National Aeronautics and Space Administration

COMPARISON of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case

PEDAS1-0021-10

R. L. Kelley (Jacobs ESCG), N. M. Hill (MEI Technologies ESCG), W. C. Rochelle (Jacobs ESCG), ESCG), N. L. Johnson (NASA JSC), T. Lips (HTG)

> 38th COSPAR Scientific Assembly July 18-25, 2010 Bremen Germany

ORSAT SCARAB Description

• NASA ORSAT

- "Object-oriented" model
 - Reentering spacecraft are modeled as a set of simplified geometric shapes
 - Spheres
 · Cylinders
 - Boxes
- Flat Plates
- 3 degrees-of-freedom equations of motion
 - Stable attitude
 - No assumed lift
- Aerodynamic and aerothermodynamic models based on shape, motion and Knudsen number dependant functions for drag and heating
- Thermal analysis with a 1-D heat conduction model
- Assumed break-up altitude of 78 km

ESA SCARAB

- "Spacecraft-oriented" model
 - Reentering spacecraft modeled as close to real geometry as possible using triangular panelized surfaces
- 6 degrees-of-freedom equations of motion
 - Integration of attitude motion
- Aerodynamic and aerothermodynamic models based on local panel methods

- Thermal analysis with 2-D heat conduction model
- Break-up model based on stress and structural integrity checks

Previous Comparisons

- Comparison of 1 meter diameter spheres
 - Materials consisted of Titanium, Aluminum, and Iron
- Results were in good agreement

• 2002-2003 ROSAT

- Compared results for a complete, real spacecraft (~2400 kg mass)
 - Assumed uncontrolled, naturally decaying reentry
- Showed significant difference in predicting surviving debris casualty area (DCA)
 - ORSAT DCA = 13.62 m^2 SCARAB DCA = 31.78m^2
- Differences attributed to:
 - Different material properties
 - Different fragmentation processes
 - Differences in the simulation and assumptions of attitude dynamics

• 2004 - 2005 4th European Conference on Space Debris

- Test Matrix of simple Geometries
 - Spheres
 Cylinders (L/D: 2 and 5)
 Boxes (L/W: 2 and 5)
- 4 Materials; Aluminum, Titanium, and 2 types of Graphite Epoxy
- Results were in good agreement
 - Deviation for surviving mass < 0.2%

Test Sat Design

- Joint Development between ORSAT Team at JSC and the SCARAB Team at HTG
 - 35 unique objects representing simplified models of typical satellite components
 - Approximately 400 kg mass
 - ORSAT 391.641 kg
 SCARAB 401.531 kg
 - Difference +9.89 kg (+2.53% w.r.t. ORSAT mass)
 - Differences result from 3 primary effects
 - > SCARAB requires all connection elements to be modeled
 - Material densities are slightly different
 - Masses in SCARAB are calculated based on the mass of the triangular panels each object is comprised of
 - Initial trajectory conditions
 - Altitude 122 km Velocity 7.41 km/s
 - Inclination 52°
 Flight Path Angle -0.1°
 - Environmental Conditions
 - Zonal Harmonics up to J4
 - Earth Flattening
 - \succ Eccentricity of Earth = 0.08182
 - U.S. Standard 1976 Atmosphere

Early generic satellite concept sketch by ORSAT Team

SCARAB model for generic satellite

Modeling Results

• ORSAT

- 21 Surviving components representing a mass of 47.22 kg (12.1%) DCA = 15.377 m^2
 - Debris footprint begins at 678 km (LH2 Tank) and ends at 849 km (Command Box)
 - Footprint Length = 171 km

• SCARAB

- 6 Surviving components representing a mass of 40.91 kg (10.19%) DCA = 4.428 m^2
 - Debris footprint begins at 744.53 km (LH2 Tank) and ends at 1013.1 km (Battery Box Contents)
 - Footprint Length = 268.7 km

• Differences

- Compared to SCARAB, ORSAT Predicts:
 - 15 more surviving objects 6.31 kg more surviving mass
 - A DCA 10.949 m² higher
 A Footprint 97.57 km shorter beginning 66.53 km sooner
- Surviving fragments can be divided into 3 areas for study
 - 1. Objects which survive in both codes
 - There are five of these objects; LH2 Tank and (4) RWA Flywheels
 - 2. Objects which only survive in one code
 - Command box survives only in ORSAT
 - 3. Objects which survive differently
 - The Battery Cells and Battery Box Frames survive in both codes, but in different ways

Objects Surviving in <u>Both Codes</u>

	ORSAT			SCARAB		
Object	Surviving Mass (kg)	DCA (m²)	Downrange (km)	Surviving Mass (kg)	DCA (m²)	Downrange (km)
LH2 Tank	10.000	1.088	678	9.958	1.088	744.53

LH2 Tank

- 0.5 m titanium spherical tank
- Only significant difference is the downrange distance
 - ORSAT components decelerate faster due to kinetic energies which result from lower mass (e.g. modeling only tank, not including brackets)
 - > Tank represents heel (shortest downrange distance) of debris footprint for both codes

Objects Surviving in <u>Both Codes</u>

	ORSAT			SCARAB		
Object	Surviving Mass (kg)	DCA (m²)	Downrange (km)	Surviving Mass (kg)	DCA (m²)	Downrange (km)
Flywheel 1	3.136	0.750	703	3.313	0.584	799.28
Flywheel 2	3.136	0.750	703	3.313	0.584	767.16
Flywheel 3	3.136	0.750	703	3.313	0.584	773.79
Flywheel 4	3.136	0.750	703	3.313	0.584	791.28

- Reaction Wheel Assembly Flywheel
 - 0.3 m diameter X 0.01 m thick titanium disk
 - Flywheels illustrate a diversion in modeling approach
 - ORSAT's "object oriented" method for modeling the components treats duplicate components such that the flywheels experience identical reentry scenarios
 - SCARAB "S/C oriented" approach models the trajectory and ablation of flywheels individually as they break apart from the parent object at different times
 - DCA difference is a result of differing method for determining area
 - ORSAT uses maximum cross section for disks
 - SCARAB uses mean cross section
 - Downrange distance variance is a result of differing masses as SCARAB predicts the shaft to remain attached and ORSAT does not

- ORSAT predicts the command box to survive
 - Impacts with a mass of 3.89 kg (15.6% of original mass) and a DCA of 0.691 m²
- Differences between ORSAT and SCARAB fragmentation modeling make the source of the prediction difference difficult to identify
 - ORSAT begins modeling reentry of the command box at 78 km break-up of parent S/C
 - SCARAB has a more complex fragmentation history (below):

 In addition, the ORSAT analysis also shows that > 96% of the total energy required for this object to demise is absorbed, and that it will be predicted to demise if the oxidation heating efficiency is increased

- Objects which survive differently
 - The battery box and its fragments partially survive in both codes
 - ORSAT assumes the inner frames of the battery box and the battery cells to be separate fragments of the battery box
 - > Once the outer box demises, these are assumed reenter individually
 - The SCARAB analysis assumes the battery box, inner frame, and battery cells are strongly attached
 - > As portions of the battery box assembly demise, the rest remain connected
 - ORSAT predicts the survival of 3 aluminum frame pieces and 12 nickel batteries
 - Total DCA = 2.798 m^2 and mass of 9.37 kg for aluminum frame pieces
 - Total DCA = 7.8 m^2 and mass of 11.4 kg for battery cells
 - SCARAB predicts 1 surviving component
 - DCA = 1.002 m² and mass 17.697 kg
 - > Of this mass 11.616 kg are Nickel and 6.081 kg are aluminum

• Objects which survive differently (cont.)

- The differences in the battery box survival reveal both striking variances and similarities between the results of the two codes
 - The ORSAT assumption that all of the objects impact separately results in a much higher DCA due the large number of objects impacting
 - In both codes DCA values include an added area to account for the proximity of a standing person for each individual object
 - If the total mass of each material which impacts the ground is compared the results are quite similar
 - For the inner frames and battery cells, ORSAT predicts:
 - □ 11.4 kg of nickel survives compared to 11.616 kg for SCARAB
 - □ 9.37kg of aluminum survives compared to 6.081 kg for SCARAB
 - If the surviving mass of aluminum and nickel in ORSAT are combined into a box shaped fragments with a volume equal to the inner dimension of the parent battery box the following would result
 - > 1 Fragment with an impacting mass of 20.77 kg and a DCA of 1.254 m²
 - > This is in much better agreement with the SCARAB value

• Looking back at the final results

		ORSAT	SCARAB		
	Reported Values	Assuming Battery Box Remains Intact	lgnoring Command Box	Reported Values	Using Maximum Area
Surviving Mass (kg)	47.220	47.220	43.330	40.91	40.91
DCA (m²)	15.377	6.033	5.342	4.428	5.226

- By adjusting some of the methods and assumptions in each code the comparison becomes more clear and results begin to converge
 - Adjust ORSAT results to account for the fused battery cell and inner frame as in SCARAB
 - Reduces ORSAT DCA by 9.344 m²
 - Adjust SCARAB cross-sectional area calculation to match those in ORSAT
 - Use maximum area for RWA Flywheels
 - ➢ Use 0.5*((L*D)+(L*H)) for Battery Box contents
 - Increases DCA by 0.797
 - The end result is that the DCA's between the codes differ by 0.116 m² (2.12% w.r.t. ORSAT) when considering only objects surviving in both codes
 - > Difference is 0.807 m² (13.37%) when the command box is included

Conclusions

- Careful examination reveals that ORSAT and SCARAB arrive at very similar results
 - Of 33 unique objects modeled both codes strongly agree on 31 of those
 - Predict 29 to demise in a similar fashion
 - Predict 2 (LH2 tank, RWA flywheels) to demise in much the same way
 - Only 2 objects (as modeled in SCARAB) show significant variance
 - For the command box ORSAT's prediction of a high demise factor were very close to the results predicted by SCARAB, and may have demised in ORSAT after evaluating the oxidation effects
- The large difference in the debris casualty area which resulted form the battery box contents (1 item in SCARAB, 3 unique items in ORSAT) are not an effect of the differing methods employed to model the reentry physics, but are instead a difference in safety philosophy associated with geometric description of components
- It is not possible to deem either method as "correct" or better
 - Either scenario is equally plausable