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1. INTRODUCTION 

 One of the most challenging weather forecast 
problems in the southeastern U.S. is daily summertime 
pulse convection.  During the summer, atmospheric 
flow and forcing are generally weak in this region; thus, 
convection typically initiates in response to local forcing 
along sea/lake breezes, and other discontinuities often 
related to horizontal gradients in surface heating rates.  
Numerical simulations of pulse convection usually have 
low skill, even in local predictions at high resolution, due 
to the inherent chaotic nature of these precipitation 
systems.  Forecast errors can arise from assumptions 
within physics parameterizations, model resolution 
limitations, as well as uncertainties in both the initial 
state of the atmosphere and land surface variables 
such as soil moisture and temperature.  For this study, 
it is hypothesized that high-resolution, consistent 
representations of surface properties such as soil 
moisture, soil temperature, and sea surface 
temperature (SST) are necessary to better simulate the 
interactions between the surface and atmosphere, and 
ultimately improve predictions of local circulations and 
summertime pulse convection.  

The Short-term Prediction Research and Transition 
(SPoRT) Center has been conducting studies to 
examine the impacts of high-resolution land surface 
initialization data generated by offline simulations of the 
NASA Land Information System (LIS; Kumar et al. 
2006, 2007) on subsequent numerical forecasts using 
the Weather Research and Forecasting (WRF) model 
(Case et al. 2008b).  The NASA LIS is a high 
performance land surface modeling and data 
assimilation system that integrates satellite-derived 
datasets, ground-based observations and model 
reanalyses to force a variety of land surface models 
(LSMs).  By using scalable, high-performance 
computing and data management technologies, LIS can 
run LSMs offline globally with a grid spacing as fine as 1 
km to characterize land surface states and fluxes.  
Case et al. (2008b) presented improvements to 
simulated sea breezes and surface verification statistics 
over Florida by initializing the WRF model with land 
surface variables from an offline LIS spin-up run, 
conducted on the same WRF domain and resolution.  In 
addition, Case et al. (2008c) demonstrated the ability to 
use both LIS land surface fields and high-resolution 
SSTs to initialize the surface and sub-surface variables 
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over a coastal domain, thereby providing a high-
resolution lower boundary initial condition over the 
entire modeling domain.   

The SPoRT Center has also developed high-
resolution SST composites derived from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
instruments aboard the NASA Aqua and Terra polar-
orbiting satellites (Haines et al. 2007).  The SPoRT 
Center has demonstrated the exquisite detail that can 
be depicted by these four-times-per-day composites 
compared to the once daily operational Real-Time 
Global (RTG) product used by the National Centers for 
Environmental Prediction (NCEP) models, which has a 
substantial impact on horizontal gradients in modeled 
sensible and latent heat fluxes over water bodies 
(LaCasse et al. 2008; Case et al. 2008a).  They have 
also examined the sensitivity of WRF model simulations 
over oceanic regions to the high-resolution information, 
depicting the modifications to the nocturnal marine 
boundary layer under certain flow regimes over Florida.  
For example, LaCasse et al. (2008) depicted decreased 
static stability near the Florida East Coast under 
easterly flow regimes, and favored zones of low-level 
convergence near the coast under easterly flow and 
over the Gulf Stream under westerly flow.  These model 
sensitivities to SSTs can have important implications to 
operations by providing modeled Planetary Boundary 
Layer (PBL) interactions with the detailed SSTs not 
currently available with any national or global product. 

This current project extends the previous work 
done over Florida, now focusing on cases of typical 
pulse convection over the southeastern U.S., with an 
emphasis on improving the local short-term WRF 
simulations.  This modeling study makes use of both 
the LIS land surface initialization and SPoRT MODIS 
SSTs to examine the sensitivity and possible 
improvements realized from these NASA capabilities.  
Furthermore, this study serves as a proof of concept to 
show that LIS and MODIS SST data can be easily 
incorporated into WRF for the benefit of organizations 
interested in running a local WRF application.  The 
remainder of this paper is organized as follows.  Section 
2 describes the methodology for the current sensitivity 
experiment.  Preliminary results are presented in 
Section 3, and a summary and vision for future work is 
given in Section 4.   

2. EXPERIMENT DESIGN 

A modeling sensitivity experiment is conducted with 
version 3.0.1.1 of the Advanced Research WRF (ARW; 
Skamarock et al. 2008) in which the land and 
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ocean/lake surface data from the NCEP North American 
Mesoscale (NAM) model is replaced with high-
resolution data from a LIS offline simulation and MODIS 
SST composites, respectively.  Details on the specific 
model configurations, initialization datasets, and 
verification methodologies are described below.  

2.1 Model Configuration and Period of Study 

This investigation consists of a set of Control and 
experimental ARW simulations initialized once per day 
at 0300 UTC from June to August 2008.  The model is 
integrated 27 hours to 0600 UTC the following day, 
similar to some operational WRF runs done at 
NOAA/NWS Miami, FL and Mobile, AL.  The simulation 
domain consists of a single grid of 309 x 311 staggered 
points in the zonal and meridional directions, 
respectively, at 4-km horizontal grid spacing, centered 
over the Southeastern United States.  The grid contains 
39 sigma-pressure vertical levels extending from the 
surface to a domain top of 50 mb.  The vertical spacing 
is stretched from a minimum of 0.004 sigma near the 
surface (corresponding to ~40 m) to a maximum of 
0.034 sigma at upper levels.   

For both the Control and LIS+MODIS-initialized 
simulations (hereafter LISMOD), the ARW physics 
options consist of the rapid radiative transfer model 
(Mlawer et al. 1997) and the Dudhia scheme (Dudhia 
1989) for longwave and shortwave radiation, 
respectively.  The WRF Single Moment 6-class 
microphysics scheme (WSM6, Hong and Lim 2006; 
Skamarock et al. 2008) is used without any convective 
parameterization physics; thus, all convection is 
determined explicitly by the WSM6 microphysics and 
model dynamics.  The planetary boundary layer and 
turbulence processes are parameterized by the Mellor-
Yamada-Janjić scheme (Janjić 1990, 1996, 2002).  
Horizontal diffusion is handled by the two-dimensional 
Smagorinsky first-order closure scheme (Smagorinsky 
et al. 1965).  All WRF runs use the Noah LSM as 
configured in version 3.0.1.1 of the ARW, being nearly 
identical to the version run operationally at NCEP (Chen 
and Dudhia 2001; Skamarock et al. 2008; Ek et al. 
2003).  Surface-layer calculations of friction velocities 
and exchange coefficients needed for the determination 
of sensible and latent fluxes in the LSM are provided by 
the NCEP Eta similarity theory scheme (Janjić 1996, 
2002).  The positive-definite advection options for 
moisture and scalars are enabled to remove the 
possible unphysical effects and high precipitation bias 
that can result from the “clipping” of negative mixing 
ratios in the 3rd order Runge-Kutta transport scheme 
(Skamarock and Weisman 2008; Skamarock et al. 
2008).  

For the Control runs, all initial conditions for the 
atmosphere, land, and RTG SSTs come from the 
native-resolution (12-km, grib 218) NCEP NAM model 
3-h forecast initialized at 0000 UTC.  Three-hourly 
boundary conditions for both the Control and LISMOD 
runs are provided by the NAM model 3-h to 30-h 
forecasts.  The SSTs remain fixed throughout the 27-h 
ARW simulations.  Interpolation of initial and boundary 
condition data are done with the WRF Pre-Processing 
System (WPS) utilities.   

2.2 Initialization Data in Experimental Simulations 

The LISMOD experimental runs are identical to the 
Control configuration except for the land surface 
initialization fields and the fixed SSTs.  The land surface 
initial conditions of the Control are replaced by output 
from an offline LIS spin-up run.  Meanwhile, the fixed 
RTG SSTs of the NAM model are replaced by the high-
resolution SPoRT MODIS SST composites.  Details on 
the LIS land surface and MODIS SST data, and how the 
data are incorporated into WRF are described in the 
sub-sections below.   

2.2.1 LIS Initialization Data 

For the offline LIS run, version 2.7.1 of the Noah 
LSM is run in LIS version 5 at the same horizontal 
resolution and center point as the WRF grid, but on a 
slightly larger domain to demonstrate that the WPS 
utilities can adequately interpolate the LIS data.  Ideally, 
the LIS grid setup would be identical to the WRF 
simulation domain to avoid inconsistencies between the 
LIS and WRF soil fields introduced by horizontal 
interpolation.  However, we aim to demonstrate a 
possible operational configuration in which SPoRT 
provides a generalized LIS initialization dataset to a 
variety of users (e.g. various NWS WFOs) running their 
own local WRF applications on domains that do not 
necessarily match the LIS grid.  Such a scenario is 
probably the most practical method for providing LIS 
initialization data to multiple users.   

For consistency, the Noah LSM in the offline LIS 
run uses the same soil and vegetation database as 
used by the WRF model.  The soil type and properties 
are represented by the State Soil Geographic 
(STATSGO; Miller and White 1998) database.  For the 
land-water mask and land cover, the U.S. Geological 
Survey 1-km global database derived from the 
Advanced Very High Resolution Radiometer (AVHRR) 
satellite data from 1992−1993 is up-scaled to the 4-km 
grid.   

Additional required parameters used in the offline 
LIS runs include quarterly climatologies of albedo 
(Briegleb et al. 1986) and maximum snow-free albedo 
(Robinson and Kukla 1985), monthly climatologies of 
greenness fraction data derived from the AVHRR 
satellite (Gutman and Ignatov 1998), and a deep soil 
temperature climatology (serving as a lower boundary 
condition for the soil layers) at 3 meters below ground, 
derived from 6 years of Global Data Analysis System 
(GDAS) 3-hourly averaged 2-m air temperatures using 
the method described in Chen and Dudhia (2001). 

The offline LIS run is cold-started on 1 January 
2004 with a uniform first-guess soil temperature and 
moisture value.  The Noah LSM is allowed to reach an 
equilibrium state during a spin-up integration of 4 years, 
5 months from 1 January 2004 to 1 June 2008, using an 
integration time step of 30 minutes.  Atmospheric 
forcings for the LIS run are provided by GDAS analyses 
(Derber et al. 1991).  The GDAS has global coverage 
with three-hourly data at a horizontal resolution of 
0.469° (~52 km).  In addition, supplemental precipitation 
forcing from the Stage IV high-resolution analyses 
replaces the GDAS precipitation, providing much more 
detailed precipitation fields than GDAS.  The Stage IV 



product consists of hourly ~4-km precipitation analyses 
produced operationally by the U.S. River Forecast 
Centers, based on rain gauges and radar precipitation 
estimates from the Weather Surveillance Radar-1988 
Doppler network (Lin and Mitchell 2005; Lin et al. 2005).  
The forcing fields are downscaled to the running 
resolution in LIS using bilinear or conservative (for 
precipitation) interpolation approaches.  In the case of 
downward shortwave radiation, an additional zenith-
angle based temporal disaggregation is applied.  The 
forcing fields of downward-directed longwave radiation, 
pressure, 2-m air temperature and 2-m relative humidity 
are further topographically corrected via lapse-rate and 
hypsometric adjustments using the elevation data 
differences between the LIS grid and the native GDAS 
forcing grid. 

The LIS is output in Gridded Binary-I format 
(GRIB1) daily at 0300 UTC for the period of record 
(June – August 2008) to initialize the WRF land surface 
fields in the LISMOD simulations.  The GRIB1 formatted 
LIS data is used by the WPS with only a few minor 
modifications required.  First, the output units in LIS soil 
moisture are changed to volumetric water content to be 
consistent with the units used in WPS/WRF.  Second, 
the WPS file “METGRID.TBL” is modified to handle the 
LIS land-sea mask for interpolation of data to the WRF 
grid.  The new LIS land-sea mask defined in 
METGRID.TBL is then applied to each of the land 
surface variables to be interpolated to the WRF grid.  
Finally, the interpolation method used in WPS for the 
LIS fields is a nearest-neighbor approach, as this 
method preserves the most detail and minimizes 
differences caused by interpolation.  A summary of all 
the LIS fields incorporated into the WRF initial 
conditions is given in Table 1.   

2.2.2 MODIS Sea Surface Temperatures 

A 1-km MODIS SST composite, produced at the 
NASA SPoRT Center, is created by combining multiple 
passes of the Earth Observing System MODIS SST 
data (Haines et al. 2007).  The compositing assumes 
that the day-to-day variation of SST is relatively small — 
the degree to which this assumption is valid will likely 
vary spatially and seasonally.  Data from both the Terra 
and Aqua platforms are combined to create separate 
day/night composites.  The composites examine the five 
most recent clear-sky SST values at each pixel.  It then 
averages the warmest three of these five pixels in order 
to minimize the impact of cloud contamination.   

Daytime (nighttime) passes through the composite 
region occur at approximately 1600 and 1900 UTC 
(0400 and 0700 UTC), respectively.  The composites 
are output in GRIB1 format to ensure a seamless 
interpolation to the WRF grid with the WPS programs.  
Prior to being interpolated to the WRF grid, however, 
each 1-km MODIS SST composite is sub-sampled to a 
coarser grid with 2-km horizontal grid spacing due to 
limitations in array dimensions of the GRIB1 format.   

Finally, the MODIS composite from 0400 UTC the 
previous day is incorporated into the daily WRF initial 
conditions at 0300 UTC to minimize diurnal variations in 
SST relative to the model initialization time.  The only 
exception occurs for model initializations from 3–14 
June 2008, when data are missing for the 0400 UTC 

MODIS composites.  For these LISMOD model 
initializations, the 0700 UTC MODIS composites from 
the previous day are used to initialize the SSTs.   

2.3 Verification Methodology and Tools 

For verifying precipitation and other fields in both 
the Control and LISMOD runs, the Meteorological 
Evaluation Tools (MET) package is employed.  Created 
by the WRF Developmental Testbed Center at the 
National Center for Atmospheric Research, the MET 
package is a highly-configurable, state-of-the-art suite 
of model verification tools.  It was developed using 
output from WRF but may be applied to the output of 
other modeling systems as well.  MET provides a 
variety of verification techniques, including: 

• Standard verification scores comparing 
gridded model data to point observations,  

• Standard and neighborhood verification scores 
comparing gridded model data to gridded 
observations, and  

• Object-based verification method comparing 
gridded model data to gridded observations. 

More information on MET can be found at the web site 
http://www.dtcenter.org/met/users/index.php.  An online 
User’s Guide for MET version 2.0 is available at 
http://www.dtcenter.org/met/users/docs/users_guide/ME
T_Users_Guide_v2.0_rev2.pdf.   

Our objectives for using MET at NASA/SPoRT is to 
incorporate a more standardized verification platform 
from which to conduct model evaluations.  For this 
specific project, we are especially interested in 
capitalizing on the object-oriented verification 
methodology that has been implemented in MET.  
Known as the Method for Object-based Diagnostic 
Evaluation (MODE; Brown et al. 2007; Davis et al. 
2009), this utility classifies “objects” in gridded fields, 
calculates a wide variety of object attributes, and 
merges/pairs forecast objects with observed objects to 
determine the similarities and differences between the 
various objects.  We apply this utility to obtain more 
meaningful precipitation verification statistics for high-
resolution forecasts of the pulse-type convection over 
the southeastern U.S.   

3. PRELIMINARY RESULTS 

This section provides preliminary results that 
illustrate some of the differences between the LIS land 
surface and MODIS SST initialization versus the 
interpolated NAM data in the Control runs.  Sample 
forecast impacts are presented, as well as output from 
the MODE analysis tool available in the MET verification 
package.   

3.1 Differences in Surface Initialization Datasets 

The combination of LIS spin-up data and MODIS 
SSTs provides a considerably more detailed 
representation of the land and water surface compared 
to the Control run using interpolated 12-km NAM data.  
The depiction of 0–10 cm soil moisture at 0300 UTC 10 
June 2008 in Figure 1 helps to illustrate this point.  
While the regional patterns of soil moisture are fairly 
similar, the LISMOD initialization data provides 



information more consistent with the resolution of the 
WRF model in Figure 1b.   

The difference field also indicates systematically 
drier initial conditions in this soil layer from southern 
Mississippi to northwestern South Carolina (Figure 1c).  
Over Florida, drier soil moisture is interspersed with 
local pockets of wetter soil moisture.  These soil 
moisture variations are likely attributed to differences 
between the 12-km NAM Data Assimilation System 
(NDAS), which front-ends the NAM model, and the 
GDAS, which forces the LIS off-line run in combination 
with the Stage-IV precipitation analyses.  Also, the 
ability of the 4-km LIS to better capture local areas of 
convective-type precipitation compared to the 12-km 
NDAS explains the local variations in soil moisture over 
Florida.  It should be noted that the NDAS also uses the 
Stage-IV precipitation product to initialize its soil fields, 
similar to our offline LIS run. 

A validation of the LIS versus Control (NAM) soil 
moisture was conducted at available observation sites 
from the U.S. Department of Agriculture’s Soil Climate 
Analysis Network (SCAN, Schaefer et al. 2007).  
Several SCAN locations fall within the WRF modeling 
domain, but most sites are clustered in northern 
Alabama and western Mississippi (Figure 2a).  Also 
worth noting is that all three SCAN sites in Florida were 
unavailable during the period of record.  SCAN 
observes the soil temperature and volumetric soil 
moisture at depths ranging from 2 inches (5 cm) to 40 
inches (102 cm) at most locations.   

For validation purposes in the model, all 
observations made at levels lying within the model soil 
layers (0−10, 10−40, 40−100, and 100−200 cm) were 
compared to the model layer value at each daily 0300 
UTC model initialization time.  In some instances, the 
differences were computed using the same observation 
level for multiple layers.  For example, the SCAN 
observations at 10 cm were used to validate the model 
values in both the 0−10 cm and 10−40 cm layers.  Since 
the observations are measured at a single level while 
the modeled soil moisture is valid over a layer, the 
validation has representativeness issues and can be 
considered an “apples versus oranges” comparison.  
However, validation of soil moisture is quite hard to 
come by, and the SCAN observations are the best 
source of observed soil moisture data available in the 
experimental domain. 

The results indicate that the LIS soil moisture was 
consistently drier in all layers relative to the 
NAM/Control soil moisture (Figure 2b).  Based on the 
mean differences (“biases”), the NAM was slightly too 
moist relative to observations in the 0−10 cm layer while 
both the NAM and LIS were too dry in the three deepest 
layers.  In all soil layers, the LIS mean differences were 
drier than the NAM, resulting in an increase of the dry 
bias in the 10−40, 40−100, and 100−200 cm layers 
relative to the observations.  The 0−10 cm layer was the 
only layer in which the LIS mean difference was 
improved over the NAM.  The root mean square (RMS) 
differences show that the LIS reduces the RMS 
difference/error in the top two layers, while increasing 
the RMS difference in the bottom two layers compared 
to the NAM (Figure 2b).   

The mixed results make it difficult to determine 
which soil moisture initial field is consistently more 
accurate, especially considering the representativeness 
concerns between model layers and observed levels, as 
well as the sparseness and variable density of the 
SCAN observations.  Much of the modeling domain 
does not have observations for validation.  The main 
points we can conclude are that the LIS produced a 
drier overall soil layer compared to the NAM (at least at 
the SCAN locations), and that the 4-km LIS provides 
greater horizontal detail compared to the 12-km NAM 
fields. 

The mean layer soil temperatures were also 
validated against the SCAN observations; however, the 
representativeness issue played an even larger role, 
resulting in a diurnal signal of the soil temperature 
differences when computed as a function of forecast 
hour.  Consequently, soil temperature verification is not 
presented in this paper. 

Meanwhile over the adjacent waters, the SPoRT 
MODIS SST product provides much more detail over 
the Gulf of Mexico and Atlantic waters compared to the 
interpolated RTG SSTs from the NAM model (Figure 3).  
For the model run initialized at 0300 UTC 10 June, 
SSTs were obtained from the 0700 UTC 9 June 
SPoRT/MODIS composite.  Substantial differences (up 
to 2°C) are found in the vicinity of the shallow near-
coastal waters near the Florida coast.  For this 
particular composite, the MODIS tends to be cooler 
than the RTG.   

The most noteworthy aspect of the MODIS 
composite is its ability to capture the fine-scale 
horizontal gradients in SSTs compared to the once-daily 
RTG product.  The smoothness of the RTG data in 
Figure 3a precludes the model from capturing the 
relatively cool shelf waters off the Florida East Coast.  
However, the LISMOD SSTs in Figure 3b are able to 
depict the cool shelf waters and the magnitude of the 
Gulf Stream east of Florida.  The SST differences 
illustrate the locally sharper horizontal gradients 
captured by the SPoRT MODIS product in Figure 3c.   

3.2 Sample Forecast Sensitivities of Precipitation 

At first glance, the precipitation forecast 
sensitivities appear somewhat subtle, despite relatively 
significant changes in the details of the land and water 
initial conditions.  A qualitative examination of several 
different days during the period of record (not shown) 
indicates that the broad patterns of forecast 
precipitation in the Control and LISMOD runs are 
generally similar, especially at longer accumulation 
intervals.  Most of the differences in forecast 
precipitation arise from small-scale fluctuations in 
individual convective elements that evolve differently 
due to the variations in the land/water surface 
interactions with the PBL.  If the Control forecast is 
significantly in error with the large-scale precipitation 
features, then the LISMOD is also generally in error.  
Therefore, it appears that the forecast precipitation in 
this model configuration is still largely driven by the 
atmospheric initial and boundary conditions, in addition 
to model dynamics and physics.   



A sample 1-h forecast precipitation comparison 
ending 2100 UTC 10 June 2008 is presented in Figure 
4.  The flow pattern was very weak on this day, with no 
discernable boundaries or organized flow pattern over 
the southeastern U.S.  Figure 4 shows how the forecast 
1-h precipitation patterns and modes are quite similar 
overall in the Control and LISMOD runs.  However, the 
difference field depicts numerous small-scale 
fluctuations between the forecasts (Figure 4c).  
Compared to the Stage-IV product in Figure 4d, both 
simulations over-predict precipitation across portions of 
Georgia and Mississippi, while under-predicting 
stratiform-type rainfall over northern Florida.  So, it 
appears that the high-resolution input from LIS and 
MODIS SSTs led to numerous small-scale variations in 
the convective precipitation pattern, while the overall 
pattern of simulated precipitation remained nearly the 
same.   

3.3 Selected Traditional Verification Statistics 

Traditional point verification statistics at 
approximately 500 primary, mesonet, and cooperative 
stations over the southeastern U.S. were calculated 
using the MET package.  The bias and RMS errors as a 
function of forecast hour (Figure 5a and b, respectively) 
for 2-m temperature and dew point temperature reveal 
relatively minor differences in most forecast hours.  The 
bias plots (Figure 5a) indicate that the LISMOD 
develops a slightly higher warm bias by a few tenths of 
a degree Celsius between forecast hours 9 and 18, 
while a nominal dry dew point bias ≤ 0.5°C occurs 
between forecast hours 9 and 27.  The total error 
represented by the RMS error in Figure 5b shows only 
very small differences between Control and LISMOD, 
with the LISMOD having marginally larger errors. 

Using traditional grid-point by grid-point techniques, 
the 1-hour accumulated precipitation errors were also 
calculated using MET tools during the forecast hours of 
typical peak convective activity (12−24 hours, 
corresponding to 1500−0300 UTC).  The results 
indicate that both the Control and LISMOD over-predict 
the area coverage of 1-hour accumulated precipitation 
at all 3 thresholds examined (bias > 1 for 5-, 10-, and 
25-mm per hour; Figure 6a).  However, the LISMOD 
tends to reduce the bias between forecast hours 12−18, 
especially at the higher intensities.  The Heidke Skill 
Score (HSS) in Figure 6b depicts a low skill under 0.10 
for all precipitation thresholds that diminishes with 
forecast hour.  The LISMOD has a marginally higher 
skill, mainly between forecast hours 12 and 18.  Overall, 
the traditional error differences are quite minor and do 
not reveal any obvious performance differences in 
model accuracy, except for a reduction in the high-
intensity precipitation bias. 

3.4 MODE Object-Based Verification 

The remainder of the analysis focuses on the non-
traditional object-based verification available from 
MET’s MODE tool.  We first present a snapshot of 
forecast/observed object pairs from the Control and 
LISMOD simulation from 10 June, followed by overall 
composite results from running MODE over all 81 
Control and LISMOD forecasts from summer 2008.   

The object-matching in MODE is centered on an 
“interest function”, which combines several attributes 
about the feature of interest — in this case 1-h 
accumulated precipitation from the WRF model 
(forecast) and Stage IV precipitation analyses 
(observed).  The attributes consist of object 
characteristics such as centroid distance, minimum 
boundary distance, orientation angle difference, etc.  
MODE resolves objects in a gridded field  through 
convolution thresholding,  This technique involves 
applying a filter function to the raw data using a tunable 
radius of influence.  The filtered field is then thresholded 
using another tunable parameter (typically the 
precipitation threshold) to create a mask field.  Finally, 
the raw data are restored to objects where the mask 
meets/exceeds the specified threshold.  More 
information on the technical details of MODE can be 
gleaned from Brown et al. (2007), Davis et al. (2009), 
and the MET User’s Guide.   

Forecast and observed objects are matched based 
on additional input criteria and a minimum value of the 
“interest function”, which scales between 0 and 1.  Our 
analysis focuses on 10 mm (1 h)

-1
 precipitation objects 

during the peak convective forecast hours (12−24 h).  
The fuzzy engine weights used to formulate the interest 
function in our case are given in Table 2.  
Forecast/observed objects are considered matches if 
the interest function is ≥ 0.6 and the distance between 
the object centroids is no greater than 80 km.  The 
interest function is not calculated for object pairs whose 
centroids are greater than 80 km apart.   

3.4.1 Output from 10 June 2008 

Output from MODE for precipitation objects of 10 
mm or greater for the 1-h period ending 2100 UTC 10 
June is given in Figure 7.  A comparison between the 
Control forecast and observed objects (Figure 7a, left 
column) shows about 4 small matched precipitation 
objects across the northern half of the Florida peninsula 
with several false alarm objects across southwestern 
Georgia, southeastern Alabama, and portions of south 
Florida.  The LISMOD run has a similar pattern of 10-
mm matched objects in northern Florida; however, there 
is a noticeable reduction in the false alarm objects over 
Georgia and Alabama.   

It should be noted that if we had increased the 
object centroid distance criterion, modified the fuzzy 
weights in Table 2, and/or relaxed the interest function 
minimum threshold, then many more forecast and 
observed objects would have been matched together.  
For example, both the Control and LISMOD predicts 10-
mm rainfall objects over the southeastern Florida coast 
in the vicinity of the observed precipitation areas, but 
the distances are too far to be considered matches.  
We used such a stringent requirement in order to 
minimize object matching for rainfall areas that a 
forecaster would not consider a “hit” (e.g. rainfall on the 
west coast of Florida being matched with objects on the 
east coast).  Despite the somewhat stringent 
constraints placed on MODE, this configuration 
appeared optimal based on the level of detail and 
accuracy desired for this experiment.  

Once the object matching is done, the total area of 
matched and unmatched objects is provided at each 



forecast hour in the MODE output.  A summary of the 
matched/unmatched objects areas (with forecast and 
observed objects combined together) indicates that the 
LISMOD out-performed the Control run on this day at 
many of the forecast hours (Table 3).  Nine of the 13 
hourly forecast periods have reductions in the 
unmatched areas in LISMOD, while 6 forecast hours 
have increases in the total matched area.  Meanwhile, 
the Control experiences only 2 hourly forecasts with 
improvements in the matched/unmatched area over the 
LISMOD.   

3.4.2 MODE Verification for Summer 2008 

By applying the same object matching criteria to all 
81 forecasts for the summer 2008, we can determine 
whether the LISMOD consistently out-performed the 
Control in 1-h precipitation forecasting accuracy during 
the peak convective hours.  The matched and 
unmatched area for precipitation objects during the 
peak convective hours were summed for each Control 
and LISMOD forecast run.  The difference between the 
total (un-)matched 10 mm (1 h)

-1
 precipitation areas in 

each forecast is plotted in Figure 8.  Improvement in the 
LISMOD forecast is represented by positive blue bars 
(increase in matched area) and negative red bars 
(decrease in unmatched area).  The LISMOD individual 
forecasts experience a wide range of improvement and 
degradation from run to run, so it is difficult to discern 
visually which model configuration consistently 
outperformed the other.  However, there is a tendency 
for the LISMOD to have the largest increases in 
matched area (e.g. mid-August) and more numerous 
decreases in unmatched areas.   

A summary of the mean matched/unmatched 
precipitation object areas per forecast run is provided in 
Table 4 for each of the three accumulated precipitation 
thresholds examined (5, 10, and 25 mm per hour).  The 
LISMOD produces on average more matched and fewer 
unmatched object areas compared to the Control for all 
three thresholds between forecast hours 12−24.  The 
lone exception is the matched area for 25 mm (1 h)

-1
, in 

which the matched area averages the same in both the 
Control and LISMOD.  All of the improvements in 
unmatched area were statistically significant at the 99

th
 

percentile, whereas only the 4.3% improvement in 10 
mm (1 h)

-1
 matched area was marginally significant at 

the 90
th

 percentile.  All other changes to the matched 
area at other thresholds were non-significant. 

The improvements to the forecast precipitation are 
also prevalent as a function of forecast hour, at least in 
the 10 mm (1 h)

-1
 threshold (Figure 9).  During the peak 

convective times, the LISMOD consistently produced a 
slight increase in the matched area and a slight 
decrease in the unmatched area as a function of 
forecast hour (Figure 9a).  The percentage change in 
matched/unmatched area indicates the greatest 
improvement earlier in the day between forecast hours 
12 and 19 (Figure 9b).  It should be noted that the 5-
mm (1 h)

-1
 also shows a notable improvement in the 

LISMOD, mainly from a reduction in unmatched area 
(not shown).  However, the 25-mm (1 h)

-1
 threshold did 

not show much of a clear distinction between the 
Control and LISMOD as a function of forecast hour. 

Figure 10 provides a summary of the overall 
distribution of interest function values between forecast 
and object pairs at all forecast hours between 
1500−0300 UTC for all 81 forecast days.  Higher 
interest function values indicate that the forecast 
objects tend to be more similar in attributes to the 
corresponding observed objects.  Among the three 
precipitation thresholds presented in Figure 10, the 
LISMOD has a larger interest value at higher 
percentiles in the distribution, particularly for the more 
intense precipitation thresholds.  The LISMOD has a 
consistently higher interest value nearly everywhere in 
the distribution for the 25-mm threshold, and from the 
50th to 90th percentiles for 10-mm threshold.  The 5-
mm interest values show little overall difference 
between Control and LISMOD.  This result suggests 
that the LISMOD forecasts produced 1-hour 
accumulated precipitation areas that more closely 
resemble the observed rainfall areas, especially for 
more intense thresholds.   

Finally, the accumulated precipitation in 3-hourly 
intervals was also examined using MODE, but did not 
show any distinctive signal between the Control and 
LISMOD (not shown).  It could be that convective 
rainfall accumulation over a longer time period is 
difficult to discern into meaningful objects when the 
individual convective elements are chaotic in terms of 
the development and evolution.   

4. SUMMARY AND FUTURE WORK 

This paper describes a sensitivity experiment in 
which the interpolated land and ocean surface fields 
from the NCEP NAM model in a Control WRF model 
simulation are replaced with high-resolution datasets 
provided by unique NASA assets in an experimental 
simulation: the LIS and SPoRT/MODIS SSTs.  The LIS 
is run in an offline mode for several years at the same 
grid resolution as the WRF model in order to provide 
WRF with compatible land surface initial conditions in 
an equilibrium state.  The MODIS SSTs provide more 
detailed analyses of the SSTs over the oceans and 
large lakes compared to the RTG product used in the 
Control model runs.   

Preliminary results indicate the LISMOD initial 
conditions contain much more detail, consistent with the 
WRF model resolution (as expected), when compared 
to the Control initial conditions.  The large-scale 
patterns of soil moisture are fairly similar, but the 
LISMOD initial conditions do have some systematic 
regional differences, probably due to the LIS better 
resolving the fine-scale precipitation features of the 
Stage IV data compared to the 12-km NDAS.  The 
MODIS SSTs are able to better capture the spatial 
variability in SSTs, especially in the waters surrounding 
the Florida peninsula.  The forecast precipitation fields 
are fairly similar, especially in the overall larger-scale 
patterns; however, numerous small-scale differences 
occur.   

Traditional verification methods do not reveal 
substantial differences between the two forecast 
configurations.  Only slight differences in the 2-m 
temperature and dew point temperature errors are 
evident.  The traditional grid point precipitation 



verification does show a small reduction in the over-
prediction of rainfall areas in LISMOD; however, the skill 
is almost equally as low in both experiments.  Output 
from MODE’s object-based verification within the MET 
package reveals that the LISMOD consistently 
generated precipitation objects that better matched 
observed precipitation objects, especially at higher 
precipitation intensities.  The LISMOD runs also 
produced on average a 4% increase in matched 
precipitation areas and a simultaneous 4% decrease in 
unmatched areas (i.e. combination of false alarm and 
forecast misses).   

Future efforts will include verifying the LIS soil 
moisture and temperature fields at Soil Climate Analysis 
Network sites over the southeastern U.S. In addition, 
we plan to examine the impacts of assimilating 
remotely-sensed and/or in situ soil moisture data, and 
introducing bi-weekly MODIS greenness vegetation 
fraction composites (as opposed to monthly 
climatologies) into offline NASA LIS runs and WRF 
simulations.  Finally, the offline LIS runs could be 
transitioned into an operational mode similar to the 
MODIS SST composites, by providing high-resolution 
land surface fields and initialization data to NWS 
forecast offices in near real time.  
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Table 1.  A list of the LIS land surface fields and corresponding names in the WPS 
“METGRID.TBL” file, as used to initialize the LISMOD experimental WRF model runs.   

Land Surface Field Name in WPS “METGRID.TBL” 

Canopy Water* CANWAT 

0-10 cm Soil Moisture SM000010 

10-40 cm Soil Moisture SM010040 

40-100 cm Soil Moisture SM040100 

100-200 cm Soil Moisture SM100200 

0-10 cm Soil Temperature SM000010 

10-40 cm Soil Temperature SM010040 

40-100 cm Soil Temperature SM040100 

100-200 cm Soil Temperature SM100200 

Skin Temperature SKINTEMP 

Snow Water Equivalent SNOW 

*Canopy water is initialized to “0” in the default WRF source code. 

 

 



(a) Control (NAM) (b) LIS

(c) LIS – NAM
 

Figure 1. Comparison between WRF-initialized 0–10 cm volumetric soil moisture for the (a) 
Control (NAM model), (b) LISMOD (LIS spin-up), and (c) difference field (LISMOD – Control) valid at 
0300 UTC 10 June 2008.  
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Figure 2.  Validation of the NCEP/NAM (CON) and LIS volumetric soil 
moisture (%) against the Soil Climate Analysis Network (SCAN) 
observations at the model initialization hour, depicting (a) Bias or mean 
difference, and (b) Root-mean square (RMS) difference. 



(a) Control (RTG) (b) MODIS

(c) MODIS −−−− RTG

 

Figure 3. Comparison between WRF static SSTs for the (a) Control (NAM model / RTG product), 
(b) LISMOD (SPoRT MODIS data), and (c) difference field (LISMOD – Control), valid for the model run 
initialized at 0300 UTC 10 June 2008.  

 



 

Figure 4. Comparison of accumulated precipitation (mm) for the 1-h period ending 2100 UTC 10 
June 2008 for the (a) Control run, (b) LISMOD run, (c) difference between LISMOD and Control, and (d) 
Stage IV precipitation.  Traditional grid point verification methods yield a Heidke Skill Score of 0 for 
the Control run and 0.015 for the LISMOD run over this time interval.   
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Figure 5.  Comparison of 2-m temperature and dew point temperature model errors (°C) for 81 Control and 
LISMOD forecasts from June−−−−August 2008 at approximately 500 surface observation locations.  Plots shown 
are (a) mean error (bias), and (b) Root Mean Square Error (RMSE). 
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Figure 6.  Traditional verification metrics of 1-h accumulated precipitation during the peak convective hours 
of 1500 UTC to 0300 UTC (forecast hours 12−−−−24) for all 81 forecasts in the study period (June to August 
2008).  Plots shown are (a) Bias, and (b) Heidke Skill Score (HSS), according to the legend provided. 

 

 

Table 2.  MODE Fuzzy engine weights applied to object attributes to 
compute “total interest” field. 

Object Attribute Weight 

Centroid distance 20% 

Minimum boundary distance 40% 

Orientation angle difference 10% 

Ratio of object areas 10% 

Intersection area ratio 20% 

 



   

Figure 7. Comparison of 18-h forecast and Stage IV (observed) ≥10-mm accumulated precipitation 
objects for the 1-h period ending 2100 UTC 10 June 2008 for the (a) Control run, and (b) LISMOD run.  
Solid blue shading indicates a false alarm in the forecast field or a forecast miss in the observed field.  
All other solid colors represent matched forecast or observed objects.  Outlined blue areas denote the 
corresponding observed (forecast) objects in the field of forecast (observed) objects. 

 

 

 



Table 3.  Comparison between the total matched and unmatched areas (in number of grid 
points) of the 10-mm (1 h)

-1
 precipitation objects in the Control and LISMOD runs initialized at 

0300 UTC 10 June 2008.  The valid times span from 1500 UTC 10 June to 0300 UTC 11 June.  
The better matched/unmatched numbers are in bold-italics font.  

 Control LISMOD 

Forecast Hour Matched Area Unmatched Area Matched Area Unmatched Area 

12 0 115 0 115 

13 0 93 0 64 

14 0 222 0 108 

15 0 492 0 474 

16 0 802 232 587 

17 388 544 606 653 

18 419 1039 470 711 

19 108 1122 186 916 

20 318 680 271 674 

21 394 301 382 646 

22 0 596 110 424 

23 28 632 30 501 

24 0 328 0 417 
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Figure 8.  Difference in total matched and unmatched 10 mm per hour accumulated precipitation object 
areas during the peak convective hours (1500 UTC to 0300 UTC) for each individual forecast from June to 
August 2008.  Blue bars indicate the difference in matched area while red bars indicate the difference in 
unmatched area. 



Table 4.  Mean matched and unmatched 1-h precipitation object areas for the 
Control and LISMOD per forecast run, and the percent improvement in LISMOD 
over the Control as a function of accumulated forecast interval.  All 1-h forecasts 
during the peak convective hours are combined for each forecast run (12−−−−24 h, 
corresponding to the 1500−−−−0300 UTC window).  Differences / % Changes in bold 
font indicate statistically significance at the 99

th
 percentile while italics font 

indicates significance at the 90
th

 percentile.   

Quantity  
(mean # grid points 

per model run) 
Control LISMOD 

Difference  
(LISMOD −−−− Control) 

% Change 

5-mm Matched 11 911 12 045 134 1.1% 

5-mm Unmatched 17 750 17 175 -575 -3.2% 

10-mm Matched 2 456 2 562 106 4.3% 

10-mm Unmatched 6 798 6 538 -260 3.8% 

25-mm Matched 60 60 0 0% 

25-mm Unmatched 549 505 -44 -8.0% 
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Figure 9.  Comparison between the total matched and unmatched object areas from all 81 forecast cycles for 
1-h accumulated precipitation ≥ 10 mm during the forecast hours centered on the diurnal peak convective 
activity (12−−−−24 hours, valid 1500 UTC to 0300 UTC).  (a) Total matched object area (blue bars) and unmatched 
object area (red bars) for the Control (solid bars) and LISMOD (hatched bars), and (b) LISMOD percentage 
change from the Control matched/unmatched object area.   
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Figure 10.  Distribution of the total interest function for all 81 Control and LISMOD 
forecast/observed 1-h accumulated precipitation object pairs during the peak convective 
hours of 1500 to 0300 UTC.  The plot depicts the Control and LISMOD values within their 
respective interest function distributions at the 10th, 25th, 50th, 75th, and 90th percentiles 
for 5-mm, 10-mm, and 25-mm accumulated precipitation thresholds, according to the scale 
provided.  The interest function sample sizes are provided in Table 5. 

 

 

Table 5.  The number of 1-h accumulated precipitation object pairs at 
various thresholds composing the interest function distributions 
plotted in Figure 10.   

 Precipitation threshold 

WRF Experiment 5 mm 10 mm 25 mm 

Control 8934 2479 74 

LISMOD 9077 2445 69 

 

 


