
Donald L. Simon
Glenn Research Center, Cleveland, Ohio

Propulsion Diagnostic Method Evaluation 
Strategy (ProDiMES) User’s Guide

NASA/TM—2010-215840

January 2010

https://ntrs.nasa.gov/search.jsp?R=20100005639 2019-08-30T08:54:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10552462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to help@

sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk 

at 443–757–5803
 
• Telephone the NASA STI Help Desk at
 443–757–5802
 
• Write to:

           NASA Center for AeroSpace Information (CASI)
           7115 Standard Drive
           Hanover, MD 21076–1320



Donald L. Simon
Glenn Research Center, Cleveland, Ohio

Propulsion Diagnostic Method Evaluation 
Strategy (ProDiMES) User’s Guide

NASA/TM—2010-215840

January 2010

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Acknowledgments

The support of the following individuals in creating the ProDiMES software is graciously acknowledged: Jeff Bird, 
Craig Davison, Al Volponi, Gene Iverson, Link Jaw, Richard Eustace, Tak Kobayashi, 

Jonathan Litt, Jon DeCastro, Eric Gillman, and Christopher Heath.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 



 

NASA/TM—2010-215840 iii 

Contents 
1.0  Introduction to ProDiMES ................................................................................................................... 1 

1.1  Overview .................................................................................................................................... 1 
1.2  Version Note and Software Requirements .................................................................................. 3 
1.3  Installation Instructions .............................................................................................................. 3 

1.3.1  Mex File Generation Steps ............................................................................................ 4 
2.0  EFS Description and Operating Instructions ....................................................................................... 5 

2.1  Engine Fleet Simulator Functional Description .......................................................................... 5 
2.1.1  EFS Graphical User Interface ........................................................................................ 5 
2.1.2  EFS Case Generator ....................................................................................................... 6 

2.2  EFS Operating Instructions and Output Files ........................................................................... 10 
2.2.3  EFS Operating Instructions.......................................................................................... 10 

3.0  User Provided Diagnostic Solutions .................................................................................................. 14 
3.1  Required Output Format ........................................................................................................... 15 
3.2  Design Restrictions ................................................................................................................... 16 

4.0  Evaluation Metrics ............................................................................................................................. 16 
4.1  Description of Evaluation Metrics ............................................................................................ 17 
4.2  Evaluation Metrics Routine—Operating Instructions .............................................................. 24 

5.0  Blind Test Cases ................................................................................................................................ 24 
5.1  Blind Test Case Information ..................................................................................................... 24 
5.2  Submitting Blind Test Case Results ......................................................................................... 25 

6.0  Future Workshop ............................................................................................................................... 25 
7.0  Requested Feedback .......................................................................................................................... 25 
8.0  References .......................................................................................................................................... 38 
Appendix A.—ProDiMES Software Parameter List .................................................................................. 27 
Appendix B.—Example Diagnostic Solution ............................................................................................. 33 

B.1  Example Diagnostic Solution Description ................................................................................ 33 
B.1.1  Step 1—Parameter Correction ..................................................................................... 33 
B.1.2  Step 2—Trend Monitoring .......................................................................................... 34 
B.1.3  Step 3—Anomaly Detection ........................................................................................ 35 
B.1.4  Step 4—Event Isolation ............................................................................................... 35 

B.2  Example Diagnostic Solution Operating Instructions .............................................................. 36 
B.3  Example Diagnostic Solution—Software Parameter List ......................................................... 37 

 
  



 

 
  



 

NASA/TM—2010-215840 1 

Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) 
User’s Guide 

 
Donald L. Simon 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

1.0 Introduction to ProDiMES 
The Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) provides a standard 

benchmarking problem and a set of evaluation metrics to enable the comparison of candidate aircraft 
engine gas path diagnostic methods. This User’s Guide provides an overview description of the software 
tool along with installation and operating instructions. 

1.1 Overview 

Recent technology reviews have revealed that while Engine Health Management (EHM) related 
research and development has increased significantly in recent years, there exists a fundamental 
inconsistency in defining and representing EHM problems (Ref. 1). Currently many of the EHM solutions 
published in the open literature are applied to different platforms, with different levels of complexity, 
addressing different problems, and using different metrics for evaluating performance. As such, it is 
difficult to perform a one-to-one comparison of candidate approaches. Furthermore, these inconsistencies 
create barriers to effective development of new algorithms and the exchange of EHM-related ideas and 
results. To help address these issues, the ProDiMES software tool has been specifically designed with the 
intent to be made publicly available. In this form it can serve as a reference, or theme problem, to aid in 
propulsion gas path diagnostic technology development and evaluation. The overall goal is to provide a 
tool that will serve as an industry standard, and will truly facilitate the development and evaluation of 
significant EHM capabilities. Additional details regarding the motivation for creating the ProDiMES tool 
can be found in Reference 2. 

ProDiMES has been constructed based on feedback provided by various individuals within the 
aircraft engine health management community. A key design decision in the development of ProDiMES 
was the decision to construct the tool around an aircraft engine simulation. Gas path diagnostic algorithm 
development and validation requires access to engine models and data. Ideally, this would include a rich 
database of information collected from engines over a broad range of operating conditions, deterioration 
levels, and known fault and no-fault conditions. However, to facilitate a public benchmarking approach, it 
was decided to generate simulated engine data utilizing a steady-state version of the NASA Commercial 
Modular Aero-Propulsion System Simulation (C-MAPSS) high-bypass turbofan engine model (Ref. 3), 
referred to as C-MAPSS Steady-State. C-MAPSS Steady-State applies conventional aerothermal 
performance cycle modeling practices to construct a nonlinear component level model of a generic 
turbofan engine. Its use within ProDiMES avoids the use of engine data and analytical models that 
contain proprietary information. While an engine simulation will never fully capture all the nuances 
contained in actual engine data, it does provide some advantages. For example, it will allow the 
simulation of a broader range of fault types and magnitudes occurring over a broader range of engine 
operating conditions. It will also provide unambiguous knowledge of an engine’s true fault/no-fault state, 
or “ground truth” condition. However, users are cautioned to realize that the simulated gas path fault test 
cases generated by ProDiMES have not been validated against actual engine fault data. They are simply 
representative of, not identical to, the types of faults an actual aircraft engine may experience. As such 
ProDiMES serves as a tool to enable the initial development and evaluation of candidate gas path 



 

NASA/TM—2010-215840 2 

diagnostic methodologies. It is readily acknowledged that additional maturation and development would 
be required to further mature gas path methods to the level of practical implementation. 

The ProDiMES architecture for benchmarking aircraft engine gas path diagnostic methodologies is 
presented in Figure 1. It is coded in the Matlab (The MathWorks, Inc.) environment and specifically 
focuses on diagnostic methods applied to “snap shot,” or discrete, engine measurements collected each 
flight at takeoff and cruise operating points. The intent is to provide users a publicly available toolset to 
enable the development, evaluation, and side-by-side comparison of candidate diagnostic solutions. This 
includes providing the functionality to evaluate analytical and/or empirical diagnostic approaches. The 
top half of Figure 1 shows the capabilities provided by ProDiMES that enable end users to independently 
develop and evaluate diagnostic solutions. This includes an Engine Fleet Simulator, user provided 
diagnostic solution algorithms, and a metrics evaluation routine. Each is briefly summarized below: 

 
• Engine Fleet Simulator (EFS): The EFS generates and archives sensed parameter histories as if 

collected from a fleet of engines over multiple flights. Through an associated Matlab Graphical User 
Interface (GUI) users are able to specify the type and quantity of the simulated engine data produced 
by the EFS. This includes selecting the number of engines in the fleet, the number of flights that data 
will be collected over, the number of occurrences of 18 different gas path fault types, the flight of 
fault initiation, and the fault evolution (propagation) rate. The EFS incorporates stochastic elements 
that will result in the random generation of representative engine operating conditions, deterioration 
profiles, fault magnitudes, and sensor noise. Once generated and archived, the EFS sensed parameter 
histories serve as diagnostic test cases for the development and evaluation of user provided diagnostic 
solutions.  

• User Provided Diagnostic Solutions: Diagnostic solution(s) to be developed by the user. They are 
designed to interpret EFS generated parameter histories and diagnose the occurrence of any faults. 

• Metrics: A provided routine to automatically evaluate the diagnostic performance of candidate 
diagnostic solutions against a predefined set of metrics. This includes detection metrics (i.e., true 
positive rate, true negative rate, false positive rate, and false negative rate), classification metrics (i.e., 
correct classification rate, and misclassification rate), and diagnostic latency metrics. All metrics are 
generated by comparing the diagnostic assessments against the true fault / no-fault condition, (also 
known as the “ground truth” condition,) of the engines as generated by the EFS. Metric results are 
automatically archived to a Microsoft Excel (Microsoft Corporation) spreadsheet.  

 
After diagnostic methods have been independently developed and evaluated, users will be invited to 

apply their diagnostic methods to a provided set of blind test case data that is also distributed as part of 
ProDiMES. This will enable the side-by-side comparison of diagnostic solutions developed by multiple 
users as shown in the bottom half of Figure 1. The blind test case data is also generated via the EFS, and 
all users will receive the same identical set of blind test case data. However, users will not be provided the 
associated ground truth fault information associated with the blind test case data. Diagnostic assessments 
produced based on the blind test case data are to be submitted to NASA, which will evaluate the results 
against the ground-truth information, and in return provide the metric results back to the end user along 
with the anonymous results of other participants. 

This User’s Guide will describe the elements of ProDiMES in more detail, along with installation and 
operating instructions. It is organized as follows. First, a version note and software installation 
instructions are provided. Next, elements of the EFS are more fully described and EFS operating 
instructions are provided. This is followed by a description of the output format that user provided 
diagnostic solutions must adhere to. Next, a description of the provided diagnostic metrics are given, 
along with operating instructions for the metrics evaluation routine. This is followed by instructions for 
evaluating and submitting diagnostic assessment results based on the blind test case data. 0 provides the 
ProDiMES software parameter list, and Appendix B presents an example diagnostic solution, that is 
distributed with the ProDiMES software. 

 



 

NASA/TM—2010-215840 3 

Engine 
Fleet 

Simulator

(EFS_GUI.m)

Metrics

(EvalMetrics.m)

Sensed
parameter
histories
(EFS_Output.mat)

Diagnostic
Assessments
(DiagnosticAssessments.mat)

“Ground truth” engine condition
(EFS_fault_conditions.mat)

Results

User
Provided

Diagnostic
Solutions

(see
ExampleSolution.m)

Blind Test Case 
Data

(EFS_Output_BlindTest
.mat)

Metrics 
-and-

Blind Test 
Case

“Ground 
truth”

Information

Sensed 
parameter 
histories

Diagnostic 
assessments 
(submitted to 
NASA)User

Provided
Diagnostic
Solutions

Results 
(returned to 
participant)

Independent 
Development 

and 
Evaluation

Blind Test 
Case

Side-by-Side 
Comparison

 
 

Figure 1.—ProDiMES Architecture. 
 
 

1.2 Version Note and Software Requirements 

This guide is intended to be used with the initial release of the ProDiMES software (version 1.0). This 
software has been developed using MATLAB Version 7.2.0.232 (R2006a) under the Microsoft Windows 
XP operating system. On other releases of Matlab the software will not run unless the associated 
executable code (Matlab MEX files) is recompiled from the provided C source code to generate platform 
specific executables. Procedures for doing this are discussed in more detail in Section 1.3. With 
recompilation it is expected that ProDiMES will be able to run on any current Matlab version, on any 
Matlab supported operating system, although this has not been completely verified. With recompilation of 
the provided C source code it is also expected that the software will run on future releases of Matlab. The 
ProDiMES metrics evaluation routine archives results to a Microsoft Office Excel 97-2003 worksheet. 
Users must have access to this version, or a newer version, of Microsoft Excel in order to run and 
interpret the metric results.  

1.3 Installation Instructions 

Unzip the contents of the provided ProDiMES.zip file to a local folder on your computer. This will 
create a directory structure as shown in Figure 2. 



 

NASA/TM—2010-215840 4 

 

ProDiMES

EFS JacobiansTrim MetricsMexFile BlindTestCases ExampleSolution Utilities

 
Figure 2.—ProDiMES Directory Structure. 

 
A brief description of the contents of each subdirectory is given below: 
 

ProDiMES: Top level directory. Contains User’s Guide. 
 

EFS: Engine Fleet Simulator Matlab software. The main program is contained in EFS_GUI.m. Upon 
execution it creates sensed parameter histories (EFS_Output.mat) and ground truth fault information 
(EFS_fault_conditions.mat). 
 

JacobiansTrim: Contains Jacobian matrices and operating point trim files necessary to operate the 
engine model.  
 

MexFile: C source code, a make file, and the Matlab *.mex file of the C-MAPSS Steady-State engine 
model. 
 

Metrics: Evaluation Metrics Matlab routine (EvalMetrics.m) that compares diagnostic 
assessments against ground truth fault information to assess diagnostic performance metrics. This routine 
archives metric results to a Microsoft Excel spreadsheet (EvalMetrics.xls). 
 

BlindTestCases: Contains a blind test case data set (EFS_Output_BlindTest.mat).  
 

ExampleSolution: Contains an example user provided diagnostic solution 
(ExampleSolution.m). This routine illustrates how to acquire and parse EFS produced parameter 
histories (EFS_Output.mat), process the data, and archive diagnostic solutions in the required format 
(DiagnosticAssessments.mat). 
 

Utilities: Contains routines to assist the user in correcting and plotting EFS generated sensed 
parameter histories (plot_corrected_data.m), and plotting true versus diagnosed engine fault 
condition information (plot_true_vs_diagnosed_condition.m).  

1.3.1 Mex File Generation Steps 
The engine model used in the ProDiMES software is coded in C and compiled into a Matlab *.mex 

function. This is done to improve the execution speed of the program. The *.mex function is located in 
the MexFile subdirectory and is named cmapss_ss_function_C.mexw32. 

This file has been compiled to run on a Windows PC platform using Matlab Version 7.2.0.232 
(R2006a). In order to run the EFS on a different computer platform the *.mex file will need to be 
regenerated following these steps: 



 

NASA/TM—2010-215840 5 

1. In Matlab navigate to the ProDiMES subdirectory titled “\MexFile” 
2. At the Matlab command prompt, type “make_file”. This will produce a new mex file of the 

appropriate extension named “cmapss_ss_function_C.*” 

2.0 EFS Description and Operating Instructions 
 The Engine Fleet Simulator (EFS) enables users to generate simulated engine output data for the 

development and evaluation of propulsion gas path diagnostic methodologies. The following subsections 
will provide a functional description of the EFS software, followed by a description of EFS operating 
instructions and output files. 

2.1 Engine Fleet Simulator Functional Description 

The EFS produces simulated “snap-shot” engine measurements, with relevant noise levels, as if 
collected from a fleet of engines at takeoff and cruise operating points each flight. In order to emulate 
realistic behavior, each engine within the fleet will experience unique operating and deterioration profiles. 
Users can choose for engines to encounter relevant gas path faults including sensor, actuator and 
component faults. The EFS architecture, shown in Figure 3, is implemented in the Matlab environment. 
This architecture consists of: a graphical user interface (GUI) that accepts user specified inputs regarding 
the number of engines and the number of occurrences of each fault type; a case generator designed to 
produce unique faults, deterioration profiles, and operating profiles for each engine in the fleet; and the 
nonlinear C-MAPSS Steady-State turbofan engine simulation that produces the “snap-shot” measurement 
parameter histories for each engine, at takeoff and cruise of each flight. Each component of the EFS is 
further described below. 

2.1.1 EFS Graphical User Interface 
The EFS GUI is designed to provide flexibility in generating data sets for diagnostic development and 

validation purposes. Through this interface, the type and number of faults that occur within the fleet of 

Case Generator

• Engine operating 
conditions

• Component 
deterioration profiles

• Gas path faults

Parameter HistoriesC-MAPSS
Steady-State
Engine Model

Graphical User 
Interface (GUI)

 
Figure 3.—EFS architecture. 



 

NASA/TM—2010-215840 6 

engines are defined. It should be emphasized that the EFS has been designed assuming that an individual 
engine can only experience a single fault—it will not simulate multiple faults occurring within the same 
engine. There are 18 possible fault scenarios plus the no-fault scenario. The sum of the number of 
occurrences of each scenario determines the total number of engines in the fleet, and thus the number of 
test cases presented to the end user. The interface also allows the user to specify the following: the 
number of flights over which output data will be collected for each engine; the flight of fault initiation 
(either at a fixed flight number or randomly within a specified window of flights); the rate at which faults 
evolve, either abruptly (instantaneously) or rapidly (over a number of flight cycles); and sensor noise 
turned on or off. 

2.1.2 EFS Case Generator 
After the EFS inputs have been specified through the GUI, the user selects the “Run EFS” button. 

This initiates the process of generating engine parameter histories according to the number and type of 
scenarios specified by the user. The Case Generator randomly assigns a unique operating history and 
deterioration profile to each engine in the fleet. This includes assigning the city pairs that an engine will 
alternate takeoffs between, and the calendar date that engine data collection will commence. Pressure 
altitude, Mach number, ambient temperature, and power setting parameters at the takeoff and cruise 
operating points where data will be collected during each flight are all randomly generated from 
defined distributions representative of commercial aircraft operations. Histograms illustrating the 
distributions in operating parameters implemented within the EFS Case Generator are shown in Figure 4 
(takeoff) and Figure 5 (cruise). At takeoff the power reference parameter is established by Power Lever 
Angle (PLA) that will either be 100 percent, or a fixed de-rated takeoff power setting of 90 or 80 percent 
as commonly applied in commercial aviation. At cruise the power reference parameter is specified by net 
thrust. 

The EFS Case Generator also specifies a level and rate of gradual performance deterioration for each 
engine. These effects are included to emulate the gradual performance deterioration that an aircraft engine 
will naturally undergo over its lifetime of use due to fouling, erosion, and corrosion of turbomachinery 
blades and vanes. It should be emphasized that in ProDiMES gradual performance deterioration is not 
considered a fault, and it evolves on a much slower timescale than faults do. Diagnostic methods will not 
be required to diagnose gradual performance deterioration, but they should be designed to be robust to 
these effects. In ProDiMES, deterioration effects are simulated via adjustments to 10 health parameters 
within the engine simulation so that engines will continuously degrade over time. These health parameters 
include an efficiency and flow capacity modifier for each of the five major modules in the engine (Fan, 
Low Pressure Compressor (LPC), High Pressure Compressor (HPC), High Pressure Turbine (HPT), and 
Low Pressure Turbine (LPT)). The fleet average deterioration profile implemented within the EFS is 
representative of the information provided in (Ref. 4), although adjustments have been made to the 
turbine health parameters to cause them to deteriorate on a time scale consistent with the rest of the 
engine. An actual aircraft engine will deteriorate as a function of its usage, and the environment it 
operates in. Therefore, no two engines will deteriorate at the same rate or along the same profile. To 
emulate this the EFS Case Generator includes variations to the fleet average deterioration profile to 
produce a unique deterioration profile for each individual engine including: 1) more/less rapid overall 
engine deterioration; 2) more/less rapid individual module deterioration; 3) more/less module flow 
deterioration relative to efficiency deterioration; and 4) initial engine-to-engine manufacturing variation. 
Figure 6 shows the baseline, or average, deterioration profile for each health parameter (in red) and 
example variations (in cyan). The cyan points were generated by running the EFS to generate data from 
100 engines over 5000 flights. 5000 flights is the maximum number of flight cycles that can be defined 
for any engine in the EFS. However, the user can choose fewer flights. If so, an engine’s starting 
condition will be randomly placed somewhere along the deterioration profiles defined in Figure 6. 

 



 

NASA/TM—2010-215840 7 

 
Figure 4.—Takeoff operating condition distributions. 

 

 
Figure 5.—Cruise operating condition distributions. 

 

−2000 0 2000 4000 6000
Takeoff Pressure Altitude (ft)

0.18 0.2 0.22 0.24 0.26 0.28
Takeoff Mach

−50 0 50 100 150
Takeoff Tamb (°F)

80 90 100
Takeoff PLA

Denver

Boston

Chicago

Atlanta & Phoenix

25 30 35 40
Cruise Pressure Altitude (K ft)

0.72 0.74 0.76 0.78 0.8 0.82 0.84
Cruise Mach

−100 −80 −60 −40 −20 0
Cruise Tamb (°F)

5000 6000 7000 8000
Cruise Net Thrust − Fn (lbs)



 

NASA/TM—2010-215840 8 

 
Figure 6.—Health parameter deterioration profiles, average (red) and distribution 

(cyan) 
 

In addition to generating the operating history and deterioration profile for each engine, the Case 
Generator will also define the flight of fault initiation, the fault magnitude, and the fault evolution rate for 
those engines experiencing faults. A summary of the fault types and their uniformly distributed fault 
magnitudes is provided in Table 1. Module faults (i.e., fault ID’s 1 through 5 corresponding to Fan, LPC, 
HPC, HPT and LPT faults) are simulated by simultaneously adjusting the faulty module health 
parameters: the efficiency, η, and flow capacity, γ. Module fault magnitude distributions shown in the 
table are in terms of the root-sum-square value of the combined η and γ deviations. The uniformly 
distributed ratios of flow capacity to efficiency health parameter adjustment, γ :ηratio, are also shown. For 
Fan, LPC, and HPC faults, both γ and η are reduced. For HPT and LPT faults, η is reduced while γ is 
increased. Module faults are simulated by adjusting efficiency and flow capacity as follows:

 

 
 

( )
( )ratio

2
ratio

:adjustmenηadjustment
:1

magnitudefault
adjustment

ηγ⋅=γ

ηγ+
=η

t

  (1)



 

NASA/TM—2010-215840 9 

Actuator faults in the variable stator vanes, VSV, or the variable bleed valve, VBV, (fault ID 6 and 7) 
will result in a misscheduling between the commanded and actual actuator position. A fuel flow (Wf) 
actuator fault is not specifically included, but a fuel flow sensor fault is. The overall effect of a fuel flow 
actuator or sensor fault would be the same—a mismatch between the sensed and actual fuel flow. 

There are 11 different sensor faults (fault ID’s 8 through 18) implemented within the EFS. Sensor 
fault magnitudes are implemented in units of average measurement noise standard deviation, σ, at takeoff 
and cruise. As a point of clarification it should be emphasized that if sensor noise is activated in the GUI, 
it will cause zero-mean normally distributed noise to be added to the sensed parameter histories generated 
by the EFS. This noise is applied as a percentage of the actual sensed parameter. Sensor fault magnitudes 
do not vary as a function of actual sensed parameter, they are simply defined as a multiple of the average 
noise within a sensed parameter at takeoff or cruise. Table 1 shows both percent (%) values of σ, as well 
as average σ values in engineering units at takeoff and cruise. Based on this table, it can be seen that a 
+1σ fan speed (Nf) sensor fault will result in a +5.59 rpm bias existing between the sensed and actual Nf 
at takeoff, and a +4.67 rpm bias existing between the sensed and actual Nf at cruise. Users should be 
aware that faults in certain control feedback sensors will also result in actuator misscheduling. 
Specifically, VBV position is scheduled based on corrected fan speed, and VSV position is scheduled 
based on corrected core speed (corrected to station 24 temperature). Therefore a sensor fault in Nf, Nc, T2 
or T24 will also result in actuator misscheduling. 
 

TABLE 1.—EFS FAULT TYPES 
Fault 
ID 

Fault 
description 

Fault 
magnitude 

Fault* 
γ : ηratio 

σ 
(shown in %) 

Takeoff 
average σ 

(actual units) 

Cruise 
average σ 

(actual units) 
0 No-fault --- ---------- ----- ------------ ------------ 
1 Fan fault 1 to 7% 2 to 1 ----- ------------ ------------ 
2 LPC fault 1 to 7% 2 to 1 ----- ------------ ------------ 
3 HPC fault 1 to 7% 2 to 1 ----- ------------ ------------ 
4 HPT fault 1 to 7% –0.5 to –1 ----- ------------ ------------ 
5 LPT fault 1 to 7% –0.5 to –1 ----- ------------ ------------ 
6 VSV fault 1 to 7% ---------- ----- ------------ ------------ 
7 VBV fault 1 to 19% ---------- ----- ------------ ------------ 
8 Nf sensor fault ± 1 to 10 σ ---------- 0.25 5.59 rpm 4.67 rpm 
9 Nc sensor fault ± 1 to 10 σ ---------- 0.17 15.04 rpm 13.22 rpm 
10 P24 sens. fault ± 1 to 10 σ ---------- 0.50 0.134 psia 0.040 psia 
11 Ps30 sens. fault ± 1 to 10 σ ---------- 0.20 0.896 psia 0.224 psia 
12 T24 sensor fault ± 1 to 10 σ ---------- 0.16 1.01 °R 0.816 °R 
13 T30 sensor fault ± 1 to 10 σ ---------- 0.16 2.45 °R 1.92 °R 
14 T48 sensor fault ± 1 to 10 σ ---------- 0.50 10.07 °R 7.48 °R 
15 Wf sensor fault ± 1 to 10 σ ---------- 0.60 0.035 pps 0.0069 pps 
16 P2 sensor fault ± 1 to 10 σ ---------- 0.15 0.023 psia 0.0077 psia 
17 T2 sensor fault ± 1 to 10 σ ---------- 0.16 0.838 °R 0.707 °R 
18 Pamb sens fault ± 1 to 19 σ ---------- 0.15 0.022 psia 0.0052 psia 

*The fault γ : ηratio column reflects the ratio of the change in flow capacity divided by the change in efficiency. For Fan, LPC, and HPC faults both 
efficiency and flow capacity are decreased (negative change), and thus their ratio is always positive. Conversely, for HPT and LPT faults flow 
capacity is increased (positive) while efficiency is decreased (negative), thus their ratio is always negative. 

C-MAPSS Steady-State Engine Model 
The outputs of the Case Generator are provided as inputs to a steady-state version of the NASA 

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) high-bypass turbofan engine 
model. C-MAPSS is a transient nonlinear aerothermodynamic engine model developed for controls and 
diagnostics research and development purposes and implemented in the Matlab/Simulink environment 
(Ref. 3). It has two states, fan and core speed, and three actuators including fuel flow, variable stator 
vanes, and a variable bleed valve. A modified steady-state version of C-MAPSS, denoted as C-MAPSS 
Steady-State, is used by the EFS. The C-MAPSS Steady-State engine model has been validated against 
the original C-MAPSS model. The steady-state version of C-MAPSS has several  



 

NASA/TM—2010-215840 10 

 

Fan LPC HPC

H
PT LPT

Pamb
P2
T2

P24
T24

Ps30
T30

Burner

Wf

T48
Nf

Nc

Inlet

Bypass
duct

0 2 15 24 30 40 48 50Station numbers

Sensors

Modules

 
Figure 7.—C-MAPSS Steady-State station numbers, modules, and sensors. 

 
notable differences from the original: the closed-loop control system has been removed, the code has been 
converted from Simulink to a Matlab Mex file, and the transient solver has been replaced by a steady-
state solver to enable quick convergence to steady-state operating points. C-MAPSS Steady-State is 
executed within the EFS to generate simulated output data for each engine, at each flight, for each takeoff 
and cruise operating condition specified by the Case Generator. Although C-MAPSS Steady-State does 
not include closed-loop control logic, it does apply logic to capture actuator misscheduling due to control 
feedback sensor faults, and to ensure that operating limits are not violated in generating the steady-state 
solutions. End users are provided access to the C-MAPSS Steady-State model for diagnostic solution 
development purposes. For example, fault influence coefficient matrices can be extracted from C-MAPSS 
Steady-State for use in the design of model-based diagnostic methods as described in the example 
solution provided in Appendix B. Figure 7 shows C-MAPSS Steady-State station numbers, along with 
module and sensor locations. 

2.2 EFS Operating Instructions and Output Files 

The EFS operating instructions and EFS output files are described below.  

2.2.3 EFS Operating Instructions 
The steps for running the EFS are as follows: 
 

1. In the Matlab command window navigate to the EFS directory, and type the command EFS_GUI. 
This will open the EFS graphical user interface shown in Figure 8. 

2. Using the boxes on the left side of the GUI, specify the number of occurrences of the No Fault case, 
plus the number of occurrences of each of the 18 possible fault types. The sum of these inputs defines 
the total number of engines in the fleet, which is displayed at the bottom left hand side of the GUI.  



 

NASA/TM—2010-215840 11 

3. Using the box labeled “Number of Flights per Engine,” specify the number of flights of data that will 
be generated for each engine. Acceptable entries range from a minimum of one flight, to a maximum 
of 5000 flights. 

4. Select the flight of fault initiation. Users can select “fixed” flight of fault initiation that will result in 
all engines in the fleet experiencing faults on the same flight, or “random” flight of fault initiation, 
that will result in the flight of fault initiation being randomly assigned for each engine.  
a. If fixed flight of fault initiation is chosen the user will be required to specify the flight number. 
b. If random flight of fault initiation is chosen, the user must specify the minimum possible flight of 

fault initiation, and the minimum possible number of flights the faults will persist. These inputs 
bound the window of flights over which faults can initiate. Note: minimum fault persistence 
information is specified for both “abrupt” and “rapid” evolution fault types, which are defined 
below. 

It should noted that ProDiMES does not currently provide the capability to introduce and then later 
remove a fault from an engine’s sensed parameter history. Once a fault initiates, it will persist over 
the remaining duration of that particular engine’s flight history.  

5. The fault evolution rate refers to how rapidly faults will evolve, or grow in magnitude. The 
ProDiMES software provides three different fault evolution rate options: abrupt, rapid, or random 

 

 
Figure 8.—EFS Graphical User Interface 



 

NASA/TM—2010-215840 12 

fault evolution rates. Faults that appear instantaneously, but do not grow in magnitude over time, are 
considered abrupt faults. Faults that initiate and grow in magnitude over time are considered rapid 
faults. All rapid faults will linearly increase in fault magnitude each flight, from the flight of fault 
initiation up until the flight where the fault “plateaus” at its assigned fault magnitude. Both abrupt and 
rapid fault magnitudes are assigned based on the fault magnitude distributions shown in Table 1. The 
options for specifying fault evolution rates are: 
a. Abrupt fault evolution: select the “Abrupt” fault evolution rate button.  
b. Rapid fault evolution: select the “Rapid” fault evolution rate button, and enter an integer ≥ “1” in 

the corresponding “# of flights =” box. This specifies the number of flights after fault initiation 
required for faults to grow to their assigned fault magnitude. For example, entering a value of “3” 
will produce rapid faults that are 25 percent of their assigned fault magnitude on the flight of fault 
initiation, and then linearly increase in magnitude to 50, 75 and 100 percent over the next three 
flights. 

c. Random fault evolution: select the “Random” fault evolution rate button. This will result in 
approximately 50 percent of the engines in the fleet experiencing abrupt faults, and approximately 
50 percent experiencing rapid faults. If random fault evolution rates are chosen, the user must 
also specify the minimum and maximum number of flights over which rapid faults can evolve. 

6. Choose the appropriate “Sensor Noise” button to turn sensor noise on or off. If sensor noise is 
selected, each engine will experience zero-mean, normally distributed sensor noise (measurement 
nonrepeatability). The noise standard deviation varies as a percentage of the actual sensed value as 
shown in Table 1.  

7. After all the necessary inputs have been specified, Users can run the EFS by pressing the “Run EFS” 
button. Upon pressing “Run EFS” users will be queried to determine whether or not any existing EFS 
output files in the current directory should be overwritten. Selecting “Yes” will result in any existing 
files being overwritten. Selecting “No” will halt the program providing users the opportunity to 
archive any previously generated EFS output files that they wish to retain. The EFS software also 
includes error logic to ensure that users have not specified incompatible entries within the GUI. For 
example, requesting faults that will not initiate or fully evolve until after the last flight. If 
incompatible entries are found an error message box will be displayed, and the user will be required 
to modify the GUI entries. The “Estimated Run Time” provides an estimate of the time required to 
generate the requested data set, and the run status bar will automatically update to show progress 
towards completion. Note: It is recommended that users begin by generating data for a small number 
of engines to ensure that no errors are encountered when first running the EFS. Occasionally, engine 
operating points will be requested that the model has difficulty converging to. If this occurs a message 
will be displayed to the Matlab command prompt such as: 

 
Did not converge: Take Off - Engine #2 flight #5 

 
Any engine that experiences a nonconvergence operating point will be identified and removed from 
the archived EFS output files. 

 
The ProDiMES evaluation metrics, which will be fully described in Section 4.0 of this guide, apply 

specific assumptions regarding the minimum flight of fault initiation and minimum fault persistence. The 
metrics assume that: 

 
• No fault will initiate prior to flight 11 
• Abrupt faults will persist for a minimum of 10 flights 
• Rapid faults will persist for a minimum of 6 flights at their final fault magnitude 

 
EFS warning logic is included to notify users if they specify GUI entries that will violate these 
assumptions. Upon receiving the warning, users will have the flexibility to either revise their GUI entries 



 

NASA/TM—2010-215840 13 

to be compatible with the metrics routine, or to continue generating EFS data as specified. A summary of 
the GUI entry requirements in order to maintain compatibility with the metrics routine is given in Table 2.  
 

TABLE 2.—EFS GUI ENTRY REQUIREMENTS TO MAINTAIN COMPATIBILITY WITH METRICS ROUTINE 
If “Flight of 

fault initiation” 
is … 

If “Fault 
evolution 
rate” is … 

Then metrics compatibility  
requirements are … 

Fixed 

Abrupt • Flight of fault initiation ≥ 11 
• Number Flights per Engine—Flight of fault initiation + 1 ≥ 10 

Rapid • Flight of fault initiation ≥ 11 
• Number Flights per Engine—Flight of fault initiation—Fault evolution rate + 1 ≥ 6 

Random 

• Flight of fault initiation ≥ 11 
• Number Flights per Engine—Flight of fault initiation + 1 ≥ 10 
• Number Flights per Engine—Flight of fault initiation—Rapid fault evolution rate 

(maximum) + 1 ≥ 6 

Random 

Abrupt 

• Random minimum initiation flight ≥ 11 
• Minimum persistence (abrupt) ≥ 10 
• Number Flights per Engine ≥ Random minimum initiation flight + Minimum persistence 

(abrupt) – 1 

Rapid 

• Random minimum initiation flight ≥ 11 
• Minimum persistence (rapid) ≥ 6 
• Number Flights per Engine ≥ Random minimum initiation flight + Fault evolution rate + 

Minimum persistence (rapid) – 1 

Random 

• Random minimum initiation flight ≥ 11 
• Minimum persistence (abrupt) ≥ 10 
• Minimum persistence (rapid) ≥ 6 
• Number Flights per Engine ≥ Random minimum initiation flight + Minimum persistence 

(abrupt) – 1 
• Number Flights per Engine ≥ Random minimum initiation flight + Rapid fault evolution 

rate (maximum) + Minimum persistence (rapid) – 1 
 

EFS Output Files—Fault Conditions, Operating Conditions, and Parameter Histories 
As the EFS runs it will generate and store three *.mat Matlab files in the \EFS directory consisting of 

fault conditions, operating conditions, and parameter histories. The contents of these files are further 
described below. 
 

EFS_fault_conditions.mat: Contains the associated fault information for each engine in the 
fleet. This includes the fault type, fault magnitude, flight of fault initiation and fault evolution rate. This 
information comprises the actual, or “ground truth,” fault information pertaining to the faults present 
within each engine generated by the EFS. The “ground truth” fault information will be used by the 
diagnostic metrics evaluation routine (to be described later) to evaluate diagnostic performance. This 
information is stored in the parameter “fault_params”—a 2D matrix of size #Engines × 5. The 5 
columns of fault_params are: 

 
1. Fault ID as listed in Table 1 
2. Flight of fault initiation 
3. Fault evolution rate 
4. Fault magnitude 
5. Ratio of module flow capacity to efficiency (only used for the 5 module faults). 
 

EFS_operating_conditions.mat: Contains “sensor_noise” and “engine_params”. 
sensor_noise is a scalar that represents noise on (1) or noise off (0). engine_params is a 3D 
matrix of dimension #Engines × #Flights × 18. The 18 parameters for each engine, each flight define: 



 

NASA/TM—2010-215840 14 

1 to 4: Pressure altitude, Mach, ΔTamb, and Nf (fan speed) on takeoff 
5 to 8: Pressure altitude, Mach, ΔTamb, and Fn (net thrust) at cruise 
9 to 18: 10 module health parameters used to represent deterioration 

 
EFS_Output.mat: Contains “efs_output_to” and “efs_output_c”. These are both 3D 

matrices of dimension #Engines × #Flights × 11 sensed measurements. efs_output_to corresponds to 
the engine sensed measurements collected at takeoff, and efs_output_c corresponds to the engine 
sensed outputs collected at cruise. The 11 sensed parameters are shown in Table 3.  

 
TABLE 3.—EFS ENGINE OUTPUT PARAMETERS 

Index Symbol Description Units 
1 Nf Physical fan speed rpm 
2 Nc Physical core speed rpm 
3 P24 Total pressure at LPC outlet psia 
4 Ps30 Static pressure at HPC outlet psia 
5 T24 Total temperature at LPC outlet °R 
6 T30 Total temperature at HPC outlet °R 
7 T48 Total temperature at HPT outlet °R 
8 Wf Fuel flow pps 
9 P2 Total pressure at fan inlet psia 

10 T2 Total temperature at fan inlet °R 
11 Pamb Ambient pressure psia 

 
Figure 9 shows an example of the raw simulated engine output parameters produced by the EFS, and 

the corresponding features that can be extracted via a user provided diagnostic solution. Only 7 of the 11 
sensed output parameters are shown as the other four, Nf, P2, T2 and Pamb, are used for power reference 
and parameter correction purposes in this example. The left hand side of this figure shows time history 
plots of the raw uncorrected cruise data collected for a single engine over 4000 flights. The raw data does 
reflect a gradual performance trend change over time due to the inclusion of deterioration effects. What is 
not as readily apparent from the raw data is the fact that this particular engine experiences a 5 percent fan 
fault on flight 2000. On the right, corrected residual data for the same engine over the same flight history 
is shown. This data was generated by correcting the EFS output parameters and referencing them against 
a fleet average engine model. Here the occurrence of the anomaly at flight 2000 is more readily apparent. 
The corrected residual data is not output directly by the EFS but is shown here to illustrate how such 
processed information can assist in anomaly detection. This is an example of the type of information users 
may choose to include within their individually developed diagnostic solutions. The example solution 
provided in Appendix B provides addition details to assist users with parameter correction and residual 
calculation techniques. Additionally, the routine plot_corrected_data.m, which is located in the 
\Utilities folder, provides an example of parameter correction and plotting for an individual engine. 

3.0 User Provided Diagnostic Solutions 
ProDiMES will enable end users to independently design and evaluate various gas path diagnostic 

methodologies. An example user provided diagnostic solution coded in Matlab is located in the folder 
\ExampleSolution, and further described in Appendix B of this guide. The User Provided 
Diagnostic Solution takes the output file from the EFS and generates an assessment file that can be 
analyzed to determine various metrics. In order to do this, it must correctly parse the EFS output file as 
well as output the assessment file in the specified format. Additionally, since the EFS output file contains 
all data from all of the engines and all of the flights, rules must be followed to ensure that causality of the 
diagnostics are respected. 

 



 

NASA/TM—2010-215840 15 

 
Figure 9.—Example of EFS output parameters (left) and corrected residual data (right) 

 

3.1 Required Output Format 

ProDiMES has been designed to provide users a large degree of flexibility to design individual 
diagnostic methods of their choice. However, there are certain input/output format and design restrictions 
that all methods must adhere to. Obviously, methods must be designed to read, parse, and process the 
simulated engine parameter histories produced by the EFS. Additionally, all diagnostic solutions must 
output diagnostic assessments in a standard format. The defined output format must be followed in order 
to maintain compatibility with the evaluation metrics routine, which will be described in the next section. 
The defined output format is as follows: Given EFS generated parameter histories for a fleet of engines, 
diagnostic solutions are required to produce a diagnostic assessment for each engine, at each flight. The 
diagnostic assessment for the fleet of engines is to be stored in a 2D Matlab matrix (named 
diagnostic_assessment) of dimension #Engines (rows) × #Flights (columns). For engines and 



 

NASA/TM—2010-215840 16 

flights where no fault is found a zero (0) is to be recorded in the matrix. On those engines and flights 
where a fault is diagnosed, the appropriate fault identification number (fault ID), as defined in Table 1, 
shall be recorded in the matrix. A notional example of the diagnostic_assessment matrix is 
shown in Figure 10. This reflects diagnostic assessments for a fleet of three engines over a ten flight 
history. For the first engine, shown in row one, no fault is diagnosed and thus a zero is recorded in each 
column. For the second engine, a fan fault (fault ID of 1) is diagnosed on flights three through ten. The 
third engine’s diagnostic assessment is found to alternate between several assessments. A LPC fault (fault 
ID of 2) is diagnosed on flight six. The diagnosis then reverts back to no-fault (fault ID of 0) on flight 
seven, changes to Nf fault (fault ID of 8) on flight eight, and then LPC fault once again on flights nine 
and ten.  

 
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 2 0 8 2 2

 

Figure 10.—Example diagnostic_assessment matrix 
 
The diagnostic_assessment matrix should be archived to a file named 

DiagnosticAssessments.mat. Users can specify a different filename for storing diagnostic 
assessments if they so choose. However, they should be aware that the metrics evaluation routine, which 
will be described in the next section, must also be modified to recognize the new filename. The example 
diagnostic solution provided in Appendix B illustrates the creation and archiving of the 
diagnostic_assessment matrix. 

3.2 Design Restrictions 

Some additional critical design restrictions that all users must be cognizant of when designing 
diagnostic solutions are the following: 1) all diagnostic solutions must be designed to function relying 
only on the available engine measurement information collected at and prior to the current flight cycle; 
and 2) once a diagnostic assessment is made at a given flight cycle, it cannot be retroactively adjusted 
based upon new knowledge gained from follow-on flights. The justification for these restrictions is to 
ensure that solutions maintain real-world relevance by producing timely diagnostic inferences after each 
flight. Although simulated engine measurement information over all flights will be available to end users, 
it is not permissible to use future flight information to produce diagnostic assessments on the current 
flight as such prophetic knowledge is not available in real-world applications. Furthermore, retroactively 
adjusting an assessment after the fact is problematic as presumably it could have already resulted in an 
unnecessary or incorrect maintenance action.  

4.0 Evaluation Metrics 
In order to enable a side-by-side comparison of candidate diagnostic methods, it is not only necessary 

to apply the methods to a common diagnostic problem, but also to evaluate their respective performance 
against a standard set of evaluation metrics. The ProDiMES software includes a uniform set of metrics 
that will enable solution developers to independently evaluate the performance of their individual 
solutions given the ground-truth fault output information produced by the EFS. This is performed by the 
Matlab routine EvalMetrics.m, which can be found in the \Metrics directory. It will automatically 
evaluate and store metric results in the Microsoft Excel spreadsheet EvalMetrics.xls, which can 
also be found in the \Metrics directory. These metrics are applied and categorized based on fault type, 
fault magnitude, and fault evolution rate (abrupt or rapid). The following subsections will provide a 
description of these metrics, along with operating instructions for evaluating diagnostics solutions against 
these metrics using the provided evaluation routine. 



 

NASA/TM—2010-215840 17 

4.1 Description of Evaluation Metrics 

The ProDiMES software assesses the overall detection and classification performance of candidate 
diagnostic methods through the following metrics: 

 
1. True Positive Rate (number of correct fault detections divided by the number of fault cases) 
2. False Negative Rate (number of incorrect no fault detections divided by the number of fault cases) 
3. False Positive Rate (number of incorrect fault detections divided by the number of no fault cases) 
4. True Negative Rate (number of correct no fault detections divided by the number of no fault cases) 
5. Correct Classification Rate (number of correct classifications of a fault divided by the number of 

cases of that fault) 
6. (Incorrect) Misclassification Rate (number of incorrect classifications of a fault divided by the 

number cases of that fault) 
7. Detection latency 
8. Classification latency 
9. Kappa Coefficient 
 
The detection metrics (1 through 4 in the above list) will be captured within the elements of a Detection 
Decision Matrix, and the classification metrics (5 and 6 in the above list) will be captured within the 
elements of a Classification Confusion Matrix. A further definition of these matrices and the applied 
metrics is provided below: 
 
1. Detection Decision Matrix: A 2×2 matrix that reflects an algorithm’s ability to discriminate between 

fault and no-fault cases. Its main diagonal reflects the number of correct predictions (true positives 
and true negatives) and its off-diagonal elements reflect the number of incorrect predictions (false 
negatives and false positives). The EvalMetrics.m routine generates a normalized detection 
decision matrix by dividing the elements of the matrix by the sum of its rows. This will reflect the 
True Positive Rate and True Negative Rate along the main diagonal, and the False Positive Rate 
and False Negative Rate on the off diagonal as shown in Figure 11. For example, correctly detecting 
999 out of 1000 presented fault cases would result in a 0.999 in the upper left hand corner of the 
detection decision matrix. 

2. Classification Confusion Matrix: Reflects an algorithm’s ability to classify between multiple fault 
types as shown in Figure 12. The confusion matrix, denoted here as C, is a square matrix whose rows 
reflect the true fault condition and whose columns reflect the diagnosed fault condition. The main 
diagonal of the confusion matrix reflects correct classifications for each fault type, and any nonzero 
off-diagonal elements reflect incorrect classifications. As with the detection decision matrix, the 
EvalMetrics.m routine generates a normalized confusion matrix by dividing each element by the 
sum of its corresponding row. This results in the Correct Classification Rate for each fault type 
being displayed along the main diagonal, and fault Misclassification Rate being displayed on off-
diagonal elements.  

3. Detection latency: The average number of flights a fault must persist prior to true positive detection 
by the diagnostic algorithm. 

4. Classification latency: The average number of flights a fault must persist prior to correct fault 
classification by the diagnostic algorithm. 

5. Kappa Coefficient: Provides a measure of an algorithm’s ability to correctly classify a fault, which 
takes into account the expected number of correct classifications occurring by chance. The Kappa 
Coefficient, denoted here as κ, is calculated from the elements of the un-normalized confusion matrix, 
C, as shown in the equation below. The two subscript indices represent the row and column 
corresponding to individual confusion matrix elements.

 

 
 



 

NASA/TM—2010-215840 18 

∑ ∑ ∑

∑∑

∑

= = =

= =

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅=

=

=

−
−

=κ

n

p

n

q

n

q
qp

pq

n

p

n

q
pq

n

p
pp

C
N

C
N

CN

CN

NlN
NN

1 1 1

1 1

1

)total(
)chancebycorrectpectedex(

)total(

)classifiedcorrectly(

where
)chancebycorrectpected(ex)tota(

)chancebycorrectpectedex()classifiedcorrectly(

 

 (2)

 
If a diagnostic method achieves perfect fault classification performance then κ = 1. If its classification 

performance is worse than that expected by chance then κ < 0.  
 
 
 

No FaultFault

No Fault

Fault

Predicted State

True Negative 
Rate

False Positive 
Rate

(false alarms)

False Negative 
Rate

(missed 
detections)

True Positive 
Rate

Tr
ue

 S
ta

te

 
 

Figure 11.—Detection decision matrix 
 
 
 

Fault n

:

Fault 2

Fault 1

Fault n. . . Fault 2Fault 1

C2n. . .C22C21

C1n. . .C12C11

Cn2

:

Cn1

:

Predicted State

Cnn. . .

:. . .Tr
ue

 S
ta

te

 
Figure 12.—Classification confusion matrix 

 



 

NASA/TM—2010-215840 19 

An example portion of the EvalMetrics.xls spreadsheet produced by the ProDiMES metrics 
evaluation routine is shown in Figure 13. (An example of the entire metrics spreadsheet can be found in 
0). The False Alarm Rate, given in number of flights, is automatically calculated within the Excel 
spreadsheet by inverting the False Positive Rate (lower left corner of the Detection Decision Matrix).  

Partitioning of engine flight histories 
Due to the format of the ProDiMES test cases and their associated diagnostic assessments, the 

application of the metrics described above is not a straightforward task. Consideration has to be given to 
the fact that over their operating history engines can experience both nominal and faulty behavior. 
Furthermore, as the diagnostic assessment is able to change from flight-to-flight, there may be flights 
where the assessment is “correct” and other flights where it is “incorrect”. To account for these issues, the 
evaluation metrics routine partitions the flight history of each engine into separate operating regions, or 
“windows,” and each flight within those windows is treated as an individual test case when applying the 
metrics. The applied engine flight history diagnostic window partitioning is shown in Figure 14. Here a 
notional example of the true condition (red dots) and the diagnosed condition (black circles) of a single 
engine over its provided flight history is shown. Any flight where the dot and circle are not concentric 
represents an incorrect assessment. This notional engine experiences a fault on flight K. The flight history 
is divided into the following four windows: 
 
1. Initial window (Flights 1 through 10): The ProDiMES metrics have been defined assuming that all 

engines will be fault-free for the first 10 flights of their flight history. This is done to provide a finite 
number of initial flights to allow solution providers to establish a performance baseline for each 
individual engine if they choose to do so. Consequently, the first 10 flights are excluded from metric 
calculations. If users intend to use the metrics evaluation routine, they should be aware of the no-fault 
assumption for the first 10 flights, and select the flight of fault occurrence accordingly. Furthermore, 
every engine in the provided blind test cases, to be described later, is guaranteed to have no fault 
present for the first 10 flights. 

2. Prefault window (Flights 11 through K–1): No fault is present. Diagnostic assessments are assessed 
for True Negative and False Positive detections. Note: Any engine that experiences a fault initiating 
on flight 11 will transition directly from the initial window to the fault window—it will not have a 
prefault window. 

3. Fault window: This is a finite window of flights at, and immediately after, the flight of fault 
occurrence K. The fault window for abrupt faults is defined to be 10 flights long (flights K through 
K+9). The fault window for rapid faults is defined to be flights K through 5 flights after the flight 
where the fault is fully evolved (flights K through K + fault evolution rate + 5). In other words, the 
rapid fault window will encompass all flights from the flight of fault occurrence through the flight 
were the fault has persisted at its final fault magnitude for 6 flights. The fault window for abrupt and 
rapid faults is illustrated in Figure 15. 

4. Post-fault window: Diagnostic assessments produced on all flights after the “fault window” are 
excluded from metric assessments. This is done to place more emphasis on the early detection and 
classification of faults. 



          

Fa
n

L
PC

H
PC

H
PT

L
PT

V
SV

V
B

V
N

f
N

c
P2

4
Ps

30
T

24
T

30
T

48
W

F3
6

P2
T

2
Pa

m
b

N
o

Fa
ul

t
A

cc
ur

ac
y

D
et

ec
t

L
at

en
cy

C
la

ss
if y

L
at

en
cy

Fa
ul

t
N

o 
Fa

ul
t

D
et

ec
t

L
at

en
cy

Fa
n

0.
50

 0
 0

 0
 0

 0
 0

1E
-0

1
 0

 0
 0

 0
 0

 0
 0

4E
-0

4
 0

 0
0.

36
50

%
2.

8
3.

3
Fa

ul
t

0.
62

2
0.

37
8

2.
4

L
PC

 0
0.

24
 0

 0
 0

 0
4E

-0
2

 0
 0

2E
-0

2
 0

 0
 0

 0
 0

9E
-0

3
 0

 0
0.

70
24

%
4.

7
4.

9
N

o 
Fa

ul
t

5.
8E

-0
5

0.
99

99
4

N
/A

H
PC

 0
 0

0.
71

 0
 0

 0
 0

 0
 0

 0
 0

 0
4E

-0
4

 0
 0

 0
2E

-0
3

 0
0.

29
71

%
2.

3
2.

4
H

PT
4E

-0
4

 0
 0

0.
85

 0
 0

 0
 0

 0
 0

2E
-0

3
 0

 0
2E

-0
3

 0
 0

 0
 0

0.
14

85
%

1.
4

1.
4

L
PT

 0
 0

 0
 0

0.
72

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

2E
-0

2
0.

27
72

%
2.

4
2.

5
V

SV
 0

 0
 0

 0
4E

-0
4

0.
90

 0
 0

8E
-0

3
4E

-0
4

 0
 0

 0
 0

 0
 0

1E
-0

3
 0

0.
09

90
%

0.
9

0.
9

V
B

V
2E

-0
3

2E
-0

2
 0

 0
 0

 0
0.

20
3E

-0
3

 0
1E

-0
2

 0
 0

 0
 0

 0
7E

-0
3

 0
 0

0.
76

20
%

4.
9

4.
9

N
f

2E
-0

3
 0

 0
 0

 0
 0

 0
0.

83
 0

 0
 0

 0
 0

 0
 0

 0
 0

9E
-0

4
0.

16
83

%
1.

2
1.

2
N

c
 0

4E
-0

4
 0

 0
 0

7E
-0

2
 0

4E
-0

4
0.

18
 0

2E
-0

3
1E

-0
3

7E
-0

2
 0

 0
 0

3E
-0

3
 0

0.
67

18
%

4.
2

4.
7

P2
4

 0
7E

-0
3

 0
 0

4E
-0

4
 0

3E
-0

3
4E

-0
4

 0
0.

65
 0

 0
 0

 0
 0

6E
-0

3
 0

 0
0.

33
65

%
2.

6
2.

7
Ps

30
 0

 0
 0

 0
 0

 0
 0

3E
-0

3
 0

 0
0.

50
 0

 0
 0

 0
 0

 0
8E

-0
4

0.
50

50
%

3.
4

3.
5

T
24

 0
 0

 0
 0

 0
 0

 0
1E

-0
3

 0
 0

 0
0.

73
 0

 0
 0

 0
3E

-0
3

 0
0.

26
73

%
1.

8
1.

8
O

nc
e 

pe
r

17
24

1
fli

gh
ts

T
30

 0
 0

 0
 0

 0
 0

 0
8E

-0
4

 0
 0

 0
 0

0.
71

 0
 0

 0
 0

 0
0.

29
71

%
2.

0
2.

0
T

48
2E

-0
3

 0
 0

1E
-0

3
 0

 0
 0

4E
-0

4
 0

 0
 0

 0
 0

0.
79

 0
8E

-0
4

 0
8E

-0
4

0.
21

79
%

1.
6

1.
6

W
F3

6
1E

-0
3

 0
 0

 0
 0

 0
 0

5E
-0

3
 0

 0
 0

 0
 0

 0
0.

75
8E

-0
4

 0
4E

-0
4

0.
24

75
%

1.
8

1.
9

P2
 0

8E
-0

2
 0

 0
 0

 0
 0

1E
-0

3
 0

9E
-0

3
 0

 0
 0

 0
 0

0.
49

4E
-0

4
 0

0.
42

49
%

3.
0

3.
4

T
2

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
3E

-0
3

 0
 0

 0
 0

0.
67

 0
0.

32
67

%
2.

2
2.

3
Pa

m
b

 0
 0

 0
 0

2E
-0

3
 0

 0
2E

-0
2

 0
 0

 0
 0

 0
 0

 0
 0

 0
0.

13
0.

85
13

%
6.

2
6.

4
N

o
Fa

ul
t

 0
 0

7E
-0

6
 0

 0
1E

-0
5

 0
7E

-0
6

 0
 0

2E
-0

5
 0

 0
7E

-0
6

 0
 0

7E
-0

6
 0

0.
99

99
4

99
.9

94
%

N
/A

N
/A

A
br

up
t F

au
lt 

C
as

es
 (a

ll)
C

on
fu

si
on

 M
at

rix
P

re
di

ct
ed

 S
ta

te
D

ec
is

io
n 

M
at

rix
P

re
di

ct
ed

 S
ta

te

True State

True State

0.
73

Fa
ls

e 
A

la
rm

 R
at

e

K
ap

pa
 C

oe
ffi

ci
en

t

 
Fi

gu
re

 1
3.

—
E

xa
m

pl
e 

po
rti

on
 o

f m
et

ric
 re

su
lts

 a
rc

hi
ve

d 
by

 P
ro

D
iM

E
S

. 
 

NASA/TM—2010-215840 20 



 

NASA/TM—2010-215840 21 

En
gi

ne
 F

au
lt 

C
on

di
tio

n

Flight number

= True Condition

= Diagnosed Condition

0
(no fault)

Fault present
on flights ≥ K

False 
positive

detection
False 

negative
detections

True positives &
Correct

classifications

True positive detection
Incorrect classification

2. Pre-fault window: 
Diagnostic assessments 
produced on flights 11 
through K-1 are 
assessed for false 
positive or true negative 
detections

K

1. Initial window: The  
“no fault” condition is 
guaranteed for first 10 
flights. Diagnostic 
assessments produced 
on these flights are 
excluded from metrics.

3. Fault window: Diagnostic 
assessments on this window of 
flights are monitored for true 
positive or false negative 
detections, and correct or 
incorrect classifications  

4. Post-fault window: 
Diagnostic assessments 
produced on all flights after the 
fault window are excluded 
from metric assessments

No fault present on 
flights 1 through K-1

 
Figure 14.—Diagnostic window partitioning of engine flight history. 

 
 

Note that the fault window and post-fault window only apply for those engines that experience a fault. 
For those engines that experience no faults, the prefault window will consist of all flights after flight 10. 

As a further illustration of the application of diagnostic performance metrics, and the partitioning of 
engine flight histories into the defined windows, refer to Figure 16 which shows the true (red dots) and 
the diagnosed condition (black circles) for a single engine over 50 flights. (Note: This single engine 
example is simply given to illustrate flight window partitioning and the resultant metric calculations. 
Obtaining an accurate assessment of a given diagnostic method’s performance will require evaluation 
against a suitably rich database encompassing numerous instances of each fault type). On flight 25 this 
engine experiences an abrupt fan fault (fault ID 1). On flight 27 the fault is correctly detected, but 
incorrectly classified as fault ID 8. On flights 28 through 50 the fault is both correctly detected and 
correctly classified as fault ID 1. This would produce the following flight history windows and metric 
results: 

 
• Initial window: Flights 1 through 10 are excluded from metric calculations 
• Prefault window: Consists of flights 11 through 24. During these 14 flights no false positive 

detections occur. Thus the true negative rate is 14 out of 14 flights (1.0) and the false positive rate is 0 
out of 14 (0.0). 

• Fault window: Consists of flights 25 through 34. During these 10 flights: 
– True positive fault detection occurs 8 out of 10 times (0.8)  
– Correct fault classification occurs 7 out of 10 times (0.7) 
– False negatives occur on 2 of 10 flights (0.2) 
– Misclassification of fault 1 as fault 8 occurs once (0.1) 
– Fault detection latency is 2 flights 
– Fault classification latency is 3 flights 

• Post-fault window: Flights 35 through 50 are excluded from metric calculations. 



 

NASA/TM—2010-215840 22 

The file plot_true_vs_diagnosed_condition.m, located in the \Utilities folder, contains 
the Matlab code used to generate Figure 16. 

 
 

Fa
ul

t M
ag

ni
tu

de

Flight number

0

K

Fa
ul

t M
ag

ni
tu

de

Flight number

0

K

Abrupt Fault “Fault Window”

Rapid Fault “Fault Window”

Fault window: flights K through K + 9

Fault window: flights K through 5 flights after fully evolved

Fault occurs on flight K

Fault initiates on flight K

Fault fully evolved

= Flights in “fault window”

= Other flights

 
Figure 15.—Defined "fault window" for abrupt and rapid faults. 

 
 
 

 

 
Figure 16.—Example: True versus diagnosed engine condition. 

 



 

NASA/TM—2010-215840 23 

When using the supplied metric evaluation routine, users should remain cognizant of the flight 
window partitioning described above, and define test case inputs through the EFS GUI accordingly. For 
example, no faults should be specified to initiate prior to flight 11, all abrupt faults should persist for at 
least 10 flights, and all rapid faults should persist for at least 6 flights. If users specify EFS GUI entries 
that violate any of the metrics compatibility requirements, appropriate warning messages will be 
displayed to notify the user of the incompatibility. For a complete list of the EFS GUI entry requirements 
necessary to maintain compatibility with the metrics evaluation routine users are referred to Table 2.  

Metrics: Fault evolution rate and fault magnitude 
The degree of difficulty in correctly diagnosing a fault not only varies by fault type, but also by fault 

magnitude and fault evolution rate. In general, large abrupt faults will be easier to diagnosis than small 
rapid faults. To account for this, the evaluation metrics are categorized based on the fault evolution rate 
(abrupt or rapid), and fault magnitude (small, medium or large) as defined in Table 4. (Note: Fault 
magnitudes vary over a uniform continuous distribution and can be any value within the defined ranges 
shown in Table 4. There are no discrete steps within the defined fault magnitude distributions). 
Diagnostic performance metrics will be calculated and archived for each of the following eight categories: 
 
1. Abrupt faults (all magnitudes) 
2. Abrupt faults (small) 
3. Abrupt faults (medium) 
4. Abrupt faults (large) 
5. Rapid faults (all magnitudes) 
6. Rapid faults (small) 
7. Rapid faults (medium) 
8. Rapid faults (large) 
 
 
 

TABLE 4.—DEFINED GAS PATH FAULT MAGNITUDES 
Fault 
ID 

Fault 
description 

Fault 
magnitude 

Small Medium Large 

0 No-fault ---------- ---------- ---------- ---------- 
1 Fan fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
2 LPC fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
3 HPC fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
4 HPT fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
5 LPT fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
6 VSV fault 1 to 7% 1 to 3% 3 to 5% 5 to 7% 
7 VBV fault 1 to 19% 1 to 7% 7 to 13% 13 to 19% 
8 Nf sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
9 Nc sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
10 P24 sens. fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
11 Ps30 sens. fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
12 T24 sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
13 T30 sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
14 T48 sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
15 Wf sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
16 P2 sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
17 T2 sensor fault ± 1 to 10 σ 1 to 4σ 4 to 7σ 7 to 10σ 
18 Pamb sens fault ± 1 to 19 σ 1 to 7σ 7 to 13σ 13 to 19σ 

 



 

NASA/TM—2010-215840 24 

4.2 Evaluation Metrics Routine—Operating Instructions 

The evaluation metrics software is located in the directory \Metrics. The steps for using this 
software are as follows: 
 
1. Prior to running the evaluation metrics routine, users are required to generate and place a 

diagnostic_assessment matrix file, and an EFS generated “ground truth” fault information 
file in the \Metrics directory. The evaluation metrics routine is setup to run assuming these two 
files, named Diagnostic_Assessment.mat and EFS_fault_conditions.mat 
respectively, are present in the \Metrics directory. Users can use different file names if they so 
chose, but must edit the evaluation metrics routine, EvalMetrics.m, accordingly. 

2. In Matlab, navigate to the \Metrics directory, and type the command EvalMetrics.  
3. Upon completion the metrics evaluation routine will archive results to the Microsoft Excel 

spreadsheet EvalMetrics.xls.  
 
Note: Each time the EvalMetrics.m routine is run it will check for the existence of 

EvalMetrics.xls within the \Metrics directory. If this file exists users will be asked if they 
would like to overwrite its contents. If a user specifies “Yes,” the contents of EvalMetrics.m will be 
overwritten. Specifying “No” will terminate the routine, giving users the opportunity to archive the 
existing file. A template version of the metrics spreadsheet, EvalMetrics_template.xls, is also 
located in the \Metrics directory. This file contains formatting necessary to interpret metric results. It 
should not be deleted or renamed. 

5.0 Blind Test Cases 
The ProDiMES software is distributed with a set of blind test case data to enable a comparison 

between diagnostic methods developed by multiple participants. The following subsections provide 
additional information regarding blind test data to assist solution providers in developing and submitting 
diagnostic solutions. 

5.1 Blind Test Case Information 

The blind test case data is provided in the file EFS_Output_BlindTest.mat located in the 
\BlindTestCases directory. This data set has the following characteristics: 

 
1. Not every engine will experience a fault. 
2. Only single fault scenarios are included. No individual engine will experience more than one fault 

during its provided time history. 
3. The blind test case data was generated using the EFS although the engines have been randomly re-

ordered so that they are not arranged sequentially according to fault_ID. The EFS GUI inputs 
specified to generate the blind test case data were identical to those previously shown in Figure 8, 
with the exception that the number of occurrences of each of the no fault/fault types is different. The 
remaining GUI inputs are the same. This means that blind test case data will have the following 
characteristics: 
a. Both abrupt and rapid fault types will be included in the test cases. Abrupt faults will appear 

instantaneously, while rapid faults will occur and evolve linearly to a randomly selected fault 
magnitude. The number of flights required for the rapid faults to fully evolve (after fault 
initiation) will be exactly 9 flights. 



 

NASA/TM—2010-215840 25 

b. No fault will be present for the first 10 flights of every engine. This is done to provide an initial 
window of time for establishment of a performance baseline for each individual engine if solution 
providers choose to do so. 

c. If an abrupt fault does occur in an engine, it will be fully evolved for at least 10 flights prior to the 
end of the provided time history. If a rapid fault occurs, it will be fully evolved for at least 6 
flights prior to the end of the provided time history. 

d. 50 flights of data are provided for each engine. Abrupt faults can initiate on any flight between 
flights 11 and 41. Rapid faults can initiate on any flight between flights 11 and 36.  

4. Diagnostic assessments are to be based on the data collected at, and prior to, the current flight. Future 
flight data cannot be utilized to improve the diagnostic assessment on the current flight. Furthermore, 
previously made diagnostic assessments cannot be retroactively adjusted based on new data. 

5.2 Submitting Blind Test Case Results 

Participants should generate their blind test case diagnostic assessments in the appropriate format, as 
previously defined in Section 3.0. These diagnostic assessments should be submitted to Don Simon of the 
NASA Glenn Research Center: 
 

Email: Donald.L.Simon@nasa.gov 
Phone:  216–433–3740 

 
NASA will evaluate provided results against the ground truth fault information using the metrics 
evaluation routine. In an attempt to maintain a level of uniformity in the diagnostic solutions applied, a 
target false positive detection rate (false alarm rate) of once per 1,000 flights is specified. As initial 
feedback, submitters will only be provided their false alarm rate metrics. If a submission fails to meet the 
target false alarm rate of once per 1,000 flights, the submitter will be made aware of this and asked to 
resubmit their results applying less aggressive thresholds. Similarly, those participants whose results have 
a much lower false alarm rate than the target rate will have the opportunity to resubmit results applying 
tighter thresholds. This is done in an attempt to maintain uniformity in the submitted results. Once the 
final collection of blind test case results have been submitted, participants will receive the complete set of 
evaluation metric results for their submission, in addition to the anonymous results of other participants. 

6.0 Future Workshop 

A future workshop will be convened to share solution results and lessons learned from this process. 
The intent is not to formulate this as a competition, but rather as a means for the engine health 
management community to share diagnostic approaches. For additional information, and updates on the 
current schedule and status of this effort, individuals are directed to visit the following website: 
 
www.grc.nasa.gov/WWW/cdtb/software/ehmbenchmark.html 

7.0 Requested Feedback  
Questions, comments, and suggestions for improving ProDiMES are welcomed. This includes the 

reporting of any problems or errors found in the operation of the code. Please refer all questions and 
comments to: 

 
Email: Donald.L.Simon@nasa.gov 
Phone: 216–433–3740 

  

mailto:Donald.L.Simon@nasa.gov�
http://www.grc.nasa.gov/WWW/cdtb/software/ehmbenchmark.html�
mailto:Donald.L.Simon@nasa.gov�


 

  



 

NASA/TM—2010-215840 27 

Appendix A.—ProDiMES Software Parameter List 
This appendix provides a summary of the software parameters used within ProDiMES. This 

information is organized below according to software routines. 
EFS_GUI.m: This is the main EFS GUI function. It reads in user entries specified through the GUI, 

and generates several outputs used in the generation of EFS sensed parameter histories. It is located in the 
\EFS directory. 
 

TABLE A.1.—EFS_GUI.m PARAMETER LIST 
 Parameter name Description 

O
ut

pu
ts

 

engine_condition Specifies the number of occurrences of each no-fault / fault condition (19 element vector). 

fault_evolution_rate 

Specifies fault progression rate:  
0: abrupt. 

> = 1: number of flights (after fault initiation) over which rapid faults evolve. 
–1: Random (produces ~ 50% abrupt and 50% rapid faults). 

fault_initiation_flight > = 1: specifies flight of fault initiation.  
–1: specifies random flight of fault initiation. 

flight_cycles Specifies the number of flight cycles for each engine. 
min_fault_initiation_flight Specifies the earliest flight of fault occurrence (random initiation only). 

min_fault_persist_abrupt Specifies the minimum number of flight cycles an abrupt fault will persist before end of 
recorded flight history (random initiation only). 

min_fault_persist_rapid Specifies the minimum number of flight cycles a rapid fault will persist at its final 
magnitude before end of recorded flight history (random initiation only). 

num_engines Specifies the number of engines in the fleet. 
rapid_fault_evolution_max Specifies maximum rapid fault evolution rate (random initiation only). 
rapid_fault_evolution_min Specifies minimum rapid fault evolution rate (random initiation only). 
sensor_noise Scalar that specifies sensor noise on (1) or off (0). 

 
EFS_FaultParams.m: This subroutine generates fault parameters (fault type and magnitude) for each 

engine in the fleet. It also assigns the ratio of flow capacity to efficiency for component faults. It is 
located in the \EFS directory. 
 

TABLE A.2.—EFS_FaultParams.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 

engine_condition Specifies the number of occurrences of each no-fault / fault condition (19 element vector). 

fault_evolution_rate 

Specifies fault progression rate:  
0: abrupt. 

> =1: number of flights (after fault initiation) over which rapid faults evolve. 
–1: Random (produces ~ 50% abrupt and 50% rapid faults). 

fault_initiation_flight > = 1: specifies flight of fault initiation. 
–1: specifies random flight of fault initiation. 

flight_cycles Specifies the number of flight cycles for each engine. 
min_fault_initiation_flight Specifies the earliest flight of fault occurrence (random initiation only). 

min_fault_persist_abrupt Specifies the minimum number of flight cycles an abrupt fault will persist before end of 
recorded flight history (random initiation only). 

min_fault_persist_rapid Specifies the minimum number of flight cycles a rapid fault will persist at its final 
magnitude before end of recorded flight history (random initiation only). 

num_engines Specifies the number of engines in the fleet. 
rapid_fault_evolution_max Specifies maximum rapid fault evolution rate (random initiation only). 
rapid_fault_evolution_min Specifies minimum rapid fault evolution rate (random initiation only). 

O
ut

pu
ts

 

fault_params 

2D array (dimension #engines × 5) defining engine conditions including: 
1. Fault ID 
2. Flight of fault initiation 
3. Fault evolution rate 
4. Fault magnitude 
5. Ratio of flow capacity to efficiency (used for component faults only) 



 

NASA/TM—2010-215840 28 

EFS_OperatingConditions_Deterioration.m: This subroutine generates random operating 
conditions at takeoff and cruise for each engine in the fleet. It also assigns a random deterioration profile 
for each engine in the fleet. It is located in the \EFS directory. 
 

TABLE A.3.—EFS_OperatingConditions_deterioration.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 num_engines Specifies the number of engines in the fleet. 

flight_cycles Specifies the number of flight cycles for each engine. 

O
ut

pu
ts

 

engine_params  

3D array (number_engines × flight_cycles × 18 outputs). 18 outputs are: 
1. Altitude (takeoff) 
2. Mach (takeoff) 
3. dTamb (takeoff) 
4. NfR (takeoff) 
5. Atlitude (cruise) 
6. Mach (cruise) 
7. dTamb (cruise) 
8. Fn (cruise) 
9-18. 10 health parameters reflecting engine performance deterioration 

 
EFS2CMAPSS_C8.m: Processes EFS specified engine operating points through the C-MAPSS 

Steady-State Model to generate sensed parameter histories. This routine contains the steady-state solver 
used to balance the C-MAPSS Steady-State engine model at each engine operating point. It is located in 
the \EFS directory. 
 

TABLE A.4.—EFS2CMAPSS_C8.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 

Jinv_c_Fn, Jinv_c_Nc, 
Jinv_c_Nf, Jinv_c_T48, 
Jinv_to_Nc, Jinv_to_Nf, 
Jinv_to_T48 

C-MAPSS Steady-State inverse Jacobian matrices used by the steady-state solver. These 
matrices are loaded from the file \JacobiansTrim\Jacobians_CMAPSS.mat. 

fault_params  
2D array of dimension (number_engines × 5 outputs) that defines fleet fault conditions. 
This array is generated by EFS_FaultParams.m and stored in the file 
EFS_fault_conditions.mat. 

engine_params 

3D array of dimension (number_engines × flight_cycles × 18 outputs) that defines fleet 
operating conditions. This array is generated by 
EFS_OperatingConditions_Deterioration.m and stored in the file 
EFS_operating_conditions.mat.  

sensor_noise Scalar that specifies sensor noise on (1) or off (0). This parameter is specified through the 
EFS_GUI and stored in the file EFS_operating_conditions.mat.  

Fn_zro, MN_zro, Nc_zro, 
Nf_zro, P2_zro, P24_zro, 
Ps30_zro, Pamb_zro, 
T2_zro, T24_zro, T30_zro, 
T48_zro, Wf_zro, X_zro, 
alt_zro, dTamb_zro 

Fleet average engine parameter trim values used for initializing C-MAPSS Steady-State 
engine model and specifying sensor fault magnitudes. These parameters are stored in the 
files \JacobiansTrim\FC_cruise.mat (cruise) and 
\JacobiansTrim\FC_takeoff.mat (takeoff). 

O
ut

pu
ts

 

efs_output_c Engine fleet sensed parameter histories generated at cruise (stored to 
EFS_Output.mat). 

efs_output_to Engine fleet sensed parameter histories generated at takeoff (stored to 
EFS_Output.mat). 

 
 

city_pairs.m: This function will randomly select the city pairs each engine will fly between. It is 
called by EFS_OperatingConditions_Deterioration.m, and is located in the \EFS 
directory. 
 



 

NASA/TM—2010-215840 29 

TABLE A.5.—city_pairs.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 

num_engines Specifies the number of engines in the fleet. 

O
ut

pu
ts

 

start_end_city 2D array that defines city pairs (airports) each engine in the fleet will fly between. 

 
calculate_HPs.m: This subroutine calculates and returns a deterioration profile for each engine. 

Deterioration is represented by 10 health parameters that capture efficiency and flow capacity shifts in 
each of the 5 major modules of the engine. It is called by 
EFS_OperatingConditions_Deterioration.m, and is located in the \EFS directory. 
 

TABLE A.6.—calculate_HPs.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 num_engines Specifies the number of engines in the fleet. 

flight_cycles Specifies the number of flight cycles for each engine. 

O
ut

pu
ts

 

hp_array 3D array that defines health parameter deterioration profile for each engine 
(dimension #engines × #flights × 10 health parameters). 

 
cmapss_ss_function_C.mexw32: C-MAPSS steady-state engine model MEX function located in the 

\MexFile directory. 
 

TABLE A.7.—cmapss_ss_function_C.mexw32 PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 

x 
Vector of eight (8) independent variables used to balance steady-state model at 
specified operating conditions. Includes five module operating line points, two state 
variables (fan and core speed), and fuel flow. 

op_cond Three (3) element vector specifying engine environmental operating conditions 
(altitude, dTamb, and Mach). 

hp_vector  Ten (10) element vector specifying engine health parameters. 

bias_vector 
Five (5) element vector used to specify the fault magnitude in variable geometry 
actuators (VBV, VSV) or sensors that schedule variable geometry actuators (T2, T24, 
Nf, Nc). 

Fn_target Scalar specifying target net thrust (used to balance cruise steady-state points) 

O
ut

pu
ts

 

z 
Vector of eight (8) error terms used by the steady-state solver to balance the C-
MAPSS steady-state engine model. Includes five (5) flow errors, two (2) state 
derivatives, and error between actual and target net thrust. 

y Vector of eleven (11) C-MAPSS Steady-State engine model outputs. 

 
 

EvalMetrics.m: Compares user provided diagnostic assessments against ground truth fault 
information to assess performance against defined metrics. This file is located in the \Metrics 
directory. All outputs are archived to the Microsoft Excel spreadsheet EvalMetrics.xls. The 
information is partitioned into two separate worksheets within the Excel file; one representing abrupt fault 
diagnostic metrics, and the second representing rapid fault diagnostic metrics. 
 



 

NASA/TM—2010-215840 30 

TABLE A.8.—EvalMetrics.m PARAMETER LIST 
 Parameter name Description 

In
pu

ts
 

fault_params  

2D array of dimension (number_engines × 5 outputs) which defines ground 
truth fault conditions. Outputs are: 
1. Fault type 
2. Fault initiation flight 
3. Fault evolution window 
4. Fault magnitude 
5. Ratio of flow capacity to efficiency (for component faults only) 

diagnostic_assessment 

2D array of dimension (num_engines × flight_cycles) that contains the 
diagnostic assessment for a given fleet of engine data. This assessment is to 
be generated by the diagnostic solution provided by the user, and stored in 
the file DiagnosticAssessments.mat. 

O
ut

pu
ts

 

confusion_matrix_abrupt 
 confusion_matrix_abrupt_small 
 confusion_matrix_abrupt_medium 
 confusion_matrix_abrupt_large 
confusion_matrix_rapid 
 confusion_matrix_rapid_small 
 confusion_matrix_rapid_medium 
 confusion_matrix_rapid_large 

Classification confusion matrices 

decision_matrix_abrupt 
 decision_matrix_abrupt_small 
 decision_matrix_abrupt_medium 
 decision_matrix_abrupt_large 
decision_matrix_rapid 
 decision_matrix_rapid_small 
 decision_matrix_rapid_medium 
 decision_matrix_rapid_large 

Detection decision matrices 

tp_latency True positive detection latency 
cc_latency Correct classification latency 
KappaCoefficient_abrupt 
 KappaCoefficient_abrupt_small 
 KappaCoefficient_abrupt_medium 
 KappaCoefficient_abrupt_large 
KappaCoefficient_rapid 
 KappaCoefficient_rapid_small 
 KappaCoefficient_rapid_medium 
 KappaCoefficient_rapid_large 

Kappa coefficients 

 
 
Examples of the EvalMetrics.xls worksheets produced by the ProDiMES metrics evaluation routine 

are shown in Figure A.1 (abrupt faults) and Figure A.2 (rapid faults). 



 

NASA/TM—2010-215840 31 

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detection
Latency

Classify
Latency Fault No Fault

Detection
Latency

Fan 0.50  0  0  0  0  0  0 1E-01  0  0  0  0  0  0  0  0  0  0 0.40 50% 2.9 3.3 Fault 0.610 0.390 2.5

LPC  0 0.28  0  0  0  0 3E-02  0  0 2E-02  0  0  0  0  0 2E-02  0  0 0.65 28% 4.6 4.9
No 

Fault
2.7E-05 0.99997 N/A

HPC  0  0 0.72  0  0  0  0 2E-03  0  0  0  0 4E-03  0  0  0  0 7E-04 0.28 72% 2.3 2.3
HPT  0  0  0 0.86  0  0  0  0  0  0 2E-03  0  0  0  0  0  0 9E-04 0.14 86% 1.4 1.4
LPT  0  0  0  0 0.69  0  0  0  0  0  0  0  0  0  0  0  0 9E-03 0.31 69% 2.6 2.6

VSV  0  0  0  0 3E-03 0.89  0  0 2E-02  0  0  0  0  0 9E-04  0 9E-04  0 0.08 89% 0.8 1.0
VBV  0 2E-02  0  0  0  0 0.21 2E-03  0 4E-03  0  0  0  0  0 1E-02  0  0 0.75 21% 5.4 5.4

Nf 7E-04  0  0  0  0  0  0 0.81  0  0  0  0  0  0  0  0  0  0 0.19 81% 1.4 1.4
Nc  0  0  0  0  0 1E-01  0 1E-03 0.18  0  0  0 5E-02  0  0  0 4E-03  0 0.65 18% 4.0 4.7
P24  0 4E-03  0  0  0  0 7E-04 1E-03  0 0.56  0  0  0  0  0 6E-03  0  0 0.43 56% 2.8 2.8

Ps30  0  0  0  0  0  0  0 8E-04  0  0 0.54  0  0  0  0  0  0  0 0.46 54% 3.5 3.5
T24  0  0  0  0  0  0  0  0  0  0  0 0.73  0  0  0  0 2E-03  0 0.26 73% 1.7 1.7 Once per 37564 flights

T30  0  0  0  0  0  0  0 2E-03  0  0  0  0 0.66  0  0  0 1E-03  0 0.34 66% 1.9 2.0
T48 4E-03  0  0 9E-04  0  0  0 2E-03  0  0  0  0  0 0.83  0  0  0  0 0.16 83% 1.6 1.5

WF36 3E-03  0  0  0  0  0  0 2E-03  0  0  0  0  0  0 0.78 6E-04  0 6E-04 0.21 78% 1.6 1.7
P2  0 8E-02  0  0  0  0 6E-04  0  0 7E-03  0  0  0  0  0 0.48 6E-04  0 0.43 48% 3.1 3.4
T2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.66  0 0.34 66% 2.1 2.1

Pamb 2E-03  0  0  0 4E-03  0  0 3E-02  0  0  0  0  0  0  0  0  0 0.11 0.86 11% 6.2 6.4
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detection
Latency

Classify
Latency Fault No Fault

Detection
Latency

Fan 0.23  0  0  0  0  0  0 7E-02  0  0  0  0  0  0  0  0  0  0 0.71 23% 5.4 5.4 Fault 0.312 0.688 4.3

LPC  0 0.02  0  0  0  0  0  0  0 5E-03  0  0  0  0  0 2E-03  0  0 0.97 2% 7.0 6.3
No 

Fault
2.7E-05 0.99997 N/A

HPC  0  0 0.46  0  0  0  0 4E-03  0  0  0  0 1E-02  0  0  0  0  0 0.53 46% 4.3 4.4
HPT  0  0  0 0.70  0  0  0  0  0  0 3E-03  0  0  0  0  0  0  0 0.30 70% 3.0 3.0
LPT  0  0  0  0 0.42  0  0  0  0  0  0  0  0  0  0  0  0 2E-02 0.57 42% 4.7 4.8

VSV  0  0  0  0 8E-03 0.79  0  0 1E-02  0  0  0  0  0  0  0  0  0 0.19 79% 1.9 2.0
VBV  0  0  0  0  0  0 0.00 2E-03  0  0  0  0  0  0  0 9E-03  0  0 0.99 0% 6.5

Nf 2E-03  0  0  0  0  0  0 0.54  0  0  0  0  0  0  0  0  0  0 0.46 54% 3.5 3.5
Nc  0  0  0  0  0  0  0  0 0.00  0  0  0 3E-03  0  0  0  0  0 0.99 0% 7.5 7.0
P24  0 6E-03  0  0  0  0 2E-03 3E-03  0 0.17  0  0  0  0  0 1E-02  0  0 0.81 17% 6.2 6.3
Ps30  0  0  0  0  0  0  0  0  0  0 0.11  0  0  0  0  0  0  0 0.89 11% 7.1 7.1
T24  0  0  0  0  0  0  0  0  0  0  0 0.36  0  0  0  0 5E-03  0 0.63 36% 4.2 4.2
T30  0  0  0  0  0  0  0 2E-03  0  0  0  0 0.24  0  0  0  0  0 0.76 24% 4.9 4.9
T48 5E-03  0  0  0  0  0  0 5E-03  0  0  0  0  0 0.66  0  0  0  0 0.33 66% 3.2 3.1

WF36 1E-02  0  0  0  0  0  0 7E-03  0  0  0  0  0  0 0.49 2E-03  0 2E-03 0.49 49% 3.7 3.9
P2  0 2E-02  0  0  0  0  0  0  0 7E-03  0  0  0  0  0 0.16  0  0 0.82 16% 6.2 6.3
T2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.29  0 0.71 29% 4.5 4.5

Pamb  0  0  0  0  0  0  0 5E-03  0  0  0  0  0  0  0  0  0 0.00 1.00 0% 7.0
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detection
Latency

Classify
Latency Fault No Fault

Detection
Latency

Fan 0.68  0  0  0  0  0  0 8E-02  0  0  0  0  0  0  0  0  0  0 0.25 68% 2.5 2.9 Fault 0.686 0.314 2.5

LPC  0 0.25  0  0  0  0 3E-02  0  0 2E-02  0  0  0  0  0 4E-02  0  0 0.67 25% 5.7 5.9
No 

Fault
2.7E-05 0.99997 N/A

HPC  0  0 0.80  0  0  0  0 2E-03  0  0  0  0  0  0  0  0  0 2E-03 0.19 80% 1.9 2.0
HPT  0  0  0 0.91  0  0  0  0  0  0 3E-03  0  0  0  0  0  0 3E-03 0.08 91% 0.8 0.9
LPT  0  0  0  0 0.78  0  0  0  0  0  0  0  0  0  0  0  0 9E-03 0.22 78% 2.2 2.3

VSV  0  0  0  0  0 0.94  0  0 3E-03  0  0  0  0  0 3E-03  0  0  0 0.06 94% 0.6 0.6
VBV  0 3E-02  0  0  0  0 0.16 2E-03  0  0  0  0  0  0  0 9E-03  0  0 0.80 16% 6.9 7.0

Nf  0  0  0  0  0  0  0 0.91  0  0  0  0  0  0  0  0  0  0 0.09 91% 0.9 0.9
Nc  0  0  0  0  0 4E-02  0 2E-03 0.21  0  0  0 3E-02  0  0  0 1E-02  0 0.71 21% 6.0 6.3
P24  0 5E-03  0  0  0  0  0  0  0 0.78  0  0  0  0  0  0  0  0 0.21 78% 2.1 2.1
Ps30  0  0  0  0  0  0  0  0  0  0 0.63  0  0  0  0  0  0  0 0.37 63% 3.6 3.6
T24  0  0  0  0  0  0  0  0  0  0  0 0.86  0  0  0  0  0  0 0.14 86% 1.4 1.4
T30  0  0  0  0  0  0  0 2E-03  0  0  0  0 0.85  0  0  0 4E-03  0 0.15 85% 1.5 1.5
T48  0  0  0 3E-03  0  0  0  0  0  0  0  0  0 0.90  0  0  0  0 0.10 90% 1.0 1.0

WF36  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.89  0  0  0 0.11 89% 1.1 1.1
P2  0 1E-01  0  0  0  0 2E-03  0  0 1E-02  0  0  0  0  0 0.54 2E-03  0 0.31 54% 3.1 3.5
T2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.81  0 0.19 81% 1.9 1.9

Pamb  0  0  0  0 1E-02  0  0 4E-02  0  0  0  0  0  0  0  0  0 0.07 0.88 7% 6.8 7.7
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detection
Latency

Classify
Latency Fault No Fault

Detection
Latency

Fan 0.71  0  0  0  0  0  0 2E-01  0  0  0  0  0  0  0  0  0  0 0.14 71% 1.4 2.1 Fault 0.850 0.150 1.5

LPC  0 0.55  0  0  0  0 7E-02  0  0 3E-02  0  0  0  0  0 1E-02  0  0 0.34 55% 3.4 4.2
No 

Fault
2.7E-05 0.99997 N/A

HPC  0  0 0.91  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.09 91% 0.9 0.9
HPT  0  0  0 0.98  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.02 98% 0.2 0.2
LPT  0  0  0  0 0.90  0  0  0  0  0  0  0  0  0  0  0  0 3E-03 0.09 90% 0.9 1.0

VSV  0  0  0  0  0 0.95  0  0 3E-02  0  0  0  0  0  0  0 2E-03  0 0.02 95% 0.2 0.5
VBV  0 3E-02  0  0  0  0 0.53 3E-03  0 1E-02  0  0  0  0  0 2E-02  0  0 0.42 53% 4.2 4.3

Nf  0  0  0  0  0  0  0 0.99  0  0  0  0  0  0  0  0  0  0 0.01 99% 0.1 0.1
Nc  0  0  0  0  0 3E-01  0 1E-03 0.33  0  0  0 1E-01  0  0  0 4E-03  0 0.29 33% 2.7 3.3
P24  0  0  0  0  0  0  0  0  0 0.90  0  0  0  0  0 5E-03  0  0 0.10 90% 1.0 1.0
Ps30  0  0  0  0  0  0  0 2E-03  0  0 0.79  0  0  0  0  0  0  0 0.20 79% 2.0 2.1
T24  0  0  0  0  0  0  0  0  0  0  0 0.93  0  0  0  0  0  0 0.07 93% 0.7 0.7
T30  0  0  0  0  0  0  0 2E-03  0  0  0  0 0.92  0  0  0  0  0 0.08 92% 0.8 0.8
T48 6E-03  0  0  0  0  0  0  0  0  0  0  0  0 0.98  0  0  0  0 0.01 98% 0.1 0.2

WF36  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.97  0  0  0 0.03 97% 0.3 0.3
P2  0 1E-01  0  0  0  0  0  0  0 3E-03  0  0  0  0  0 0.75  0  0 0.15 75% 1.5 2.0
T2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.91  0 0.09 91% 0.9 0.9

Pamb 7E-03  0  0  0  0  0  0 4E-02  0  0  0  0  0  0  0  0  0 0.32 0.63 32% 5.7 5.7
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Abrupt Fault Cases (large)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.88

Abrupt Fault Cases (medium)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.79

Abrupt Fault Cases (small)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.46

Abrupt Fault Cases (all)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.73

False Alarm Rate

 
Figure A.1.—Example abrupt fault metric results archived by ProDiMES 



 

NASA/TM—2010-215840 32 

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detect

Latency
Classify
Latency Fault No Fault

Detection
Latency

Fan 0.31  0  0  0 5E-04  0  0 1E-01  0  0  0  0  0  0  0 5E-04  0 5E-04 0.59 31% 7.7 8.7 Fault 0.419 0.581 6.8

LPC  0 0.17  0  0  0  0 2E-02  0  0 8E-03  0  0  0  0  0 4E-03  0  0 0.80 17% 9.6 10.0
No 

Fault 2.7E-05 0.99997 N/A

HPC  0  0 0.50  0  0  0  0  0  0  0  0  0 8E-04  0  0  0 8E-04 4E-04 0.50 50% 6.5 6.6
HPT  0  0  0 0.60  0  0  0  0  0  0  0  0  0 1E-03  0  0  0  0 0.40 60% 5.7 5.7
LPT  0  0  0 6E-04 0.46  0  0 1E-03  0  0 6E-04  0  0  0  0  0  0 1E-02 0.52 46% 7.0 7.2

VSV  0  0  0  0  0 0.69  0  0 8E-03 5E-04  0  0  0  0  0  0 5E-04  0 0.30 69% 4.4 4.5
VBV 9E-04 6E-03  0  0  0  0 0.12 4E-03  0 6E-03  0 5E-04  0  0  0 1E-02  0  0 0.85 12% 9.5 10.0

Nf 3E-03  0  0  0  0  0  0 0.60  0  0  0  0  0  0  0  0  0 5E-04 0.40 60% 5.0 5.1
Nc 4E-04  0  0  0 8E-04 2E-02  0  0 0.13  0  0  0 2E-02  0  0  0 3E-03 8E-04 0.83 13% 9.7 10.0
P24  0 3E-03  0  0  0  0 1E-03  0  0 0.44  0  0  0  0  0 5E-03  0 1E-03 0.55 44% 6.6 6.8
Ps30 4E-03  0  0  0  0  0  0 1E-03  0  0 0.29  0  0  0  0  0  0 5E-04 0.71 29% 8.6 8.7
T24  0  0  0  0  0  0  0 5E-04  0  0  0 0.52  0  0  0  0 4E-03  0 0.48 52% 5.9 6.0
T30  0  0  0  0  0  0  0 5E-04  0  0  0  0 0.48  0  0  0  0 1E-03 0.52 48% 6.6 6.6
T48  0  0  0  0  0  0  0 3E-03  0  0  0  0  0 0.61  0 1E-03  0  0 0.39 61% 5.4 5.4

WF36 9E-04  0  0  0  0  0  0 6E-03  0  0  0  0  0  0 0.56 2E-03  0  0 0.43 56% 5.7 5.8
P2  0 6E-02  0  0  0  0 4E-04 2E-03  0 7E-03  0  0  0  0  0 0.28  0  0 0.64 28% 8.0 8.2
T2  0  0 1E-03  0  0  0  0  0  0  0  0 1E-03  0  0  0  0 0.44  0 0.56 44% 6.8 6.8

Pamb 1E-03  0  0  0  0  0  0 2E-02  0  0  0  0  0  0  0  0  0 0.07 0.91 7% 10.4 10.6
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detect

Latency
Classify
Latency Fault No Fault

Detection
Latency

Fan 0.11  0  0  0  0  0  0 5E-02  0  0  0  0  0  0  0  0  0  0 0.83 11% 10.5 10.7 Fault 0.193 0.807 9.0

LPC  0 0.01  0  0  0  0  0  0  0  0  0  0  0  0  0 6E-03  0  0 0.99 1% 10.0 10.0
No 

Fault 2.7E-05 0.99997 N/A

HPC  0  0 0.22  0  0  0  0  0  0  0  0  0 1E-03  0  0  0 1E-03  0 0.77 22% 9.6 9.7
HPT  0  0  0 0.44  0  0  0  0  0  0  0  0  0 3E-03  0  0  0  0 0.56 44% 7.7 7.8
LPT  0  0  0 2E-03 0.23  0  0 3E-03  0  0 2E-03  0  0  0  0  0  0 2E-02 0.75 23% 9.9 10.3

VSV  0  0  0  0  0 0.55  0  0 8E-03  0  0  0  0  0  0  0 2E-03  0 0.44 55% 6.6 6.6
VBV  0  0  0  0  0  0 0.00  0  0  0  0  0  0  0  0  0  0  0 1.00 0%

Nf  0  0  0  0  0  0  0 0.35  0  0  0  0  0  0  0  0  0  0 0.65 35% 7.5 7.5
Nc  0  0  0  0  0 4E-03  0  0 0.00  0  0  0  0  0  0  0  0  0 0.99 0% 11.5 11.5
P24  0 2E-03  0  0  0  0 2E-03  0  0 0.10  0  0  0  0  0 3E-03  0  0 0.90 10% 10.5 10.7
Ps30  0  0  0  0  0  0  0  0  0  0 0.03  0  0  0  0  0  0  0 0.97 3% 12.1 12.1
T24  0  0  0  0  0  0  0  0  0  0  0 0.24  0  0  0  0 8E-03  0 0.76 24% 9.2 9.3
T30  0  0  0  0  0  0  0 1E-03  0  0  0  0 0.22  0  0  0  0 1E-03 0.78 22% 9.7 9.8
T48  0  0  0  0  0  0  0 2E-03  0  0  0  0  0 0.36  0  0  0  0 0.63 36% 8.3 8.3

WF36  0  0  0  0  0  0  0 1E-02  0  0  0  0  0  0 0.32 5E-03  0  0 0.66 32% 8.3 8.5
P2  0 1E-02  0  0  0  0  0 6E-03  0 2E-03  0  0  0  0  0 0.06  0  0 0.92 6% 11.0 10.9
T2  0  0 4E-03  0  0  0  0  0  0  0  0 1E-03  0  0  0  0 0.17  0 0.83 17% 9.9 9.9

Pamb  0  0  0  0  0  0  0 2E-03  0  0  0  0  0  0  0  0  0 0.00 1.00 0% 13.0
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detect

Latency
Classify
Latency Fault No Fault

Detection
Latency

Fan 0.37  0  0  0 1E-03  0  0 1E-01  0  0  0  0  0  0  0  0  0  0 0.51 37% 7.7 8.9 Fault 0.458 0.542 7.0

LPC  0 0.13  0  0  0  0 3E-02  0  0 1E-02  0  0  0  0  0 4E-03  0  0 0.83 13% 11.0 11.4
No 

Fault 2.7E-05 0.99997 N/A

HPC  0  0 0.55  0  0  0  0  0  0  0  0  0  0  0  0  0 1E-03  0 0.45 55% 6.8 6.8
HPT  0  0  0 0.66  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.34 66% 5.1 5.1
LPT  0  0  0  0 0.55  0  0  0  0  0  0  0  0  0  0  0  0 2E-02 0.43 55% 6.5 6.8

VSV  0  0  0  0  0 0.73  0  0 1E-02 2E-03  0  0  0  0  0  0  0  0 0.25 73% 3.8 4.0
VBV 1E-03 1E-02  0  0  0  0 0.07 4E-03  0 1E-03  0 1E-03  0  0  0 1E-02  0  0 0.89 7% 10.5 11.1

Nf 8E-03  0  0  0  0  0  0 0.66  0  0  0  0  0  0  0  0  0 1E-03 0.33 66% 4.9 5.0
Nc  0  0  0  0  0 1E-02  0  0 0.12  0  0  0 3E-03  0  0  0 1E-03  0 0.86 12% 10.8 11.1
P24  0 6E-03  0  0  0  0 1E-03  0  0 0.51  0  0  0  0  0 8E-03  0 1E-03 0.47 51% 7.1 7.3
Ps30 1E-02  0  0  0  0  0  0 3E-03  0  0 0.34  0  0  0  0  0  0 2E-03 0.64 34% 9.5 9.6
T24  0  0  0  0  0  0  0  0  0  0  0 0.62  0  0  0  0 2E-03  0 0.38 62% 5.7 5.8
T30  0  0  0  0  0  0  0  0  0  0  0  0 0.57  0  0  0  0  0 0.43 57% 6.4 6.4
T48  0  0  0  0  0  0  0 6E-03  0  0  0  0  0 0.65  0 2E-03  0  0 0.34 65% 5.1 5.2

WF36  0  0  0  0  0  0  0 3E-03  0  0  0  0  0  0 0.64  0  0  0 0.35 64% 5.3 5.3
P2  0 8E-02  0  0  0  0  0  0  0 2E-02  0  0  0  0  0 0.32  0  0 0.59 32% 8.9 8.9
T2  0  0  0  0  0  0  0  0  0  0  0 2E-03  0  0  0  0 0.55  0 0.45 55% 6.7 6.7

Pamb  0  0  0  0  0  0  0 8E-03  0  0  0  0  0  0  0  0  0 0.03 0.97 3% 11.3 11.6
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Fan LPC HPC HPT LPT VSV VBV Nf Nc P24 Ps30 T24 T30 T48 WF36 P2 T2 Pamb
No

Fault Accuracy
Detect

Latency
Classify
Latency Fault No Fault

Detection
Latency

Fan 0.46  0  0  0  0  0  0 1E-01  0  0  0  0  0  0  0 2E-03  0 2E-03 0.40 46% 6.0 7.4 Fault 0.610 0.390 5.6

LPC  0 0.36  0  0  0  0 3E-02  0  0 1E-02  0  0  0  0  0 2E-03  0  0 0.59 36% 8.8 9.2
No 

Fault 2.7E-05 0.99997 N/A

HPC  0  0 0.68  0  0  0  0  0  0  0  0  0 1E-03  0  0  0  0 1E-03 0.32 68% 4.7 4.8
HPT  0  0  0 0.75  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.25 75% 3.8 3.8
LPT  0  0  0  0 0.66  0  0  0  0  0  0  0  0  0  0  0  0 9E-03 0.33 66% 4.9 5.0

VSV  0  0  0  0  0 0.80  0  0 3E-03  0  0  0  0  0  0  0  0  0 0.19 80% 2.9 3.0
VBV 1E-03 8E-03  0  0  0  0 0.28 8E-03  0 1E-02  0  0  0  0  0 2E-02  0  0 0.67 28% 9.1 9.6

Nf 2E-03  0  0  0  0  0  0 0.77  0  0  0  0  0  0  0  0  0  0 0.23 77% 3.4 3.4
Nc 1E-03  0  0  0 3E-03 5E-02  0  0 0.27  0  0  0 7E-02  0  0  0 9E-03 3E-03 0.61 27% 8.9 9.0
P24  0 2E-03  0  0  0  0 1E-03  0  0 0.65  0  0  0  0  0 5E-03  0 2E-03 0.34 65% 5.1 5.2
Ps30 2E-03  0  0  0  0  0  0  0  0  0 0.54  0  0  0  0  0  0  0 0.46 54% 6.9 6.9
T24  0  0  0  0  0  0  0 1E-03  0  0  0 0.72  0  0  0  0 2E-03  0 0.28 72% 4.2 4.2
T30  0  0  0  0  0  0  0  0  0  0  0  0 0.70  0  0  0  0 2E-03 0.30 70% 4.5 4.5
T48  0  0  0  0  0  0  0 1E-03  0  0  0  0  0 0.74  0 1E-03  0  0 0.26 74% 3.8 3.9

WF36 3E-03  0  0  0  0  0  0 1E-03  0  0  0  0  0  0 0.74  0  0  0 0.26 74% 3.9 3.9
P2  0 1E-01  0  0  0  0 1E-03  0  0 2E-03  0  0  0  0  0 0.48  0  0 0.41 48% 6.1 6.8
T2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0.68  0 0.32 68% 4.7 4.7

Pamb 3E-03  0  0  0  0  0  0 4E-02  0  0  0  0  0  0  0  0  0 0.18 0.78 18% 10.1 10.4
No

Fault
8E-06  0  0  0  0 8E-06  0  0  0  0  0  0  0  0  0 4E-06  0 8E-06 0.99997 99.997% N/A N/A

Rapid Fault Cases (all)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.56

Rapid Fault Cases (small)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.31

Rapid Fault Cases (medium)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.61

Rapid Fault Cases (large)
Confusion Matrix

Predicted State
Decision Matrix

Predicted State

Tr
ue

 S
ta

te

Tr
ue

 S
ta

te

Kappa Coefficient
0.7

 
Figure A.2.—Example rapid fault metric results archived by ProDiMES 



 

NASA/TM—2010-215840 33 

Appendix B.—Example Diagnostic Solution 
ProDiMES provides a process for developing and benchmarking candidate gas path diagnostic 

methodologies. An example solution has also been included to demonstrate how a user defined diagnostic 
solution would integrate into the process. This Matlab program, ExampleSolution.m, is located in 
the \ExampleSolution directory. This example should not be interpreted as the recommended or 
required approach for solving the problem. It is simply provided as an example solution to illustrate the 
overall diagnostic process and to serve as a template for the development of additional diagnostic 
solutions. The following subsections provide a functional description of the example solution, followed 
by a description of the example solution operating instructions. 

B.1 Example Diagnostic Solution Description 

The example diagnostic solution is partitioned into a four-step process shown in Figure B.1 consisting 
of: (1) parameter correction; (2) trend monitoring; (3) anomaly detection; and (4) event isolation. This 
process is applied to each engine in an EFS generated data set. Each of these steps is further discussed 
below.  

B.1.1 Step 1—Parameter Correction 
As an initial step within the example solution, all engine parameters are corrected to standard day 

operating conditions. This is performed to reduce scatter in the engine outputs in preparation for 
subsequent analysis (Ref. 5). Parameter correction is performed by applying the following parameter 
correction equation 

 corrected
ParameterParameter a b=
θ δ

 (B1)

where the temperature and pressure correction terms, θ and δ respectively, are defined as 

 

( )

( )

2 R
518.67
2 psia
14.696

T

P

°
θ =

δ =

 (B2)

Parameter correction exponents and correction equations for individual parameters are shown in 
Table B1.  

engine
sensed

parameters
y

engine
operating
conditions

fleet
average
engine
model

exponential
moving
average

baseline
engine

parameters
ybaseline

+

-

Δy
difference
calculation

Δyema
detect

threshold
exceeded

?

ΔΔyema

record
no-fault

found, & flight
number

2. Trend Monitoring 3. Anomaly Detection 4. Event Isolation

single
fault

classifier

record
fault type,

& flight
number

yes

no

1. Parameter Correction

parameter
correction

 
Figure B.1.—Example diagnostic solution process 



 

NASA/TM—2010-215840 34 

 
TABLE B.1.—EFS OUTPUT PARAMETER CORRECTION EXPONENTS 

Parameter a b Corrected parameter 

Nf 0.5 0 
θ

=
NfNfR  

Nc 0.5 0 
θ

=
NcNcR  

P24 0 1 
δ

=
2424 PRP  

Ps30 0 1 
δ

=
3030 PsRPs  

T24 1 0 
θ

=
2424 TRT  

T30 0.94 0 94.0
3030

θ
=

TRT  

T48 1 0 
θ

=
4848 TRT  

Wf 0.63 1 
δθ

=
63.0

WfWfR  

 

B.1.2 Step 2—Trend Monitoring 
ProDiMES has been constructed assuming that engine performance changes can manifest themselves 

in two ways: a) gradual (long-term) deterioration, or b) abrupt or rapid (short-term) faults. The former is 
due to all of the engine modules deteriorating slowly over time and is included in an attempt to emulate 
physical causes such as erosion, corrosion, fouling, and increased clearances within the turbomachinery. 
All engines will naturally undergo gradual performance deterioration over their lifetime of use, and this 
should not be diagnosed as a fault. Conversely, an abrupt or rapid performance change is due to a single 
fault occurring within the engine and thus should be diagnosed as a fault. An effective gas path diagnostic 
solution must be able to function with both of these processes occurring and interacting simultaneously, 
and must be able to discriminate between the two cases, without corrupting the overall diagnostic 
approach.  

In the example solution presented herein, a trend monitoring approach is applied to capture gradual 
performance changes in the form of residuals, or measurement deltas, relative to a fleet average engine. 
Although the inclusion of trend monitoring functionality within a user diagnostic solution is not required, 
it is expected to improve overall diagnostic performance, and is thus included as part of this example. The 
trend monitoring approach implemented within the example solution utilizes a three-dimensional table 
lookup model representative of a fleet-average, or 50 percent deteriorated engine. This model was 
generated by running the C-MAPSS Steady-State engine model over a range of altitude, Mach number, 
and corrected fan speed settings while setting module health parameters to represent a 50 percent 
deteriorated engine (based on the deterioration profiles previously shown in Figure 6). Engine output 
parameters produced at each operating point were then used to create the lookup model. (Note: The 
Matlab program used to generate the fleet average table lookup model, CMAPSS_FA_TLM.m, can be 
found in the \ExampleSolution directory. End users can edit this file to generate table lookup 
models at other operating points or deterioration levels if they so desire. The table lookup model is stored 
in the file CMAPSS_FA_TLM.mat, also located in the \ExampleSolution directory). For an 
individual engine corrected data collected during each flight are then referenced against the fleet average 
engine model to calculate measurement deltas, Δyi’s, as: 

 ( ) ( ) ( )kykyky iii baseline_−=Δ  (B3)

where yi(k) is the corrected value of the ith measurement collected during the kth flight, and yi_baseline(k) is 
the fleet average engine value for the ith measurement at the corresponding pressure altitude, Mach 



 

NASA/TM—2010-215840 35 

number, and corrected fan speed values of the kth flight. (Note: pressure altitude is the altitude 
corresponding to Pamb as defined within Standard Atmosphere tables. Pressure altitude and Mach 
number can be calculated from Pamb and P2 as shown in the example solution source code). A yi(k) value 
is only calculated for seven of the 11 measurements available. The parameters Nf, Pamb, P2, and T2 are 
used for establishing the engine operating point and parameter correction purposes and are thus excluded 
from the yi(k) calculations. The calculated measurement delta values are trended over time by applying an 
exponential moving average approach as described in (Ref. 6) and given as 

 ( ) ( ) ( ) ( )kykyky iemaiemai Δ⋅α−+−Δ⋅α=Δ 11__  (B4)

where ( )ky emai _Δ  is the exponential moving average of the ith measurement delta on flight k. The moving 
average weighting between previous and current data is established by the constant α (where 0 < α < 1). 
In the example solution α was chosen to be 0.8844. 

B.1.3 Step 3—Anomaly Detection 
The previous subsection presented an example approach for monitoring gradual engine performance 

measurement deltas over time. Next, anomaly detection logic is applied to detect discrete events causing a 
rapid shift in observed measurement deltas and to extract the corresponding measurement delta signature 
of those events. It is important to recognize that it would be prudent to incorporate a time latency inherent 
in the detection process to avoid false alarms caused by statistical outliers in the measurement data. The 
approach applied herein for anomaly detection uses a backwards difference calculation of the exponential 
moving average (EMA) of each measurement delta shown as 

 ( ) ( ) ( )β−Δ−Δ=ΔΔ kykyky emaiemaiemai ___  (B5)

where ( )ky emai _ΔΔ , or the measurement delta-delta, is the change in the EMA of the ith measurement 
delta between flight k and some previous flight, k – β. Choosing a β = 10 flight cycle distance between the 
compared EMA values was found to provide detection capability for both abrupt as well as rapid faults. It 
is anticipated that improved detection robustness for abrupt as well as rapid faults could be obtained by 
combining multiple detection filters that apply different β distances within the measurement delta-delta 
calculations. Anomaly detection logic is applied that monitors for ( )ky emai _ΔΔ  exceeding a specified 

threshold. Based upon trial an error, anomaly detection thresholds of ±1.31 σ were applied to each 
measurement delta-delta EMA. (Note: Here, σ refers to analytically calculated measurement delta 
standard deviation values. The Matlab program used to analytically calculate these σ values, 
delta_y_covariance.m, can be found in the \ExampleSolution directory). If an anomaly is 
detected, the example diagnostic solution logic proceeds to event isolation, which is discussed below.  

B.1.4 Step 4—Event Isolation 
The final step in the diagnostic process is event isolation, or classifying the root cause for any 

detected anomalies. Numerous approaches towards aircraft gas turbine engine fault classification can be 
found in the literature. The example diagnostic solution distributed with the ProDiMES software applies a 
backwards difference calculation to extract the measurement signature of the detected anomaly, and then 
assigns a fault classification through a simple random guess. The backwards difference calculation 
produces residuals between the EMA measurement deltas collected on subsequent flights and the EMA 
measurement deltas on the flight of initial anomaly detection, kanomaly. This difference calculation is 
computed as 

 ( ) ( ) ( )anomaly__anomaly__ kykyky emaiemaiemai Δ−Δ=ΔΔ  (B6)



 

NASA/TM—2010-215840 36 

The measurement delta-deltas, ( )ky emai anomaly__ΔΔ , produced by (B6) can be directly used by many 
fault classification approaches. Through Equation (B6) an anomaly signature vector in the measurement 
delta-delta space due to the underlying fault event can be obtained as: 

 ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ

ΔΔ
ΔΔ

=ΔΔ

)(

)(
)(

anomaly__

anomaly__2

anomaly__1

ky

ky
ky

kY

emam

ema

ema

M
 (B7)

where m is the number of measurement deltas. Once the anomaly signature vector, ΔΔY(k), is obtained, 
the classification problem becomes one of selecting the fault type most likely to be the cause of the 
observed anomaly vector. This is often performed through least squares estimation techniques and the 
application of a fault influence coefficient matrix that relates engine fault types to observed changes in 
engine outputs. The (m × n) fault influence matrix is denoted as H, where m = number of measurements, 
and n = number of single fault types. Assuming x(k) is an n×1 vector representing the magnitudes of the n 
single fault types under consideration, the interrelationship between faults to measurement delta-delta 
changes can be written as: 

 ( ) ( )Y k Hx kΔΔ =  (B8)

Generally speaking the equation shown in (B8) presents an underdetermined estimation problem as there 
are more unknowns (i.e., fault types) than available measurements. However, applying the single fault 
assumption, the problem becomes tractable and reduces to one of choosing the fault type most likely for 
producing the observed signature. A fault influence coefficient matrix can be generated by running the  
C-MAPSS Steady-State engine model to a fixed closed-loop operating condition (specified by altitude, 
Mach, ΔTamb, corrected Nf, and deterioration level) and individually introducing each of the 18 fault 
types. The elements of the matrix consist of the partial derivatives relating the change in corrected 
measured engine outputs (fault condition vs. nominal condition) to the magnitude of the implanted fault. 
Users are referred to the Matlab routine CMAPSS_IC_generation.m, located in the 
\ExampleSolution directory, which contains code for generating fault influence coefficient matrices 
at takeoff and cruise operating points for a 50 percent deteriorated engine.  

As previously mentioned, the example diagnostic solution applies a random guess to classify, or 
isolate, the fault type. As such it is expected to exhibit relatively poor overall classification performance. 
However, this routine does provide a template to illustrate how diagnostic assessments are to be generated 
for each engine each flight, and then archived within the diagnostic_assessment matrix. 

B.2 Example Diagnostic Solution Operating Instructions 

In order to run the example solution, users must navigate to the \ExampleSolution directory, 
and type the command ExampleSolution. Upon execution, the example solution routine will load a 
previously generated EFS parameter history stored in the file named EFS_Output.mat. ProDiMES 
comes with a pregenerated EFS_Output.mat file stored in the \ExampleSolution directory. If 
users wish to evaluate different EFS output files with the example solution they will be required to copy 
and paste a different EFS_Output.mat file into the \ExampleSolution directory. 

Upon completion, the example solution archives a diagnostic assessment produced for each engine, 
each flight, to the file DiagnosticAssessments.mat. This diagnostic assessment is stored in the 
standard format as previously described in Section 3.0 of this guide. 



 

NASA/TM—2010-215840 37 

B.3 Example Diagnostic Solution—Software Parameter List 

The software parameters used within ExampleSolution.m are listed in the table below. 
 

TABLE B.2.—EXAMPLESOLUTION.M PARAMETER LIST 

 Parameter name Description 

In
pu

ts
 

efs_output_c, efs_output_to EFS generated sensed parameter histories loaded from EFS_Output.mat. 
FA_TLM_grid4_c, FA_TLM_grid4_to, 
Mach_grid4_c, Mach_grid4_to, 
NfR_grid4_c, NfR_grid4_to, alt_grid4_c, 
alt_grid4_to, sensor_grid4_c, 
sensor_grid4_to 

Fleet average table lookup model matrices loaded from the file CMAPSS_FA_TLM.mat. 
(Note: the program used to generate the fleet average engine model is 
CMAPSS_FA_TLM.m). 

Fn_zro, MN_zro, Nc_zro, Nf_zro, 
P2_zro, P24_zro, Ps30_zro, Pamb_zro, 
T2_zro, T24_zro, T30_zro, T48_zro, 
Wf_zro, X_zro, alt_zro, dTamb_zro 

Fleet average engine parameter trim values used for approximating average cruise and 
takeoff sensor measurement noise. These parameters are loaded from the files 
\JacobiansTrim\FC_cruise.mat (cruise) and 
\JacobiansTrim\FC_takeoff.mat (takeoff). 

H_c, H_to Fault influence coefficient matrices loaded from the file CMAPSS_IC_matrix.mat. 
(Note: See CMAPSS_IC_generation.m) 

R_c, R_to 
Delta measurement covariance matrices loaded from delta_y_covariance.mat. 
(Note: The R_c and R_to matrices are generated by the routine 
delta_y_covariance.m). 

O
ut

pu
ts

 

diagnostic_assessment Matrix of diagnostic assessments for each engine, each flight stored to 
DiagnosticAssessments.mat. 

In
te

rn
al

 p
ar

am
et

er
s 

R Delta measurement covariance matrix (takeoff and cruise concatenated). 
Mach_interp_c, Mach_interp_to, 
NfR_interp_c, NfR_interp_to, 
alt_interp_c, alt_interp_to, 
sensors_interp_c, sensors_interp_to 

Input matrices to fleet average table lookup model. 

H Fault influence coefficient matrix. 
Mach_hat_c, Mach_hat_to Estimated Mach number. 
Nc_sigma, Nf_sigma, P2_sigma, 
P24_sigma, Pamb_sigma, Ps30_sigma, 
T2_sigma, T24_sigma, T30_sigma, 
T48_sigma, Wf_sigma 

Sensor measurement noise standard deviations. 

NormFactor_c, NormFactor_to Measurement normalization vectors. 
alt_hat_c, alt_hat_to Estimated pressure altitudes. 
anomaly_flag Flag set if an engine anomaly is detected. 
delta, theta pressure and temperature correction factors. 
delta_y_corrected_c, 
delta_y_corrected_to Corrected delta measurements. 

ndyc Normalized corrected delta y measurements (takeoff and cruise). 
ndyc_ema10 Exponential moving avg. of normalized corrected delta measurements. 

ndyc_ema10_old Exponential moving average of normalized corrected delta measurements, preanomaly 
detect values. 

ndyc_gradient Exponential moving average normalized corrected delta-delta measurements (referenced 
against values 10 flight prior). 

ndyc_gradientanomaly Exponential moving average normalized corrected delta-delta measurements (referenced 
against prefault values). 

normalized_delta_y_corrected_c, 
normalized_delta_y_corrected_to Normalized corrected delta measurements (entire fleet). 

num_engines Number of engines in the fleet. 
num_flight_cycles Number of flight cycles each engine experiences. 
sigma_c, sigma_to, sigma_norm_c, 
sigma_norm_to Measurement noise standard deviation vectors. 

y_corrected_c, y_corrected_to Sensed parameter history corrected measurements (cruise and takeoff). 
 

  



 

NASA/TM—2010-215840 38 

References 
1. Jaw, L.C., (2005), “Recent Advances in Aircraft Engine Health Management (EHM) Technologies 

and Recommendations for the Next Step,” ASME Paper GT2005-68625. 
2. Simon, D.L, Bird, J., Davison, C., Volponi, A., Iverson, R.E., (2008), “Benchmarking Gas Path 

Diagnostic Methods: A Public Approach,” NASA/TM-2008-215271, ASME GT2008-51360, ASME 
Turbo Expo 2008, Berlin, Germany. 

3. Frederick, D.K., DeCastro, J.A., Litt, J.S., (2007), “User’s Guide for the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS),” NASA Technical Memorandum TM-2007-215026. 

4. Sallee, G.P., (1978) “Performance Deterioration Based on Existing (Historical) Data – JT9D Jet 
Engine Diagnostics Program,” NASA Contractor Report CR-135448, United Technologies 
Corporation, Pratt & Whitney Aircraft Group Report PWA-5512-21. 

5. Volponi, A.J., (1999), “Gas Turbine Parameter Corrections,” Journal of Engineering for Gas Turbines 
and Power, Vol. 121, pp. 613–621. 

6. DePold, H.R., Gass, F.D., (1999), “The Application of Expert Systems and Neural Networks to Gas 
Turbine Prognostics and Diagnostics,” Journal of Engineering for Gas Turbines and Power, Vol. 121, 
pp. 607–612. 

 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
01-01-2010 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User’s Guide 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Simon, Donald, L. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS 645846.02.07.03.03.01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION
    REPORT NUMBER 
E-17100 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 

10. SPONSORING/MONITOR'S
      ACRONYM(S) 
NASA 

11. SPONSORING/MONITORING
      REPORT NUMBER 
NASA/TM-2010-215840 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Category: 07 
Available electronically at http://gltrs.grc.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This report is a User’s Guide for the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES). ProDiMES is a standard 
benchmarking problem and a set of evaluation metrics to enable the comparison of candidate aircraft engine gas path diagnostic methods. 
This Matlab (The Mathworks, Inc.) based software tool enables users to independently develop and evaluate diagnostic methods. 
Additionally, a set of blind test case data is also distributed as part of the software. This will enable the side-by-side comparison of 
diagnostic approaches developed by multiple users. The Users’ Guide describes the various components of ProDiMES, and provides 
instructions for the installation and operation of the tool. 
15. SUBJECT TERMS 
Aircraft engines; Systems health monitoring; Gas turbine engines; Flight safety 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
      ABSTRACT 
 
UU 

18. NUMBER
      OF 
      PAGES 

44 

19a. NAME OF RESPONSIBLE PERSON 
STI Help Desk (email:help@sti.nasa.gov) 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
443-757-5802 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18






	1.0 Introduction to ProDiMES
	1.1 Overview
	1.2 Version Note and Software Requirements
	1.3 Installation Instructions
	1.3.1 Mex File Generation Steps


	2.0 EFS Description and Operating Instructions
	2.1 Engine Fleet Simulator Functional Description
	2.1.1 EFS Graphical User Interface
	2.1.2 EFS Case Generator

	2.2 EFS Operating Instructions and Output Files
	2.2.3 EFS Operating Instructions


	3.0 User Provided Diagnostic Solutions
	3.1 Required Output Format
	3.2 Design Restrictions

	4.0 Evaluation Metrics
	4.1 Description of Evaluation Metrics
	4.2 Evaluation Metrics Routine—Operating Instructions

	5.0 Blind Test Cases
	5.1 Blind Test Case Information
	5.2 Submitting Blind Test Case Results

	6.0 Future Workshop
	7.0 Requested Feedback 
	Appendix A .—ProDiMES Software Parameter List
	Appendix B .—Example Diagnostic Solution
	B.1 Example Diagnostic Solution Description
	B.1.1 Step 1—Parameter Correction
	B.1.2 Step 2—Trend Monitoring
	B.1.3 Step 3—Anomaly Detection
	B.1.4 Step 4—Event Isolation

	B.2 Example Diagnostic Solution Operating Instructions
	B.3 Example Diagnostic Solution—Software Parameter List

	References
	Word Bookmarks
	purpose
	OLE_LINK12
	OLE_LINK13
	OLE_LINK14
	OLE_LINK15




