to
facilitate reductions. For example, consider application of the
method to the following set of expressions

Q.UBY[2:I]ABCD;

A .UD Y[0] E F CLK;

B .UD Y[0] G H CLK;

C .UD Y[0] I J CLK;

D .UD Y[0] K L CLK;

24
the highest level control may be entered into the map as a reset
input to the F/F:

Q .UDRY[I:o] A B C D Y[2] CLK (RST=`C')

5 The name of the cell explicitly notes that a resetable D F/F
(DR) is used and the reset has been noted. This function may
then be implemented using the cells described above.

FIG. 9D notes at block 942 that in some instances it may be

10
useful to perform permutations of the control variables to put
the truth table into a form that allows using the reset input for
optimization. If half the truth table states are low, but do not
appear as a group, they may be aligned with the permutations.
For example, the function

As previously mentioned, the notationY[2:1] is equivalent to
the expression Y[2] Y[I]. This set of expressions could be
implemented using five cells, one that comprises a ULG and
a buffer and four that comprise a ULG and a F/F. The result of
moving the flip flops forward is

15	 Q.UDY[1]Y[o] VSS AVSSBCLK;

has half of its truth table states low, but they are not aligned.
Interchanging the control variables aligns them

20	 Q .UDY[o] Y[1] VSS VSS A B CLK;

Q .UD Y[2:1] A B C D CLK;

A .UB Y[0] E F;

B .UB Y[0] G H;

C .UB Y[0] I J;

D .UB Y[0] K L;

Accordingly, applying the method of FIG. 9C to combine the
nodes results in

Q:UDY[2:0] E F G H I J K L CLK;

so that the most significant control variable may be entered
into the map at block 946 as a reset input to the F/F:

Q .UDRY[1] A BY[O] CLK (RST=`C');

25
Note that in this example, the lack of alignment among the
low states has resulted in Y[0] being entered into the map as
part of the optimization rather than Y[I].

Similar optimizations may be achieved if half the truth
30 table states are high, as checked at block 948. If so, permu-

tations of the control variables may beperformed atblock 950
to align the high states and the control variable entered into
the map as a set input to a F/F at block 952. For example,
consider the function

This expression may be implemented with a cell comprising 35

a ULG and a D F/F in certain embodiments of the invention.	
Q .uD Y[1:o] VDD A VDD B CLK;

Thus, the method outlined in FIG. 9C permits nodes to be
reduced from multiple syntactic expressions. This includes a
variety of different circumstances, including cases where
there are arbitrarily many syntactic expressions, where some
of the expressions correspond to implementations of different
sizes, and cases where some of the expressions have outputs
that correspond to either inputs or controls of other expres-
sions. After nodes have been merged, the method may pro-
ceed to another transformation at block 938, although this is
not a requirement.

Additional optimization functions may be realized by
using the set and reset facilities that are provided in the
formalism and which may be implemented by using those
facilities in cells according to embodiments of the invention.
The use of set and reset facilities are summarized in FIG. 9D
and arise primarily when half the truth table states are either
high or low. Thus, a method for optimizing begins with a
syntactic expression for a cell at block 940, with FIG. 9D
noting explicitly that previous transformations may also have
been performed on the cell expression, although this is not a
requirement. A check is made at block 944 whether half the
truth table states are low. If so, the control variable may be
changed to a reset to a F/F in accordance with block 946. For
example, consider the syntactic function

Q .UDY[2:0] VSS VSS VSS VSS A B C D CLK;

In this example, a cell that implements this function com-
prises a ULG and a D F/F. As previously mentioned, the
notation Y[2:0] is equivalent to Y[2] Y[I] Y[0]. Half of the
truth table states in this expression are low, i.e. VSS, so that

Half of the states in the truth table are high, i.e. VDD, so that
optimization with a set input may be achieved. Permuting the
control variables to align the high states in accordance with

40
block 950 results in

Q .UD Y[0] Y[1] VDD VEDA B CLK;

Entering the most significant control as a map-entered vari-
45 able as a set input to the F/F results in

Q .UDS Y[1] A BY[O] CLK (SET—'C');

This function may then be implemented using the cells
described above in an embodiment.

50
Still other combinations of expansion, inversion, and/or

permutation may be used to achieve the conditions for using
set or reset for optimization. An example that illustrates sev-
eral of the optimization manipulations discussed above

55
begins with the syntactic expression

Q .UD AN VSS NOT_RESET CLK;

Optimization of this function may proceed by first expanding
the NOT RESET as a control variable:

60
Q .UD AN NOT RESET VSS VSS VDD VSS CLK;

Inversion of the two control variables in accordance with FIG.
9A results in two interchanges of the truth table, a first inter-
change based on single entries and a second interchange

65 based on pairs:

Q .UD A RESET VSS VDD VSS VSS CLK;

US 7,624,368 B2
25

Interchanging the controls to prepare for entering A as a
map-entered variable results in

Q .UD RESET A VSS VSS VDD VSS CLK;

The presence of the VDD VSS sequence and the repeated
VSS element permits the control variable to be entered into
the map in accordance with FIG. 913:

Q .UD RESET VSS A CLK;

It is now apparent that since there are only two states in the
truth table and one of them is low, that half the states are low
and the control variable may be entered into the map as a reset
input to the F/F:

Q .DRA RESET CLK (RST=`C')

Since all of the control variables have been entered into the
map, there is no need for a ULG element in implementing this
optimized expression. Instead, it may be implemented in one
embodiment using only a resetable D F/F, even though the
original expression corresponded to an implementation com-
prising both a ULG and a D F/F.

Each syntactical expression of the formalism may be
viewed as an entry for a ULG netlist that defines a digital
circuit. The ULG netlist uses basic cells and follows the
CHDL syntax. Such a ULG netlist may be at least partially
optimized by successively performing some of the individual
manipulations described above. In some embodiments, the
resulting optimized ULG netlist may be implemented directly
using the cells described above. In other embodiments, how-
ever, the manipulation of the ULG netlist may be viewed as
intermediate step in optimizing a digital design that has been
expressed in another netlist format. In such instances, the
other netlist format using another cell library and/or another
syntax (e.g., VHDL or Verilog) is initially translated to the
ULG netlist format. After performing some optimization
steps, the optimized ULG netlist may be translated back into
the original format for implementation. In this way, an
embodiment is provided that achieves optimization of digital
designs within preexisting netlist formats.

There are a variety of ways in whichthe individual manipu-
lations of the syntactic expressions comprised by a ULG
netlist may be performed and the degree to which the corre-
sponding digital design is optimized may depend on how
those manipulations are executed. While in some instances it
is possible for the manipulations to be performed by hand by
a digital designer, it is expected that at least some level of
automation may be used. In one embodiment, for example, a
computer program may be provided that allows a digital
designer to select the types of manipulations to be performed
and sections of the ULG netlist on which to perform them,
with the execution of the manipulations being performed
automatically. In another embodiment, a predetermined algo-
rithm is used in a completely automated way to perform the
manipulations or optimizations.

One example of such a predetermined algorithm is illus-
trated with the flow diagram provided in FIG. 10, although it
will be appreciated by those of skill in the art that numerous
other algorithms may alternatively be used. In some specific
instances, alternative algorithms use the same manipulations
but perform them in a different order. In some other specific
instances, alternative algorithms use a different set of
manipulations. The algorithm shown in FIG. 10 may begin at
block 1004 by translating an existing netlist to a ULG netlist
if the design to be optimized was not initially created using
the ULG formalism. In one embodiment, translating from the
existing netlist to the ULG netlist is performed as a one-to-

26
one translation between syntactic expressions. For one
embodiment, this translation may be viewed conceptually in
terms of the elements used in that embodiment to implement
the original and ULG netlists—every logic gate, such as

5 NAND, OR, etc. is converted into a multiplexor-based imple-
mentation amenable to optimizations provided by the syntac-
tic manipulations discussed above.

At block 1008, data and control elements are discerned in

10
the resulting ULG netlist. The distinction between such data
and selection control elements was previously discussed with
respect to Table VIII. In one embodiment, such discernment
may be performed with a high-level design language. In cer-
tain embodiments, there are additional advantages in the sub-

15 Sequent optimization where the data and control are identified
from the original behavioral netlist. Once the data and control
elements have been identified, the operations identified in
blocks 1016-1068 may be performed by using the syntactic
manipulations described above. Thus, at block 1016, connec-

20 tion cells to base Boolean values are removed by incorporat-
ing the corresponding functions into the syntactic expres-
sions. Similarly, non-inverting buffers are removed at block
1020 and also incorporated directly into the syntactic expres-
sions. At block 1024, inverters are removed by syntactically

25 inverting the relevant data elements in individual syntactic
expressions. The removal of redundant nodes at block 1028
may proceed by reducing, combining, and permuting nodes
in the syntactic expressions. Methods for such reductions,
combinations, and permutations for certain embodiments

3o were described above in connection with FIGS. 9Band9C.At
block 1032, inversions are removed. The inversions removed
may include control/state variable inversions, truth table
inversions and buffer inversions, for which methods of

35
removing were described above in connection with FIG. 9A.

A loop comprising blocks 1036 and 1040 may be executed
to identify and merge fanout nodes. A "fanout node"
describes a configuration in which a single output is directed
to multiple parts of truth tables and, in some instances, opti-

40 mizations may be realized by merging such fanout nodes. A
check is first performed at block 1036 to identify whether the
ULG netlist includes any fanout nodes, in which case they are
reduced at block 1040 by performing permutations and
reductions as described in connection with FIG. 9C. The loop

45 between blocks 1036 and 1040 is included because the reduc-
tions performed at block 1040 may produce some new fanout
nodes that may be identified and merged through additional
permutations and reductions. The method thus loops until no
fanout nodes are identified at block 1036.

50 After the fanout nodes have thus been merged, a check is
made at block 1044 to identify syntactic expressions corre-
sponding to synchronous cells in which half the truth-table
states are low. If such an expression is identified, the corre-
sponding control variable is moved to be a reset input at block

55 1048. A method for doing so is described in connection with
FIG. 9D and may include performing permutations to align
the low truth-table states. A similar check is made at block
1052 to identify syntactic expressing corresponding to syn-
chronous cells in which half the truth-table states are high. If

60 such an expression is identified, the corresponding control
variable is move to be a set input at block 1056. A method for
doing so is also described in connection with FIG. 9D and
may include performing permutations to align the high truth-
table states.

65 At block 1060, the syntactic expressions are grouped by
common inputs. Such grouping permits identification of sub-
functions at block 1064. The common subfunctions have

US 7,624,368 B2
27

shared characteristics that may be extracted before reducing
other nodes. At block 1068, buffers are made to be inverting
buffers.

If the original ULG netlist produced at block 1004 was
nonoptimal, performing the above manipulations may pro- 5

duce a different ULG netlist that is amenable to implementa-
tion with smaller area, greater speed, and/or lower power
requirements. In some embodiments, it is possible that not all
of the manipulations will be performed, that some may be
performed multiple times, and that they may be performed in i0

a different order than described. Once the method has pro-
duced a new ULG netlist, it may be implemented at block
1072 by translating the syntactic expressions in the ULG
netlist with the cells described above. In such embodiments,
the method functions not only to optimize the digital design 15

but also to provide a multiplexor-based implementation of it.
In some alternative embodiments, the resulting ULG netlist
may be amenable to translation back into the original netlist
syntax for implementation using Boolean logic gates. In these
embodiments, the method may be viewed as providing an 20

optimization of a digital design while retaining its underlying
structural characteristics.

In some embodiments, it is desirable for the techniques
used for the syntactic manipulations to be embedded in an 25

optimization tool or synthesizer. Accordingly, the methods of
the invention for converting a netlist into a ULG netlist and for
optimizing the ULG netlist may be performed by a computer,
one example of a suitable configuration for which is shown in
FIG. 11. This figure broadly illustrates how individual system 30
elements may be implemented in a separated or more inte-
grated manner. The computer 1100 is shown comprised of
hardware elements that are electrically coupled via bus 1112,
including a processor 1102, an input device 1104, an output
device 1106, a storage device 1108, a computer-readable 35

storage media reader 1110a, a communications system 1114,
a processing acceleration unit 1116 such as a DSP or special-
purpose processor, and a memory 1118. The computer-read-
able storage media reader 1110a is further connected to a
computer-readable storage medium 1110b, the combination 40
comprehensively representing remote, local, fixed, and/or
removable storage devices plus storage media for temporarily
and/or more permanently containing computer-readable
information. A communications system 1114 may comprise a
wired, wireless, modem, and/or other type of interfacing con- 45

nection.
The computer 1100 also comprises software elements,

shown as being currently located within working memory
1120, including an operating system 1124 and other code
1122, such as a program designed to implement optimization 50
methods of the invention. It will be apparent to those skilled
in the art that substantial variations may be used in accor-
dance with specific requirements. For example, customized
hardware might also be used and/or particular elements might
be implemented in hardware, software (including portable 55
software, such as applets), or both. Further, connection to
other computing devices such as network input/output
devices may be employed.

Example: The method described with respect to FIG. 10
was used to optimize a netlist for a microcontroller. A syn- 60

thesized netlist of commercial library cells was translated to
the ULG netlist formalism and optimized by performing the
described syntactic manipulations. The size of implementing
the optimized ULG netlist with the cells described herein was
then compared with the size of the original implementation. 65

The overall size was reduced by about 37%, a significant
reduction.

28
V. Digital Design with Syntactic Manipulation

Referring next to FIG. 12, a flow diagram of an embodi-
ment of a process for preparing a ULG ASIC cell library is
shown. In this embodiment, a new fabrication process is
being adapted to use the kernel cell/basic cell topology. The
depicted portion of the process begins in step 1204 where a
layout engineer or technician analyzes the layout rules for the
target fabrication process. The fabrication process could have
different amounts of metalization layers, different semicon-
ductor compositions, different transistor types, and different
topologies such as SOI, etc. that are considered during layout.
The kernel cells are laid out, at least partially, by hand to
optimize the circuitry in step 1208. Some embodiments could
start the kernel cell layout with a computer routed design that
is hand-customized. Care is taken to have kernel cells of a
consistent height and to adhere to abutment guidelines such
that clock signals and some of the I/O are latitudinally
aligned. Other embodiments could rely upon autorouting
entirely to build the kernel cells.

The kernel cells can be assembled in a number of ways to
potentially create hundreds of basic cells 100 in the ULG
ASIC cell library. The basic cell configurations are specified
in step 1212. This could be done by editing a script fed to the
tool that combines the kernel cells into basic cells. In step
1216, the kernel cells are automatically assembled into basic
cells 100 in this embodiment. Some embodiments could
assemble the kernel cells manually or in-art manually. Once
the basic cells are generated, they are verified in step 1220.
This verification validates the digital and analog performance
of the basic cells. Any problems uncovered in verification can
be fixed in the kernel and/or basic cells. To complete the ULG
ASIC cell library, any specialized cells are laid-out in step
1224.

In one embodiment, selection logic is used in digital cir-
cuits to replace some or all combinatorial logic. A significant
proportion of the basic cells use a ULG 104. In contrast,
conventional semiconductor circuits do not use ASIC cell
libraries that include ULG circuits. In one embodiment, the
ULG circuits come in various sizes, that have between two
and eight inputs and between one and three select lines.

The extensive use of ULGs or selection circuits in this
invention could be characterized in a number of ways in the
various embodiments, those characterizations include:

(1) A digital IC design using an ASIC cell library that
includes a proportion of cells with selection circuits. In
various embodiments, the proportion of the cells with
selection circuits in the ASIC cell library could include,
for example, 5% or more, 10% or more, 25% or more,
50% or more, 75% or more, 80% or more, 90% or more.

(2) A digital IC design using an ASIC cell library that
includes a percentage of basic cells that each include two
or more kernel cells. For example, that percentage could
be more than 5%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, or 90%.

(2) A digital design that includes a proportion of selection
circuits. Where the proportion is defined in terms of
circuit area, power consumption or number of kernel
cells. In various embodiments, theproportion of a digital
design that includes selection circuits could include I%
or more, 2% or more, 5% or more, 10% or more, 20% or
more, 30% or more, 40% or more, or 50% or more.

(3) A digital design implemented in a semiconductor cir-
cuit where the digital building blocks include memory
cells, one input Boolean operators and selection circuits.
The selection circuits are non-Boolean operators and
have three or more inputs. In some cases, there could be
a small proportion of the digital building blocks could be

US 7,624,368 B2
29
	

30
	Boolean operators, such as 1% or less, 2% or less, 5% or

	
Abehavioral netlist is converted by the synthesis tool 1308

less, 10% or less, or 20% or less. 	 into a structural netlist using the conventional cell library

	

Those digital designs could be embodied in the form of, for
	

1324 in this embodiment. The behavioral constructs are con-

	

example, a structural netlist, a behavioral netlist, a HDL
	

verted to Boolean constructs and optimized. From the con-
netlist, a full-custom ASIC, a semi-custom ASIC, an IP core 5 ventional cell library 1324, cells are used for the optimized

	

circuit, an integrated circuit, a hybrid chip, one or more
	

Boolean constructs. In some cases, typical timing values are

	

masks, a FPGA, or a circuit card having a number of inte- 	 used by the synthesis tool 1308 to identify potential problems

	

grated circuits. The full-custom and semi-custom ASICs are
	

in the conversion process using static timing analysis.

	

defined as custom integrated circuits herein and could use at
	

Dynamic timing analysis could also be performed on the
least some standard cells. Structural netlists enumerate low- io structural netlist to confirm functionality wasn't compro-

	

level cells to use and how they are interconnected. Behavioral
	

mised during the conversion.

	

netlists have high-level descriptions of the functionality of a
	

The optimization tool 1312 uses syntactic manipulation to

	

circuit similar to high-level programming languages. Case
	

improve the design in at least one of the following areas:

	

statements, IF-THEN-ELSE statements can be easily trans- 	 power consumption, leakage current, fanout, chip area, num-
lated from behavioral constructs to ULG circuits. Examples 15 ber of masks, number of process steps, yield, capacitance,

	

of HDL netlists include RTL, VHDL, Verilog and CHDL. The
	

inductance, resistance, glitches, etc. In this embodiment, vari-

	

HDL netlists may be high-level behavioral netlists or low-	 ables can be fed to the optimization tool 1312 in order to set

	

level structural netlists. ASIC designs can be full-custom or	 the priorities among these design factors. These variables

	

semi-custom designs. The full-custom designs have a full set 	 could be set on a scale of one-to-ten to indicate relative value
of masks done for each design, whereas the semi-custom 20 along a sliding scale.

	

designs have some reusable masks that define an array of
	

Some embodiments could optimize for various factors by

	

gates that are custom interconnected with some unique 	 use of alternative cells in the ULG library. Certain cells could

	

masks. Where a semi-custom ASIC is done, the gates would
	

be optimized for various design factors such as power con-

	

include ULG circuits. IP core circuits are netlists or 	 sumption, leakage current, fanout, chip area, number of
maskwork that define a reusable function such as a micropro- 25 masks, number of process steps, yield, capacitance, induc-

	

cessor, bus interface, etc. that is typically provided by a third-	 tance, resistance, glitches, etc. During the optimization, the

	

party vendor. An integrated circuit is simply a semiconductor	 alternative cells could be used based upon how the digital

	

chip. Where more than one chip is in a package, that package
	

designer set the priority variables.

	

is referred to as a hybrid integrated circuit or multi-chip- 	 In this embodiment, the optimization tool optimizes the
module. Circuit cards can couple together a number of inte- so structural netlist from the synthesis tool to produce an opti-

	

grated circuits soldered thereon, where the integrated circuits	 mized structural netlist that uses the same conventional cell
use ULGs.	 library 1324. The synthesized structural netlist is read and

	

There are several approaches to integrating syntactic 	 converted into an intermediate netlist that uses an embodi-

	

manipulation into digital design. In some embodiment, the	 ment of the ULG ASIC cell library. This embodiment of the
designer anticipates using syntactic manipulation at the start 35 ULG cell library can be somewhat simplified as the variation

	

of the design process. Using HDL constructs, such as case 	 used in anASIC could be unnecessary when only optimizing.

	

statements, allows easy mapping to the HDL ASIC cell
	

Syntactic manipulation is performed upon the intermediate

	

library. Digital designers often mix-and-match tools from 	 netlist according to the optimization priorities, if specified.

	

several vendors to develop a design flow suited to a particular
	

Some embodiments could perform a default optimization that
digital designer. With that in mind, the various below embodi- 40 may or may not be modifiable by the digital designer. Once

	

ments integrate the concepts of this invention in various ways 	 the intermediate netlist is optimized, it is converted to an

	

and to varying degrees. As those skilled in the art can appre-	 optimized structural netlist that uses the conventional cell

	

ciate, the processing of the design can be somewhat auto- 	 library 1324.

	

mated by using scripts to run the various tools on various
	

Static & dynamic timing analysis is run on the optimized
design files.	 45 structural netlist. The static timing analysis takes into account

	

With reference to FIG. 13, a block diagram of an embodi- 	 timing relationships for the optimized structural netlist and

	

ment of a design flow 1300 that uses syntactic manipulation
	

identifies portions of the circuit that may fail to meet the

	

after synthesis is shown. Included in this design flow are an	 timing requires of the circuit. Parameters can be entered into

	

HDL entry tool 1304, a synthesis tool 1308, a conventional
	

the synthesis and/or optimization tools 1308, 1312 to priori-
cell library 1324, an optimization tool, a static & dynamic 50 tize certain portions of the circuit to make meeting static

	

timing analysis tool 1316, and a place & route tool 1320. In	 timing requirements easier.

	

this embodiment, the digital designeruses all the tools of their
	

Dynamic timing analysis can come in a few forms. Input

	

normal design flow, but includes the optimization tool 1312
	

waveforms can be designed to stimulate the design, whereaf-

	

after the synthesis tool 1308. The optimization tool 1312
	

ter the digital designer checks for correct output waveforms.
performs the syntactic manipulation in this design flow. 	 55 To automate this process, test vectors can be developed and

	

The HDL entry tool 1304 is a software edit tool that allows	 applied to the inputs of the circuit whereafter output test

	

the digital designer to enter HDL as a behavioral netlist. The 	 vectors are tested against the actual output. Discrepancies are

	

HDL could be VHDL, Verilog or Concise Hardware Descrip- 	 noted as errors and fixed by tweaking the behavioral code and

	

tion Language (CHDL). CHDL is a HDL that is tuned for the	 synthesis/optimization tools 1308, 1312 such that errors are
design constructs beneficial for designs with ULG cells. The 6o not introduced into the process.

	

HDL entry tool 1304 could receive feedback from the other
	

Once the digital designer is happy with the structural

	

tools to identify portions of the code that have problems found
	

netlist, the place & route tool 1320 performs a physical layout

	

by those other tools. Other design capture tools could be used
	

of the circuit. A location for each cell in the optimized struc-

	

instead of a HDL entry tool, for example, state machine tools,	 tural netlist is chosen and traces are laid-out to interconnect
RTL tools, schematic capture tools, etc. Dynamic timing 65 those cells according to the netlist. These types of tools 1320

	

analysis could be performed on the behavioral netlist to con-	 are automated or semi-automated. More accurate timing val-
firm proper functionality.	 ues are available after place & route because the trace lengths

US 7,624,368 B2
31
	

32
interconnecting the cells is known. Further static/dynamic
analysis 1316 can be performed to assure that new errors
weren't introduced during the place and route process. Once
a suitable layout is achieved, masks can be produced and
fabrication can start. Dynamic testing on the resulting chip
may be performed to test functionality after fabrication.

Referring next to FIG. 14, a block diagram of another
embodiment of a design flow 1400 is shown that uses syntac-
tic manipulation and the ULG ASIC cell library. In this
embodiment, a ULG cell library 1404 is used during synthesis
1308. By targeting the ULG cell library, the synthesized
structural netlist is in a format readily understood by the
optimization tool 1312 such that a conversion to an interme-
diate netlist is unnecessary. The optimization tool 1312 per-
forms the syntactic manipulation before converting from the
intermediate format to the conventional cell library 1324. The
optimized structural netlist is uses the conventional cell
library 1324, which is understood by the place & route tool
1320 and the fab or foundry.

With reference to FIG. 15, a block diagram of another
embodiment of a design flow 1500 is shown that uses the
ULG ASIC cell library 1404 for the final netlist used by the
fab or foundry. In this embodiment, the ULG ASIC cell
library 1404 has been produced for the target process at the
fab or foundry. The synthesis tool 1308 converts the behav-
ioral netlist into a synthesized structural netlist that uses the
ULG ASIC cell library 1404. The optimization tool can pro-
cess the netlist without any conversion between cell libraries
such that the resulting optimized structural netlist also uses
the ULG ASIC cell library.

Referring next to FIG. 16, a block diagram of yet another
embodiment of a design flow 1600 is shown that combines
synthesis and syntactic manipulation into a single tool 1604.
The synthesis & optimization tool 1604 takes the behavioral
netlist from the HDL entry tool 1304 and converts it to an
intermediate structural netlist using the ULG ASIC cell
library 1404. The intermediate structural netlist is optimized
using syntactic manipulation with the tool 1604 to produce an
optimized structural netlist that uses the ULG cell library
1404. In this embodiment, the HDL entry tool 1304 uses
CHDL.

In some embodiments, the synthesis & optimization tool
1604 may not have a ULG cell library 1404 for the target
ASIC process. In that case, the synthesis & optimization tool
1604 would convert the intermediate netlist to an optimized
netlist using the conventional cell library 1324.

With reference to FIG. 17, a block diagram of still another
embodiment of a design flow 1700 is shown that uses an
interactive direct verification tool 1704 throughout the design
flow 1700. Verification allows debugging a digital design
throughout the design flow. In this embodiment, the interac-
tive direct verification tool 1704 tracks the evolution of the
design from a behavioral netlist through to a structural netlist
that has been placed and routed. The HDL entry tool uses
CHDL and the design flow uses the ULG cell library 1504 for
the target fabrication process. The various forms of the design
embodied in the evolving netlist are accessible to the interac-
tive direct verification tool 1704.

Any identified portion of the circuit can be traced through
the various steps of the design flow 1700 using the interactive
direct verification tool. For example, a case statement in the
CHDL behavioral code can be followed through to the vari-
ous structural netlists to see how that case statement was
implemented. Conversely, a portion of a structural netlist can
be followed back to preceding structural netlists or even the
behavioral netlist.

Referring next to FIG. 18, a block diagram of still another
embodiment of a design flow 1800 is shown that uses an
interactive direct verification tool 1804 throughout the design
flow and after fabrication. This embodiment shows the fabri-

c cation 1808 and final test 1812 in the design flow. The fabri-
cation 1808 is performed after the design is thoroughly tested.
After production, the chips can be tested again. Test vectors
are applied to the chip inputs and scan ports in the dynamic
analysis in final test 1812. Where an error can be isolated to a

io pin or node in final test 1812, the interactive direct verification
tool 1804 can show the engineer the progression of the design
that relates to that failure.

With reference to FIG. 19, a flow diagram of an embodi-
ment of a design process 1900 is shown. In the depicted

15 portion of the design process 1900, the sequential steps are
show along with the test and rework steps. In step 1904, the
digital design is entered using an entry tool. A HDL such as
Verilog, VHDL or CHDL is used to enter the behavioral
netlist for the circuit being designed. Throughout the design

20 entry phase, dynamic timing analysis is performed in step
1916 to verify that the behavioral netlist is probably being
prepared correctly. At this stage, the dynamic timing analysis
is probably done in a waveform simulation tool. Various
scenarios are designed with the simulation tool to test various

25 conditions of the digital design. During the timing analysis of
step 1916, problems could be found in step 1906. Rework of
the behavioral code could be performed by returning to step
1904 where problems are found. Processing continues from
step 1916 to step 1908 where no problems are found.

30 Synthesis and optimization is performed in step 1908 to
convert the behavioral netlist to an optimized structural
netlist. Conversion between cell libraries can also be per-
formed in this step. Some embodiments may perform the
synthesis and optimization as separate steps. Static and

35 dynamic timing analysis are performed in steps 1912 and
1916. Ifproblems are found, reworkmay be done in step 1904
or step 1908. Rework in step 1908 could include changing
parameters fed to the synthesis & optimization tool 1604 or
correcting problems with libraries.

40 Once generally satisfied with the optimized structural
netlist, processing continues to step 1920 for place & route of
the design. In this step, the trace lengths and drive require-
ments are more accurately analyzed to improve the verifica-
tion that can be performed on the digital design. Once again

45 static and dynamic timing analysis is performed in step 1912
and 1916 to verify the laid-out design still behaves properly.
Where there are problems as detected in step 1906, rework
could be performed in steps 1904, 1908 or 1920. The inter-
active direct verification tool 1804 can assist the digital

50 designer find where flaws were likely introduced into the
netlist. Where there are no problems after layout, the design is
fabricated in step 1924.

Having described several embodiments, it will be recog-
nized by those of skill in the art that various modifications,

55 alternative constructions, and equivalents may be used with-
out departing from the spirit of the invention. Accordingly, the
above description should not be taken as limiting the scope of
the invention, which is defined in the following claims.

60	 What is claimed is:
1. A method for optimizing a digital circuit design, the

method comprising steps of:
translating a first representation of the digital circuit design

to a second representation of the digital circuit design,
65 the second representation comprising a plurality of syn-

tactic expressions that admit a representation of a
higher-order function of base Boolean values;

US 7,624,368 B2
33
	

34
	syntactically manipulating the plurality of syntactic 	 syntactically manipulating the plurality of syntactic

	

expressions to form a third representation of the digital
	

expressions to form a third representation of the digital

	

circuit design, wherein the manipulating step comprises 	 circuit design, wherein manipulating step comprises

	

reducing a number of nodes within the plurality of syn- 	 reducing a number of nodes within the syntactic expres-
tactic expressions. 	 5	 sions.

2. The method for optimizing a digital circuit design as
	 15. The method for optimizing the digital circuit design as

	

recited in claim 1, further comprising a step of identifying 	 recited in claim 14, wherein a majority of the syntactic

	

data and control in the second representation of the digital
	

expressions identify higher-order functions of base Boolean
circuit design.	 values.

3. The method for optimizing a digital circuit design as	 10	 16. The method for optimizing the digital circuit design as

	

recited in claim 2, wherein manipulating the plurality of
	

recited in claim 14, further comprising a step of translating

	

syntactic expressions comprises reassigning data and control. 	 the third representation of the digital circuit design to a fourth
4. The method for optimizing a digital circuit design as	 representation of the digital circuit design, wherein the first

	

recited in claim 3, wherein manipulating the plurality of
	

and fourth representations comprise netlists.

	

syntactic expressions comprises assigning a control variable	 15	 17. The method for optimizing the digital circuit design as

	

for at least one of the syntactic expressions as a flip-flop input 	 recited in claim 14, wherein the second and third representa-
to such syntactic expression. 	 tions identify sets of cell elements that comprise multipiexers

5. The method for optimizing a digital circuit design as
	

for implementing the digital circuit design.

	

recited in claim 1, further comprising a step of identifying
	 18. The method for optimizing the digital circuit design as

data and control in the first representation of the digital circuit 20 recited in claim 14, wherein the manipulating step comprises
design.	 a step of removing logical inversions within the syntactic

6. The method for optimizing a digital circuit design as	 expressions.
recited in claim 1, 	 19. The method for optimizing the digital circuit design as

	

further comprising a step of translating the third represen-	 recited in claim 14, wherein the plurality of syntactic expres-
tation of the digital circuit design to a fourth represen- 25 sions are implemented with kernel cells chosen from the

	

tation of the digital circuit design, wherein the first and
	

group consisting of selection circuits, memory cells and buff-

	

fourth representations are expressed using the same syn- 	 ers.
tax.	 20. The method for optimizing the digital circuit design as

7. The method for optimizing a digital circuit design as	 recited in claim 14, wherein the third representation corre-
recited in claim 6, wherein the first and fourth representations 30 sponds to a physical circuit.
comprise netlists.	 21. A computer-readable e storage medium having a com-

8. The method for optimizing a digital circuit design as	 puter-readable program embodied therein for directing

	

recited in claim 7, wherein the first and fourth representations 	 operation of a computer system including a processor and at

	

identify Boolean logic elements for implementing the digital
	

least one input device, wherein the computer-readable pro-
circuit design.	 35 gram includes instructions for operating the computer system

9. The method for optimizing a digital circuit design as
	

for optimizing a digital circuit design in accordance with the

	

recited in claim 1, wherein the second and third representa- 	 following:

	

tions identify sets of cell elements that comprise muitiplexers 	 receiving a first representation of the digital circuit design
for implementing the digital circuit design.	 from the at least one input device;

10. The method for optimizing a digital circuit design as	 40	 translating the first representation of the digital circuit

	

recited in claim 1, wherein manipulating the plurality of
	

design to a second representation of the digital circuit

	

syntactic expressions comprises removing logical inversions
	

design, the second representation comprising a plurality
within the syntactic expressions. 	 of syntactic expressions that admit a representation of a

11. The method for optimizing a digital circuit design as
	

higher-order function of base Boolean values; and
recited in claim 1, wherein: 	 45	 executing and syntactically manipulating the plurality of

	

the digital circuit design is implemented with basic cells,	 syntactic expressions to form a third representation of
each basic cell includes two or more kernel cells, and

	
the digital circuit design, wherein manipulating step

	

the kernel cells s chosen from the group consisting of
	

comprises reducing a number of nodes within the syn-
selection circuits, memory cells and buffers. 	 tactic expressions.

12. The method for optimizing a digital circuit design as	 50	 22. The computer-readable storage medium having the

	

recited in claim 1, wherein the plurality of syntactic expres- 	 computer readable program embodied therein for directing

	

sions are implemented with kernel cells chosen from the 	 operation of the computer system including the processor and

	

group consisting of selection circuits, memory cells and buff- 	 at least one input device as recited in claim 21, wherein the
ers.	 computer-readable program further includes instructions for

13. The method for optimizing a digital circuit design as 55 translating the third representation of the digital circuit design

	

recited in claim 1, wherein the third representation corre-	 to a fourth representation of the digital design, wherein the
sponds to a physical circuit.	 first and fourth representations comprise netlists.

14. A method for optimizing a digital circuit design, the
	

23. The computer-readable storage medium having the
method comprising steps of

	
computer readable program embodied therein for directing

translating a first representation of the digital circuit design 60 operation of the computer system including the processor and

	

to a second representation of the digital circuit design, 	 at least one input device as recited in claim 21, wherein the

	

the second representation comprising a plurality of syn- 	 first and fourth representations identify sets of cell elements

	

tactic expressions, wherein at least half of the syntactic 	 that comprise muitiplexers for implementing the digital

	

expressions identify a higher-order function of base
	

design.
Boolean values;	 65 24. The computer-readable storage medium having the

	

identifying data and control in at least one of the first and
	

computer readable program embodied therein for directing
second representations; and

	
operation of the computer system including the processor and

US 7,624,368 B2
35

at least one input device as recited in claim 21, wherein the
second and third representations identify sets of cell elements
that comprise multiplexers for implementing the digital
design.

25. The computer-readable storage medium having the
computer readable program embodied therein for directing
operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein
manipulating the plurality of syntactic expressions comprises
removing logical inversions within the syntactic expressions.

26. The computer-readable storage medium having the
computer readable program embodied therein for directing
operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein
manipulating the plurality of syntactic expressions comprises
reducing a number of nodes within the syntactic expressions.

27. The computer-readable storage medium having the
computer readable program embodied therein for directing
operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein the
computer-readable program further includes instructions for
identifying data and control in the second representation.

28. The computer-readable storage medium having the
computer readable program embodied therein for directing
operation of the computer system including the processor and

36
at least one input device as recited in claim 21, wherein
manipulating the plurality of syntactic expressions comprises
reassigning data and control.

29. The computer-readable storage medium having the
5 computer readable program embodied therein for directing

operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein the
plurality of syntactic expressions are implemented with ker-
nel cells chosen from the group consisting of selection cir-

io cuits, memory cells and buffers.
30. The computer-readable storage medium having the

computer readable program embodied therein for directing
operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein:

15	 the computer-readable program further includes instruc-
tions for receiving commands from the at least one input
device; and

manipulating the plurality of syntactic expressions to form
the third representation of the digital circuit design is

20	 performed in accordance with the commands.
31. The computer-readable storage medium having the

computer readable program embodied therein for directing
operation of the computer system including the processor and
at least one input device as recited in claim 21, wherein the

25 third representation corresponds to a physical circuit.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.	 : 7,624,368 B2	 Page 1 of 1
APPLICATION NO. :11/267587
DATED	 : November 24, 2009
INVENTOR(S)	 : Sterling R. Whitaker and Lowell H. Miles

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

At col. 33, line 38, replace "muitiplexers" with --multiplexers--

At col. 34, line 17, replace "muitiplexers" with --multiplexers--

At col. 34, line 63, replace "muitiplexers" with --multiplexers--

Signed and Sealed this

Fifth Day of January, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

	7624368-p0001.pdf
	7624368-p0002.pdf
	7624368-p0003.pdf
	7624368-p0004.pdf
	7624368-p0005.pdf
	7624368-p0006.pdf
	7624368-p0007.pdf
	7624368-p0008.pdf
	7624368-p0009.pdf
	7624368-p0010.pdf
	7624368-p0011.pdf
	7624368-p0012.pdf
	7624368-p0013.pdf
	7624368-p0014.pdf
	7624368-p0015.pdf
	7624368-p0016.pdf
	7624368-p0017.pdf
	7624368-p0018.pdf
	7624368-p0019.pdf
	7624368-p0020.pdf
	7624368-p0021.pdf
	7624368-p0022.pdf
	7624368-p0023.pdf
	7624368-p0024.pdf
	7624368-p0025.pdf
	7624368-p0026.pdf
	7624368-p0027.pdf
	7624368-p0028.pdf
	7624368-p0029.pdf
	7624368-p0030.pdf
	7624368-p0031.pdf
	7624368-p0032.pdf
	7624368-p0033.pdf
	7624368-p0034.pdf
	7624368-p0035.pdf
	7624368-p0036.pdf
	7624368-p0037.pdf
	7624368-p0038.pdf
	7624368-p0039.pdf

