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Abstract 
A linear point design methodology for minimizing the error 

in on-line Kalman filter-based aircraft engine performance 
estimation applications is presented. This technique 
specifically addresses the underdetermined estimation 
problem, where there are more unknown parameters than 
available sensor measurements. A systematic approach is 
applied to produce a model tuning parameter vector of 
appropriate dimension to enable estimation by a Kalman filter, 
while minimizing the estimation error in the parameters of 
interest. Tuning parameter selection is performed using a 
multi-variable iterative search routine which seeks to 
minimize the theoretical mean-squared estimation error. This 
paper derives theoretical Kalman filter estimation error bias 
and variance values at steady-state operating conditions, and 
presents the tuner selection routine applied to minimize these 
values. Results from the application of the technique to an 
aircraft engine simulation are presented and compared to the 
conventional approach of tuner selection. Experimental 
simulation results are found to be in agreement with 
theoretical predictions. The new methodology is shown to 
yield a significant improvement in on-line engine performance 
estimation accuracy. 

Introduction 
An emerging approach in the field of aircraft engine 

controls and health management is the inclusion of real-time 
on-board models for the in-flight estimation of engine 
performance variations (Refs. 1, 2, and 3). This technology, 
typically based on Kalman filter concepts, enables the 
estimation of unmeasured engine performance parameters 
which can be directly utilized by controls, prognostics and 
health management applications. A challenge which 
complicates this practice is the fact that an aircraft engine’s 
performance is affected by its level of degradation, generally 
described in terms of unmeasurable health parameters such as 
efficiencies and flow capacities related to each major engine 
module. Through Kalman filter-based estimation techniques, 
the level of engine performance degradation can be estimated, 
given that there are at least as many sensors as parameters to 
be estimated. However, in an aircraft engine the number of 
sensors available is typically less than the number of health 
parameters presenting an under-determined estimation 
problem. A common approach to address this shortcoming is 

to estimate a sub-set of the health parameters, referred to as 
model tuning parameters. While this approach enables on-line 
Kalman filter-based estimation, it can result in “smearing” the 
effects of un-estimated health parameters onto those which are 
estimated, and in turn introduce error in the accuracy of 
overall model-based performance estimation applications. 
Recently, Litt (Ref. 4) presented an approach based on 
singular value decomposition which selects a model tuning 
parameter vector of low-enough dimension to be estimated by 
a Kalman filter. The model tuning parameter vector, q, was 
constructed as a linear combination of all health parameters, h, 
given by 

 q = V*h (1) 

where the transformation matrix, V*, is selected applying 
singular value decomposition to capture the overall effect of 
the larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. In this paper a 
new linear point design technique which applies a systematic 
approach to optimal tuning parameter selection will be 
presented. This technique, like the one presented in 
Reference 4, also defines a transformation matrix, V*, used to 
construct a tuning parameter vector which is a linear 
combination of all health parameters, and of low enough 
dimension to enable Kalman filter estimation. The new 
approach optimally selects the transformation matrix, V*, to 
minimize the theoretical steady-state estimation error in the 
engine performance parameters of interest. There is no known 
closed form solution for optimally selecting V* to satisfy this 
objective. Therefore, a multivariable iterative search routine is 
applied to perform this function.  

The remaining sections of this paper are organized as 
follows. First, the mathematical formulation of the parameter 
estimation problem is presented, and theoretical estimation 
error values are derived assuming linear, steady-state 
operating conditions. The theoretical estimation error 
information is directly used by the iterative search routine 
applied to optimally select the Kalman filter tuning parameter 
vector, which is described next. Example estimation results 
from the application of the new methodology to an aircraft 
turbofan engine simulation are then presented and compared 
to the conventional approach of tuning parameter selection, 
the SVD tuner selection approach presented in Reference 4, 
and the maximum a posteriori performance estimation 
approach commonly applied for off-line (ground-based) 
aircraft engine gas path analysis applications (Refs. 5 and 6). 
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After the example, there is a discussion of practical 
considerations for applying the method, and a discussion of 
future work. Finally, conclusions are presented. 

Nomenclature 
A,  Axh, Axq 
B, Bxh, Bxq, 
C, Cxh, Cxq, 
D, F, Fxh, Fxq, G,  
L, M, N 

system matrices 

C-MAPSS Commercial Modular Aero-Propulsion 
System Simulation 

Fn net thrust 
Gxh, Gx, Gh, Gz estimation bias matrices 
H matrix which relates health parameter 

effects to steady-state engine outputs 
HPC high pressure compressor 
HPT high pressure turbine 
I identity matrix 
K∞ Kalman filter gain 
LPC low pressure compressor 
LPT low pressure turbine 
MAP maximum a posteriori  
Nf fan speed 
Nc core speed 
Ph, Pz health & auxiliary parameter covariance 

matrices 
P24 HPC inlet total pressure 
Ps30 HPC exit static pressure 

kzkqxkhx PPP ,ˆ,ˆˆ,ˆˆ ,,   covariance matrices of estimated 
parameters 

P∞ Kalman filter state estimation covariance 
matrix 

Q, Qxh, Qxq process noise covariance matrices 
R measurement noise covariance matrix 
SmLPC LPC stall margin 
T24 HPC inlet total temperature 
T30 HPC exit total temperature 
T40 combustor exit temperature 
T48 exhaust gas temperature 
T50 LPT exit temperature 
V* transformation matrix relating hk to qk 
VSV variable stator vane 
VBV variable bleed valve 
Wf fuel flow 
Wz auxiliary parameter weighting matrix 
hk health parameter vector 

qk Kalman filter tuning parameter vector 
uk actuator command vector 
vk measurement noise vector 
wk, wh,k, wxh,k process noise vectors 
xk state vector 
xxh,k augmented state vector (xk and hk) 
xxq,k reduced order state vector (xk and qk) 
yk vector of measured outputs 
zk vector of unmeasured (auxiliary) outputs 
εxq,k residual vector (estimate minus its 

expected value) 

Subscripts 
k discrete time step index 
xh augmented state vector (x and h) 
xq reduced order state vector (x and q) 
ss steady-state value 

Superscripts 
† pseudo-inverse 
^ estimated value 
~ error value 
– mean value 
T transpose 

Operators 
E[·] expected value of argument 
tr{·} trace of matrix 
SSEE(·) sum of squared estimation errors 
WSSEE(·) weighted sum of squared estimation 

errors 
|| · ||F matrix Frobenius norm 

Problem Formulation 
The discrete linear time-invariant engine state space 

equations about a linear design point are given as 

 
1k k k k k

k k k k k

k k k k

x Ax Bu Lh w
y Cx Du Mh v
z Fx Gu Nh

+ = + + +
= + + +
= + +

 (2) 

where k is the time index, x is the vector of state variables, u is 
the vector of control inputs, y is the vector of measured 
outputs, and z is the vector of auxiliary (unmeasured) model 
outputs. The vector h represents the engine health parameters, 
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which induce shifts in other variables as the health parameters 
deviate from their nominal values. The vectors w and v are 
uncorrelated zero-mean white noise input sequences. Q will be 
used to denote the covariance of w, and R to denote the 
covariance of v. The matrices A, B, C, D, F, G, L, M, and N 
are of appropriate dimension. The health parameters, 
represented by the vector h, are unknown inputs to the system. 
They may be treated as a set of biases, and are thus modeled 
without dynamics. With this interpretation Eq. (2) can be 
written as: 
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⎡ ⎤
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⎣ ⎦

= + +

⎡ ⎤
= +⎢ ⎥
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= +

14243 123

14243

14243

(3)

The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T, with a covariance of Qxh. wxh 
consists of the original state process noise, w, concatenated 
with the process noise associated with the health parameter 
vector, wh. 

 ,
,

k
xh k

h k

w
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4)

The eigenvalues of Axh consist of the original eigenvalues of 
A plus an additional dim(h) eigenvalues located at 1.0 on the 
unit circle due to the augmentation. Thus, the new augmented 
system given in Eq. (3) has at least as many eigenvalues 
located on the unit circle as there are elements of h. Once the h 
vector is appended to the state vector, it may be directly 
estimated, provided that the realization in Eq. (3) is 
observable. Using this formulation, the number of health 
parameters that can be estimated is limited to the number of 
sensors, the dimension of y (Ref. 7). Since in an aircraft gas 
turbine engine there are usually fewer sensors than health 
parameters, the problem becomes one of choosing the best set 
of tuners for the application. This paper presents a systematic 
methodology for the optimal selection of a model tuning 
parameter vector, q, of low-enough dimension to be estimated 
by a Kalman filter, while minimizing the estimation error in 
the model variables of interest. The following sub-sections 
will cover the steps in the problem setup. This includes 

construction of the reduced-order state space model, 
formulation of the Kalman filter estimator, calculation of the 
mean sum of squared estimation errors, and optimal selection 
of the transformation matrix to minimize the estimation error. 

Reduced-Order State Space Model  
The model tuning parameter vector, q, is constructed as a 

linear combination of all health parameters, h, given by 

 *q V h=   (5)

where q ∈ m, h ∈ p, m < p, and V* is an m × p 
transformation matrix of rank m, applied to construct the 
tuning parameter vector. An approximation of the health 
parameter vector, ĥ , can be obtained as 

*†ĥ V q=  (6)

where V*† is the pseudo-inverse of V*.  Substituting Eq. (6) 
into Eq. (3) yields the following reduced order state space 
equations which will be used to formulate the Kalman filter 
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, ,

,
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, ,
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,
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00
xq k xqxq xq k

xq
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xq
xq
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k

q kk k
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xq xq k xq k xq k

k
k k k

k
C

x

xq xq k k k

k
k

k
F

x

wx x BA LV
u

wq qI

A x B u w

x
y C MV Du v

q

C x Du v

x
z F NV

q

+

+

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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14243 123

1442443
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{

,

,

k

k

xq xq k k

Gu

F x Gu

+

= +

(7)

The state process noise, wxq, and its associated covariance, Qxq, 
for the reduced order system are calculated as 

 
, ,* * ,

* *

0 0
0 0

0 0
0 0

k
xq k xh k

h k

T

xq xh

wI I
w w

wV V

I I
Q Q

V V

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (8)

Kalman Filter Formulation  
In this study, steady-state Kalman filtering is applied. This 

means that while the Kalman filter is a dynamic system, the 
state estimation error covariance matrix and the Kalman gain 
matrix are invariant—instead of updating these matrices each 
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time step they are held constant. Given the reduced order 
linear state space equations shown in Eq. (7), the state 
estimation error covariance matrix, P∞, is calculated by 
solving the following Ricatti equation (Ref. 8): 

 

1( )T T T
xq xq xq xq xq xq

T
xq xq xq

P A P A A P C C P C R

C P A Q

−
∞ ∞ ∞ ∞

∞

= − +

× +

K
 (9)

The steady-state Kalman filter gain, K∞, can then be calculated 
as follows (Ref. 8) 

 ( ) 1T T
xq xq xqK P C C P C R

−
∞ ∞ ∞= +  (10)

and, assuming steady-state, open-loop operation (u = 0), the 
Kalman filter estimator takes the following form 

 ( ), , 1 , 1ˆ ˆ ˆxq k xq xq k k xq xq xq kx A x K y C A x− ∞ −= + − (11)

The reduced order state vector estimate, xqx̂ , produced by 
Eq. (11) can be used to produce an estimate of the augmented 
state vector, and the auxiliary parameter vector as follows 

 

, ,*†

*†
,

0
ˆ ˆ

0

ˆˆ

xh k xq k

k xq k

I
x x

V

z F NV x

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤= ⎣ ⎦

 (12)

Analytical Derivation of Estimation Error  

The estimation errors in kxhx ,ˆ  and kẑ  are defined as the 
difference between the estimated and actual values\ 

 , , ,ˆ
ˆ

xh k xh k xh k

k k k

x x x
z z z

= −

= −

%

%
 (13) 

Due to the under-determined nature of the estimation problem, 
it will be impossible for the Kalman filter estimator to 
completely restore all information when transforming q̂  into 

ĥ . As such, the Kalman filter will be a biased estimator (i.e. 
the expected values of kxhx ,

~  and kz~ will be non-zero). The 
estimation errors can be considered to consist of two 
components: An estimation error bias, and an estimation 
variance. The estimation error bias vectors are equivalent to 
the mean estimation error vectors defined as 

 
[ ] [ ]

, , , ,ˆ

ˆ
xh k xh k xh k xh k

k k k k

x E x E x x

z E z E z z

⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦
= = −

% %

% %
 (14) 

where the operator E[●] represents the expected value of the 
argument. The variance of the estimates can be found by 
constructing their respective estimation covariance matrices 

( )( )

[ ]( ) [ ]( )

ˆ , , , ,ˆ ,

ˆ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T
xh k xh k xh k xh kxh k

T
z k k k k k

P E x E x x E x

P E z E z z E z

⎡ ⎤⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (15) 

Diagonal elements of the covariance matrices will reflect the 
variance in individual parameter estimates, while off-diagonal 
elements reflect the covariance between parameter estimates. 
The overall sum of squared estimation errors (SSEE) can be 
obtained by combining the estimation error bias and 
estimation variance information as  

 
( ) { }
( ) { }

ˆ, ,, ˆ ,

ˆ,

ˆ

ˆ

T
xh k xh kxh k xh k

T
k k z kk

SSEE x x x tr P

SSEE z z z tr P

= +

= +

% %

% %
 (16) 

where tr{●} represents the trace (sum of the diagonal 
elements) of the matrix. In this paper, theoretical values for 
each error component will be derived assuming steady-state, 
open-loop (u = 0) operating conditions. First, the estimation 
error bias is derived, followed by a derivation of the 
estimation variance. 

Estimation Error Bias 

The estimation error biases, kxhx ,
~  and kz~ , can be 

analytically derived for an arbitrary health parameter vector, h, 
at steady-state operating conditions. This is done taking 
advantage of the following expected value properties at 
steady-state open-loop operating conditions  
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where the subscript “ss” denotes steady-state operation. By 
taking expected values of Eq. (2), xss, yss and zss can be written 
as functions of the health parameter vector h 

[ ] [ ] [ ] [ ] [ ]

( )

1

1

k k k k k

ss ss

ss

E x A E x B E u L E h E w

x Ax Lh

x I A Lh

+

−

= ⋅ + ⋅ + ⋅ +

= +

= −

 
(18)

 

[ ] [ ] [ ] [ ] [ ]

( )( )1

k k k k k

ss ss

ss

E y C E x D E u M E h E v
y Cx Mh

y C I A L M h−

= ⋅ + ⋅ + ⋅ +

= +

= − +

 (19)

 

 

[ ] [ ] [ ] [ ]

( )( )1

k k k k

ss ss

ss

E z F E x G E u N E h
z Fx Nh

z F I A L N h−

= ⋅ + ⋅ + ⋅

= +

= − +
(20)

Next, by taking expected values of both sides of Eq. (11), the 
expected value of kxqx ,ˆ  can be obtained as a function of yss: 
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K

(21)

Then, making the substitution ( )( )hMLAICyss +−= −1  given 
in Eq. (19), the expected steady-state value of kxqx ,ˆ  can be 
written as a function of h 
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ˆxq ss xq xq xqx I A K C A
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K
 (22)

The steady-state augmented state estimation error bias can 
then be found, and partitioned into error bias information for 
the original state vector, ssx~ , and the health parameter vector, 

ssh
~ , by combining Eqs. (12), (14), (18) and (22) to yield  
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The steady-state auxiliary parameter estimation error bias can 
also be derived by combining Eqs. (12), (14), (20), and (22) to 
yield 
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The estimation error bias equations given in Eqs. (23) and 
(24) are functions of an arbitrary health parameter vector, h. 
As such they are representative of the parameter estimation 
error biases in a single engine, at a given point in its lifetime 
of use where its deterioration is represented by the health 
parameter vector h. The average sum of squared estimation 
error biases across a fleet of engines can be calculated as 
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 (26)

where the matrix Ph, defined as [ ]ThhE , reflects a priori or 
historical knowledge of the covariance in the health 
parameters across all engines. If available, it can be used to 
predict the sum of squared estimation errors biases as shown 
in (25) and (26). 

Estimation Variance 

Next, derivations are presented for the augmented state 
estimate and auxiliary parameter estimate covariance matrices, 

khxP ,ˆˆ  and kzP ,ˆ , respectively. These matrices will be 

calculated as a function of the reduced-order state vector 
estimation covariance matrix, kqxP ,ˆˆ , which is defined as  
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(27)

where the vector εxq,k is defined as the residual between kxqx ,ˆ  

at time k and its expected value. Since [ ] ssxqkxq xxE ,, ˆˆ = , εxq,k 
can be obtained by subtracting Eq. (21) from Eq. (11)  
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(28)

Making the substitutions ssxqkxqkxq xx ,1,1, ˆˆ −=ε −− , and 

sskk yyv −=  yields 

 ( ), , 1xq k xq xq xq xq k kA K C A K v∞ − ∞ε = − ε +  (29) 

The estimation covariance matrix kqxP ,ˆˆ  is then calculated as 
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The substitutions [ ] 1,ˆˆ1,1, −−− =εε kqx
T

kxqkxq PE , and [ ] RvvE T
kk =  

can be made in the above equation. Since εxq,k–1 and T
kv  are 

uncorrelated, the substitution [ ] [ ] 01,1, =ε=ε −−
T

kxqk
T
kkxq vEvE  

can also be made, producing  
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(31)

At steady-state operating conditions kqxkqx PP ,ˆˆ1,ˆˆ =− . Making 
this substitution in (31) produces the following Ricatti 
equation which can be solved for kqxP ,ˆˆ : 

ˆ ˆ ˆ ˆ, ,
T

xq xq xq xq xq xqxq k xq k

T

P A K C A P A K C A

K RK
∞ ∞
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+

 (32)
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It should be noted that kqxP ,ˆˆ  obtained by solving (32) will be 
identical to P∞ produced via Eq. (9) if the system’s actual state 
process noise covariance is identical to the Qxq assumed in the 
design of the Kalman filter. However, Q is often treated as a 
Kalman filter design parameter to provide acceptable dynamic 
response. For the purpose of this derivation, we have assumed 
a steady-state operating condition where the state variables 
and health parameters are invariant, and thus the actual system 
process noise is zero (i.e., wxh,k = 0). In this case kqxP ,ˆˆ  will not 
equal P∞. Once kqxP ,ˆˆ  is obtained, it can be used to calculate 

khxP ,ˆˆ , the covariance of kxhx ,ˆ , which is defined as 

[ ]( ) [ ]( )[ ]T
kxhkxhkxhkxh xExxExE ,,,, ˆˆˆˆ −−  

 ˆ ˆ ˆ,*† *†ˆ ,

0 0
0 0

T

xq kxh k

I I
P P

V V
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (33) 

The augmented state vector estimation covariance given in Eq. 
(33) can be partitioned into covariance information for the 
original state vector, kxP ,ˆ  (upper left corner of the khxP ,ˆˆ  

matrix), and the health parameter vector, khP ,ˆ  (lower right 

corner of the khxP ,ˆˆ  matrix)  
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x k
xh k

h k
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L

L
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The kqxP ,ˆˆ  matrix from Eq. (32) can also be used to calculate 

kzP ,ˆ , the covariance in the estimation of zk, which is 

equivalent to [ ]( ) [ ]( )[ ]T
kkkk zEzzEzE ˆˆˆˆ −−  

 
*† *†ˆ ˆˆ, ,

T
z k xq kP F NV P F NV⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (35) 

The variance in the estimates kxhx ,ˆ  and kẑ  can be obtained 
from the diagonals of the covariance matrices produced by 
(33) and (35) respectively.  

Sum of Squared Estimation Errors 

Once Eqs. (25), (26), (33) and (35) are obtained, they may 
be used to analytically calculate the mean sum of squared 
estimation errors over all engines by combining the respective 
estimation error bias and estimation variance information as 
previously shown in Eq. (16). The mean augmented state 
vector sum of squared estimation errors, ( )fleet,ˆxhxSSEE , and 
the mean auxiliary parameter vector sum of squared 
estimation errors, ( )fleetẑSSEE , become 
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If required, a weighted sum approach can be applied to 
normalize the contributions of individual auxiliary parameter 
estimation errors. This is often necessary as there may be 
several orders of magnitude difference between the auxiliary 
parameters of interest. A weighted sum approach prevents 
domination by individual parameters. In this study a diagonal 
auxiliary parameter weighting matrix, Wz, is applied based on 
the inverse of auxiliary parameter variance (obtained from the 
main diagonal of the auxiliary parameter covariance matrix, 
Pz) 
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Wz is then applied to calculate of a “weighted” sum of 
auxiliary parameter squared estimation errors given as 

 
( ) { }ˆfleet ,ˆ T

z z h z z kWSSEE z tr W G P G P⎡ ⎤= +⎣ ⎦  (38) 

From Eqs. (23), (24), (33) and (35) it can be observed that 
both bias and variance are affected by the selection of the 
transformation matrix, V*. The sum of squared estimation 
error terms derived in this section give rise to an optimization 
problem: selecting V* to minimize the squared estimation error 
in the Kalman filter produced parameter estimates. This could 
include health parameter estimates, auxiliary parameter 
estimates, or a combination of parameters. Although there is 
no known closed form solution for optimally selecting the V* 
matrix to satisfy the objective of minimizing estimation errors, 
a multi-parameter iterative search method has been developed 
to perform this task, and will be described in the next section. 

Optimal Transformation Matrix Selection  
Prior to initiating the search for an optimal V*, specific 

system design information must be defined or obtained. This 
includes:  

 
• Specifying the auxiliary parameters to be estimated  
• Generating system state space equations at a fleet average 

(50 percent deteriorated) engine trim point 
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• Defining measurement noise covariance matrix, R  
• Defining augmented state process noise covariance 

matrix, Qxh  
• Defining fleet average health parameter covariance, Ph 

 
Some additional clarification is provided regarding the 

selection of Ph and Qxh as the distinction between these two 
covariance matrices may not be immediately obvious. Ph 
defines the expected health parameter covariance across all 
engines. It may be based on past knowledge gained from 
engine gas path analysis programs and/or historical studies of 
engine module performance deterioration. Conversely, Qxh 
defines the expected process noise covariance in the state 
variables and health parameters of an individual engine, at a 
single discrete time step, k. The selection of Qxh will directly 
impact the dynamic response and the variance of the estimates 
generated by the Kalman filter, and to a large extent Qxh is 
treated as a design parameter.  

After the necessary system information has been obtained, 
the search for an optimal transformation matrix to minimize 
the Kalman filter sum of squared estimation errors can 
commence. This is performed using the lsqnonlin function of 
the Matlab (The MathWorks, Inc.) Optimization Toolbox. This 
function applies an iterative search to find the least squares 
solution of a user-specified multivariable optimization 
problem. A flow chart depicting the steps in this optimal 
iterative search is shown in Figure 1, and a further description 
of each step is given below. 

 
1. Upon startup, an initial random guess of V* is 

generated. It is selected such that the matrix Frobenius 

norm * 1
F

V = . This requirement is applied to help 

prevent convergence to a poorly scaled solution. 
2. Construct reduced order state-space model, (Eq. (7)). 
3. Formulate Kalman filter  

a. Calculate estimation covariance matrix, P∞ (Eq. (9))  
b. Calculate the Kalman gain matrix, K∞, (Eq. (10)) 

4. Calculate sum of squared estimation errors (Eq. (36)), or 
weighted sum of squared estimation errors (Eq. (38)) 

5. On each iteration the change in SSEE (or WSSEE) 
relative to the previous iteration is assessed to 
determine if convergence within a user specified 
tolerance has been achieved.  
a. If converged, skip step 6 and proceed to step 7 
b. If not converged, proceed to step 6 to update V* 

6. V* is updated via the Matlab lsqnonlin function, again 

requiring that 
* 1

F
V = , and the process returns to 

step 2 
7. Upon convergence, the optimization routine returns 

the optimal value of V*, and ends. 
 

Experience has shown that the transformation matrix 
returned by the optimization routine is not unique—different 
matrices can be found which produce a global minimum of the 

StartStart

1. Generate initial guess for V *1. Generate initial guess for V *

2. Construct reduced order
state-space equations

2. Construct reduced order
state-space equations

5. Converged
?

5. Converged
?

3. Formulate Kalman filter
matrices (P∞ and K∞)

3. Formulate Kalman filter
matrices (P∞ and K∞)

4. Calculate (weighted) sum of 
squared estimation errors

4. Calculate (weighted) sum of 
squared estimation errors

7. Return optimal V *7. Return optimal V *

EndEnd

6. Update V * guess through
multi-variable gradient search
6. Update V * guess through

multi-variable gradient search

No

Yes

 
Figure 1.—Flowchart of V* Iterative Optimal Search 

 
objective function. Experience has also shown that the 
optimization routine will usually return a V* matrix which 
satisfies, or nearly satisfies (i.e., within 5 percent), the global 
minimum of the objective function. However, in order to 
guard against potential convergence to a local minimum, it is 
prudent to run the optimization routine multiple times, each 
time starting with a different initial guess for V*. This is only 
to assure the designer that the global minimum is achieved, 
not to produce a consistent V*. It should be emphasized that 
the optimal search for V* is only conducted off-line during the 
estimator design process. This calculation is not conducted as 
part of the on-line real-time Kalman filter implementation, and 
thus places no additional computational burden upon it. 

Turbofan Engine Example 
A linearized cruise operating point extracted from the 

NASA Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS) high-bypass turbofan engine model 
(Ref. 9) is used to evaluate the new systematic tuner selection 
methodology. The linear model has two state variables, ten 
health parameters, and three control inputs, all shown in 
Table 1. The model’s seven sensed outputs, and corresponding 
sensor noise standard deviation, are shown in Table 2. The 
auxiliary output parameters of interest to be estimated are 
shown in  

 
Table 3. The linear model is used as the truth model for this 

application example. The model is run open-loop, so all 
control inputs remain at 0, i.e., they do not deviate from the 
trim value for the linear model and no actuator bias is present. 
Deviations in all ten health parameters are assumed to be 
uncorrelated, and randomly shifted from their trim conditions 
with a standard deviation of ±0.02 (±2 percent). Since a 
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parameter’s variance is equal to its standard deviation squared, 
the health parameter covariance matrix, Ph, is defined as a 
diagonal matrix with all diagonal elements equal to 0.0004.  

Next, the estimation accuracy of the systematic approach 
for selecting Kalman filter tuning parameters will be 
compared to the conventional approach of selecting a sub-set 
of health parameters to serve as tuners (the seven health 
parameters denoted with “*” in Table 1), and the singular 
value decomposition approach to tuner selection introduced by 
Litt in Reference 4. Table 4 shows a comparison of the 
theoretically predicted estimation errors (squared bias, 
variance, and total squared error) and experimentally obtained 
squared estimation errors for each of the three tuner selection 
approaches. T40 and T50 estimation errors are shown in 
squared degrees Rankine, and Fn and SmLPC estimation 
errors are shown in squared percent net thrust and squared 
percent stall margin respectively. The experimental results 
were obtained through a Monte Carlo simulation analysis 
where the health parameters varied over a random distribution 
in accordance with the covariance matrix, Ph. The test cases 
were concatenated to produce a single time history input 
which was provided to the C-MAPSS linear discrete state 
space model given in Eq. (2), with an update rate of 15 ms. 
Each individual health parameter test case lasted 30 s. 

 
TABLE 1.—STATE VARIABLES, HEALTH  

PARAMETERS, AND ACTUATORS 
State variables Health parameters Actuators 

Nf—fan speed Fan efficiency Wf—fuel flow 
Nc—core speed Fan flow capacity* VSV—variable stator vane 
 LPC efficiency* VBV—variable bleed valve 
 LPC flow capacity  
 HPC efficiency*  
 HPC flow capacity*  
 HPT efficiency*  
 HPT flow capacity*  
 LPT efficiency  
 LPT flow capacity*  

*Health parameters selected as tuners in conventional estimation approach, 
(identical to sub-set of health parameters selected as tuners in Ref. 4) 
 
 
TABLE 2.—SENSED OUTPUTS AND STANDARD DEVIATION 

AS PERCENT OF OPERATING POINT TRIM VALUES 
Sensed output Standard deviation 

(%) 
Nf—fan speed .......................................................................................... 0.25 
Nc—core speed ........................................................................................ 0.25 
P24—HPC inlet total pressure ................................................................. 0.50 
T24—HPC inlet total temperature ........................................................... 0.75 
Ps30—HPC exit static pressure ............................................................... 0.50 
T30—HPC exit total temperature ............................................................ 0.75 
T48—Exhaust gas temperature ................................................................ 0.75 

 
 

TABLE 3.—ESTIMATED AUXILIARY  
PARAMETERS 

Auxiliary parameter 
T40—Combustor exit temperature 
T50—LPT exit temperature 
Fn—Net thrust 
SmLPC—LPC stall margin 

At the completion of each 30 s test case, the health 
parameter vector input instantaneously transitioned to the next 
test case. A total of 375 30 s test cases were evaluated, 
resulting in an 11,250 s input time history. Three separate 
Kalman filters were implemented using the three tuner 
selection approaches. The experimental estimation errors were 
determined by calculating the mean squared error between 
estimated and actual values during the last 10 s of each 30 s 
test case. The error calculation is based on only the last 10 s so 
that engine model outputs and Kalman estimator outputs have 
reached a quasi-steady-state operating condition prior to 
calculating the error. This ensures that the experimental results 
are consistent with the theoretically predicted estimation errors 
which were derived assuming steady-state operation.  

From Table 4 it can be seen that the theoretically predicted 
and the experimentally obtained squared estimation errors 
exhibit good agreement. If the number of random test cases 
were increased to a suitably large number, it is expected that 
the theoretical and experimental results would be identical. It 
can also be seen that all three estimators are able to produce 
unbiased estimates of the combustor exit temperature, T40; 
however, their estimates of LPT exit temperature, T50, net 
thrust, Fn, and LPC  stall  margin,  SmLPC,  are  biased.  The 
encouraging finding is that the new systematic approach to 
tuner selection significantly reduces the overall mean squared 
estimation error compared to the other two approaches. 
Relative to the conventional approach of tuner selection the 
experimental mean squared estimation errors in T40, T50, Fn 
and SmLPC are reduced 76, 82, 80 and 63 percent, 
respectively. It can also be observed that the SVD tuner 
selection approach, which is designed to reduce the estimation 
error bias, does in fact reduce the sum of squared biases 
relative to the subset of health parameters approach. However, 
the SVD approach is also found to increase the estimation 
variance, which contributes to its overall mean squared 
estimation error. 
 

TABLE 4.—AUXILIARY PARAMETER  
SQUARED ESTIMATION ERRORS 

Tuners Error T40  
(°R) 

T50  
(°R) 

Fn 
(%) 

SmLPC 
(%) 

Subset of 
health 

parameters 

Theor. sqr. bias 0.00 561.76 3.84 3.28 
Theor. variance 74.76 29.65 0.48 0.34 
Theor. sqr. error 74.76 591.41 4.31 3.62 
Exper. sqr. error 74.90 583.29 4.27 3.60 

 
SVD tuner 
selection 

 

Theor. sqr. bias 0.00 512.46 4.05 5.28 
Theor. variance 65.99 67.21 0.80 1.31 
Theor. sqr. error 65.99 579.67 4.86 6.59 
Exper. sqr. error 66.20 579.39 4.98 6.76 

Systematic 
tuner 

selection 

Theor. sqr. bias 0.00 87.81 0.66 0.95 
Theor. variance 17.49 18.55 0.13 0.35 
Theor. sqr. error 17.49 106.35 0.79 1.30 
Exper. sqr. error 17.61 106.54 0.86 1.35 

 
A visual illustration of the effect that tuner selection has on 

Kalman filter estimation accuracy can be seen in Figures 2 
through 5, which show actual and estimated results for the 
auxiliary parameters T40, T50, Fn and SmLPC respectively. 
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Each plot shows a 300 s segment of the evaluated test cases. 
The step changes that can be observed in each plot every 30 s 
correspond to a transition to a different health parameter 
vector. True model auxiliary parameter outputs are shown in 
black, and Kalman filter estimates are shown in red. In each 
figure the information is arranged top to bottom according to 
tuner selection based upon: a) a subset of health parameters; b) 
singular value decomposition; and c) the new systematic 
selection strategy. The information shown in these figures 
corroborates the information in Table 4; namely all three tuner 
selection approaches produce unbiased estimates of T40 
(Figure 2), while the systematic tuner selection strategy yields 
a noticeable reduction in the total squared estimation error 
(squared bias plus variance) of all four auxiliary parameters. 

Comparison with Maximum a Posteriori 
Estimation  

The presented systematic tuner selection strategy minimizes 
the mean squared error of the on-line estimator at steady-state 
operating conditions, taking advantage of prior knowledge of 
engine health parameter distributions. As such it is somewhat 
analogous to the maximum a posteriori (MAP) estimation 
method which is commonly applied for ground-based aircraft 
gas turbine engine gas path analysis (Refs. 5 and 6). This leads 
to the question, how does the on-line Kalman filter estimation 
accuracy compare to MAP estimation accuracy? Prior to 
making this comparison the mathematical formulation of the 
MAP estimator is briefly introduced. Here a steady-state 
model of the measurement process in the following form is 
applied 

 k k ky Hh v= +  (39) 

where the matrix H relates the effects of the health parameter 
vector, h, to the sensed measurements, y. From Eq. (19), it can 
be seen that H is equivalent to C(I – A)–1L + M. The maximum 
a posteriori (MAP) estimator follows the closed form 
expression 

 ( ) 11 1 1ˆ T T
k khh P H R H H R y

−− − −= +  (40) 

The MAP estimator is capable of estimating more 
unknowns than available measurements due to the inclusion of 
a priori knowledge of the estimated parameter covariance, Ph. 
However, the MAP estimator, unlike a Kalman filter, is not a 
recursive estimator and does not take advantage of past 
measurements to enhance its estimate at the current time step. 
Furthermore, the MAP estimator only considers a static 
relationship between system state variables and measured 
outputs—it does not consider system dynamics. Because of 
these differences a Kalman estimator with optimally selected 
tuning parameters should outperform the MAP estimator. 
However, under steady-state conditions, with minimal sensor 
noise the two estimation approaches should produce similar 

results. To test this theory, a MAP estimator was designed and 
its estimation accuracy was compared to a Kalman filter with 
tuning parameters optimally selected to minimize the 
estimation errors in the health parameter vector h. First, the 
two estimators were designed and evaluated using the original 
sensor noise levels shown in Table 2. Next, the sensor noise 
levels were set to 1/20th of their original levels, the estimators 
were re-designed, and the comparison was repeated. Monte 
Carlo simulation evaluations as previously described were 
applied (i.e., 375 random health parameter vectors, 30 s in 
duration, with estimation accuracy calculations based upon the 
last 10 s of each 30 s test case). Theoretical and experimental 
estimation errors are shown in Table 5 and Table 6 for the 
original noise and reduced noise levels, respectively. At 
original noise levels the Kalman estimator is able to produce 
smaller estimation errors. However, at the reduced noise level 
the two estimation approaches are found to be nearly identical. 
This comparison validates that the Kalman estimation 
approach is indeed producing a minimum mean squared 
estimation error as intended, while providing the capability to 
support real-time on-line estimation under dynamic operating 
scenarios. 
 

 
Figure 2.—T40 estimation (tuner comparison). 

 

 
Figure 3.—T50 estimation (tuner comparison). 
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Figure 4.—Fn estimation (tuner comparison). 
 

 
 

Figure 5.—SmLPC estimation (tuner comparison). 
 

 
 

TABLE 5.—HEALTH PARAMETER PERCENT SQUARED ESTIMATION ERRORS (NOMINAL NOISE) 
Estimator Error type h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum 

Kalman 
filter 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 
Theor. variance 0.73 0.19 0.80 0.45 0.40 0.68 0.21 0.21 0.34 0.08 4.09 
Theor. squared error 2.00 1.67 3.07 1.66 0.40 0.68 0.96 0.21 2.32 3.14 16.09 
Exper. squared error 1.82 1.60 2.77 1.59 0.41 0.68 0.97 0.21 2.13 3.15 15.31 

MAP 
estimator 

Theor. squared bias 2.42 1.75 3.53 1.90 0.47 0.96 1.00 0.16 2.47 3.17 17.81 
Theor. variance 0.22 0.27 0.16 0.64 0.69 0.71 0.36 0.36 0.17 0.09 3.68 
Theor. squared error 2.63 2.02 3.69 2.54 1.16 1.67 1.36 0.52 2.64 3.26 21.48 
Exper. squared error 2.52 1.89 3.44 2.45 1.14 1.57 1.34 0.51 2.49 3.24 20.60 

 
 

TABLE 6.—HEALTH PARAMETER PERCENT SQUARED ESTIMATION ERRORS (REDUCED NOISE) 
Estimator Error type h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum 

Kalman 
filter 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 
Theor. variance 0.02 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.10 
Theor. squared error 1.29 1.48 2.30 1.22 0.01 0.02 0.74 0.00 1.98 3.06 12.10 
Exper. squared error 1.13 1.41 1.97 1.16 0.01 0.02 0.75 0.00 1.79 3.08 11.31 

MAP 
estimator 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 
Theor. variance 0.03 0.00 0.04 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.13 
Theor. squared error 1.30 1.48 2.32 1.22 0.01 0.02 0.74 0.00 1.99 3.06 12.14 
Exper. squared error 1.14 1.41 1.98 1.17 0.01 0.02 0.75 0.00 1.79 3.08 11.34 

 
 
Discussion 

While the systematic tuner selection approach presented 
here appears promising for on-line Kalman filter based 
parameter estimation applications, there are several practical 
considerations which need to be assessed when applying such 
a technique. The optimization routine attempts to minimize the 
overall squared estimation error—both bias and variance—
under steady-state operating conditions. The minimization of 
the estimation variance in particular can come at the expense 
of dynamic responsiveness of the Kalman filter. To illustrate 
this consider the time history plots of actual versus estimated 
T40 shown in Figure 6. The top plot shows Kalman  
filter estimation results using a tuning parameter vector 

systematically selected to minimize the error in four auxiliary 
parameters (T40, T50, Fn and SmLPC) as presented in the 
previous section. The bottom plot shows Kalman filter 
estimation results using a tuning parameter vector 
systematically selected to minimize the estimation error in 
T40 only. At time 100 s a step change in the health parameter 
input vector is introduced into the engine model; this allows 
the dynamic response of the two estimators to be compared.  
It can be observed that T40 estimation variance in the  
bottom plot is reduced, as is the mean steady-state estimation 
error (> 300 s). This is not surprising since one would 
generally expect improved results when optimizing  
to minimize the error in a single parameter, as opposed  
to multiple parameters. However, the estimator shown in the 
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Figure 6.—Illustration of tuner impact  
on estimator response. 

 
 

bottom plot does require a significantly longer time to reach 
steady-state convergence. Conversely, the estimator designed 
to minimize the steady-state error in four auxiliary parameters 
(top plot) is unable to place as much emphasis on T40 
estimation variance reduction, but it is able to track dynamic 
changes in T40 more rapidly. This example illustrates the 
inter-dependence between estimation variance and 
responsiveness. Therefore, it is prudent for a designer to 
evaluate the Kalman filter to ensure that it tracks engine 
dynamics acceptably. If the dynamic response is unacceptable, 
the optimization routine can be rerun placing more weight on 
estimation error bias reduction, and less weight on variance 
reduction. 

All results presented in this paper are based on a turbofan 
engine linear state-space model at a single operating point. 
While this linear assessment enables experimental validation 
of theoretical predictions, it is not representative of actual 
aircraft gas turbine engine operation which is a transient non-
linear system operating over a broad range of operating 
conditions. In order for the presented approach to be 
applicable it would need to be able to produce an optimal set 
of tuning parameters, not just at a single operating point but 
rather a globally optimal tuning parameter vector universally 
applicable over the range of operating conditions that an 
engine is expected to experience. A potential approach to 
selecting a single “globally optimal” tuning parameter vector 
is to modify the optimization routine to minimize the 
combined estimation error over multiple engine operating 
points such as takeoff, climb and cruise. This would be a 
straightforward modification to the Matlab optimization 
routine, but it would increase the computational time required 
to calculate the result. Since the systematic tuner selection 
process is only envisioned to be done once during the system 
design process, this will not impact the on-line execution 

speed of the Kalman filter. It is anticipated that the application 
of globally optimal tuners will result in some estimation 
accuracy degradation relative to tuners optimized for 
individual operating points, although this has not yet been 
verified or quantified. 

Conclusions 
A systematic approach to tuning parameter selection for on-

line Kalman filter based parameter estimation has been 
presented. This technique is specifically applicable for the 
underdetermined aircraft engine parameter estimation case 
where there are fewer sensor measurements than unknown 
health parameters which will impact engine outputs. It creates 
and applies a linear transformation matrix, V*, to select a 
vector of tuning parameters which are a linear combination of 
all health parameters. The tuning parameter vector is selected 
to be of low-enough dimension to be estimated, while 
minimizing the mean-squared error of Kalman filter estimates. 
The multi-parameter iterative search routine applied to 
optimally select V* was presented. Results have shown that 
while the transformation matrix returned by the optimization 
routine is not unique (different matrices can be found which 
produce a global minimum of the objective function), the 
routine is effective in returning a transformation matrix which 
is optimal, or near optimal, regardless of its initial starting 
guess of the matrix. The efficacy of the systematic approach to 
tuning parameter selection was demonstrated by applying it to 
parameter estimation in an aircraft turbofan engine linear point 
model. It was found to significantly reduce mean squared 
estimation errors compared to the conventional approach of 
selecting a subset of health parameters to serve as tuners. In 
some parameters the mean squared estimation error reduction 
was found to be over 80 percent. These estimation 
improvements were theoretically predicted and experimentally 
validated through Monte Carlo simulation studies.  

The systematic approach to Kalman filter design is 
envisioned to be applicable for a broad range of on-board 
aircraft engine model-based applications which produce 
estimates of unmeasured parameters. This includes model-
based controls, model-based diagnostics, and on-board life 
usage algorithms. It is also envisioned to have benefits for 
sensor selection during the engine design process, specifically 
for assessing the performance estimation accuracy benefits of 
different candidate sensor suites. Areas for future work 
include extending the technique to produce a tuning parameter 
vector optimal over a range of operating conditions, and 
evaluating the technique on a non-linear engine model, under 
both steady-state and transient operating conditions.  
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