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The Role of Hierarchy in Response Surface Modeling  

of Wind Tunnel Data 

Richard DeLoach* 

NASA Langley Research Center, Hampton, Virginia, 23681 

This paper is intended as a tutorial introduction to certain aspects of response surface 

modeling, for the experimentalist who has started to explore these methods as a means of 

improving productivity and quality in wind tunnel testing and other aerospace applications.  

A brief review of the productivity advantages of response surface modeling in aerospace 

research is followed by a description of the advantages of a common coding scheme that 

scales and centers independent variables. The benefits of model term reduction are 

reviewed.  A constraint on model term reduction with coded factors is described in some 

detail, which requires such models to be “well-formulated”, or “hierarchical”. Examples 

illustrate the consequences of ignoring this constraint. The implication for automated 

regression model reduction procedures is discussed, and some opinions formed from the 

author’s experience are offered on coding, model reduction, and hierarchy. 

I. Introduction 

popular experimental method for aerospace ground testing, and especially for experimental aeronautics, suffers 
from a weakness that severely and adversely impacts productivity. Practitioners of this method, known as One 

Factor At a Time (OFAT) testing, attempt to obtain the information necessary to characterize how changes in test 

article responses depend on changes in various combinations of independent variable levels (also called factor 

levels). They do this typically by making all such changes of interest and recording for each the corresponding 

changes in a number of response variables. 

The productivity issues associated with OFAT testing stem from the very large number of factor combinations 

that are likely to be of interest, the cost and time required to physically set each combination, and the fact that each 

factor combination is examined individually, one at a time. This latter, defining attribute of the method is due to a 

widely held but erroneous assumption that if multiple factors were to be changed simultaneously, the resulting 

response changes could not be accurately partitioned among the factors responsible for them. One would assume by 

this prevailing wisdom that if angle of attack and Mach number were both changed before the next data point in a 

wind tunnel test, for example, it would not be possible to know how much of the resulting change in forces and 
moments was due to the change in angle of attack and how much was due to the change in Mach number. This is 

true for an individual data point. However, if a suitably selected sample of simultaneous factor combinations is 

acquired, the partitioning of effects can in fact be accomplished, and rather easily, about which more presently. 

Returning to the OFAT productivity question, consider a typical wind tunnel test for which there might be a half 

dozen independent variables, each to be set at 10 levels. This would not represent a particularly ambitious test 

design; in actual practice many tests are considerably more elaborate. Nonetheless, this test features a million (106) 

possible factor level combinations. While results vary over a wide range from test to test, the maximum volume of 

data that resource constraints permit in a wind tunnel test is typically measured in the thousands of points, not the 

millions. The result is that OFAT wind tunnel tests often generate information on only a few tenths of 1% of all the 

possible factor combinations. 

Not all possible factor combinations are of interest, to be sure, and experienced OFAT practitioners rely upon a 
combination of skill and subject matter expertise to guide them in selecting subsets of the design space that are of 

particular interest to them. Nonetheless, the boundaries between design space regions of greater and lesser interest 

are often difficult to define clearly, especially in the most interesting cases in which relatively little a priori 

information exists about the test article. It seems unlikely that there would be little to learn from an examination of 
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99+ percent of the design space that must go unexplored in a typical OFAT wind tunnel test due to resource 

constraints. 

The inefficiency of OFAT testing is responsible for a strong focus on data acquisition speed, since there is time 

to examine so little of the design space in a typical wind tunnel test. This need for speed forecloses options that 

would otherwise be available to implement quality assurance and quality assessment tactics such as replication, 

randomization, and blocking. The inherent inefficiency of OFAT testing therefore adversely impacts quality as well 
as productivity. 

An integrated system of formal experiment design, execution, and analysis methods, which has been called the 

Modern Design of Experiments (MDOE), was introduced to the experimental aeronautics community of Langley 

Research Center in the mid-1990s to improve upon the quality and productivity weaknesses of OFAT testing. The 

MDOE method is an application of industrial experiment design methods for product and process improvement that 

began to emerge early in the 20th century1-3, and have been adapted in small ways for the special requirements of 

aerospace ground testing. The basic principles of MDOE are documented in the references4-7, and some 

representative examples of its application in aerospace research are also provided8-19. 

A key element of MDOE testing in certain broad classes of experiments is its reliance upon Response Surface 

Methods (RSM), also called Response Surface Modeling. Response surface models are mathematical relationships 

expressing various system responses of interest in terms of the independent variables (factors) that influence them. It 

is by developing such response models that the MDOE practitioner is able to determine how much of the change in 
some system response of interest is caused by changes in one independent variable, and how much is caused by 

changes in another, notwithstanding the fact that multiple factor changes may have been made simultaneously for 

each data point. 

Productivity enhancements in response surface modeling derive from the fact that the experimenter is not 

required to acquire data at every site of interest within the design space in order to estimate responses at those sites. 

If one acquires the minimum volume of data necessary to adequately establish a response model by some 

mathematical fitting process such as regression, then system responses at intermediate design space sites can be 

predicted using the model. Assuming an adequate response model, it is not necessary to take the time or bear the 

expense of physically setting those intermediate factor combinations and measuring the corresponding responses, 

which gives this method a substantial productivity advantage over OFAT testing. 

This advantage is leveraged by the fact that an MDOE test matrix features a relatively small number of 
measurements that entail simultaneous changes in multiple factor levels. It is precisely because so many factors are 

changed for each MDOE test point that so few points are required; each point contains much more information that a 

point for which only one factor is changed at a time, which enables the experimenter to traverse the whole design 

space with many fewer data points than an equivalent OFAT test. 

The interpretation of response models can be enhanced, and in some cases the uncertainty associated with 

response model predictions can be reduced, by transformations of the independent variables that scale and center 

them, as discussed in Section II of this paper. Section III briefly outlines the rationale for further improving response 

predictions by selectively rejecting certain terms in the regression model. These methods can be influenced by a 

property of response models called hierarchy, as will be described in Section IV. There is a discussion of selected 

topics in Section V, and concluding remarks are provided in Section VI. 

II. Factor Coding for Regression 

As a practical matter, when we say that we are interested in how some response depends on a number of 

independent factors, we do not have in mind an unlimited range of factor levels. If we are conducting a wind tunnel 

test in which we will quantify forces and moments as a function of angle of attack (AoA) among other variables, for 

example, our interest is likely to focus on a limited range of AoA values. For a commercial jet transport, we might 
be concerned with angles in a range something like [-4°:+10°]. We would not likely examine response variables at, 

say, 90° in such a test, although other AoA ranges may be of interest in other tests. 

In this example, we could describe the limited range of AoA values that interests us in terms of a mid-range 

value, 0=3°, plus or minus an interval half-width, h =7°. To facilitate certain calculations, as well as the 
interpretation of the results they produce, it is convenient to transform the physical variables of an experiment into 

coded variables. For the angle of attack range illustrated here, we could use this simple coding transformation: 

 0 3

7
x

h
 (1) 
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At the extremes of the range of interest, -4° and +10°, the coded variable assumes values of ±1, and has the value 

of zero in the middle of the range.  All such variables coded in this way span the range of ±1 and are centered at 

zero. So, for example, if Mach number, M, is another variable in our test that ranges from 0.70 to 0.96, say 

(M = 0.83±0.13), then the corresponding coded Mach number variable would be  

 0 0.83

0.13
M

M

M M M
x

h
 (2) 

Note that the coded variables are simply linear transformations of the physical variables, so the results of any 

calculation in terms of coded variables can be readily transformed back to physical units. However, the inverse 

transformation may be problematical unless the response model features a property known as hierarchy, as will be 

discussed in more detail in Section IV. 

Coded variables have a number of advantages over physical variables in the generation of a response model. For 

example, when factors are expressed in physical units, the numerical values of the response model coefficients 

depend on which units are selected. Consider a study of shape memory alloy wing components that are deformed by 

heat from applied electrical power. It might be of interest to develop a mathematical relationship between certain 

lateral stability responses such as yawing moment and rolling moment, and the voltages applied to change the shape 

of various wing components. The coefficients of the response model regressors will vary substantially if factor 
levels originally expressed in volts are changed to kilovolts, for example. This is especially true for higher-order 

terms. The resulting ambiguity can make it difficult to assess the relative contribution of, say, first-order and second-

order effects. On the other hand, if the factors are represented by coded variables, the regression coefficients are 

independent of the units in which the physical variables are expressed, and the relative impact of the various 

regressors on system response is much easier to see. 

Equations (3) illustrate the distinction between coded and physical variables in a quadratic response model in 

two factors: 

 

2 2

2 2

542 152 73 308 207 160

1206 5 186 15 10 8

coded A B A B A B

physical

y x x x x x x

y A B AB A B
 (3) 

The same response is expressed in terms of coded variables xA and xB in the first equation, and in the 

corresponding physical variables A and B in the second. It is clear that over the ranges tested (from -1 to +1 in the 

coded units), the “A” factor has about twice as much influence on the response as the “B” factor. The relative 

influence of A and B are completely obscured in the second equation, because the coefficients depend entirely on the 

physical units. Likewise, when the response model is expressed in coded units as in the first equation, it is clear that 

the interaction between the two factors dominates the first-order effects of either factor alone.  When the response is 

modeled in terms of physical factors, this inference is obscured by the dependence of the regression coefficients on 

the physical units. Completely different inferences could be drawn by expressing the factors in different units. Note 

also that in coded units it is clear that curvature effects for variable B dominate first-order effects, while the model 

expressed in physical units make this comparison much less clear. 

Another advantage of the factor coding transformation illustrated in Eq. (1) and Eq. (2) is that it ensures that the 

factor range includes zero.  This imparts a useful physical interpretation to the intercept of the response model. 
When zero is within the range of all fitted factors, the intercept of the response model is equal to the average of all 

the fitted response measurements. This has certain advantages in quantifying block effects, for example. 

Consider a sample of data acquired over factor ranges that include zero, and assume that a response model has 

been constructed in terms of those factors. Now imagine that this sample of data is replicated at some later time, and 

the same response model is fitted to the second set of data. The coefficients, including the y-intercept, would be 

expected to differ slightly due to ordinary chance variations in the data, but no statistically significant difference 

would be anticipated between corresponding regression coefficients absent changes in the measurement 

environment that are not postulated in this example, or changes in the test article that violate the assumption of a 

replicated data sample. 

Imagine, however, that a statistically significant change is in fact observed in the y-intercepts. That is, assume 

that the second y-intercept differs from the first to a greater degree than can be attributed to ordinary random error. 
This implies that the sample mean has shifted from one data sample to the next.  
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It is common in response surface modeling to organize test matrices in intervals or blocks of time. Systematic 

response shift between blocks such as described here are called block effects. Block effects are not uncommon in 

wind tunnel testing, and often contribute substantially more to the unexplained variance of a sample of data than the 

random component that is more widely recognized and understood.  

Block effects are evidence of systematic changes occurring in the measurement environment over time. In a 

wind tunnel test, these can be due to instrument drift, temperature effects, operator fatigue and learning effects, 
geometric changes in the test section or test article, progressive changes in sting bending under applied aerodynamic 

load, and any of a myriad number of other systematic error sources that conspire against the state of statistical 

control that is generally assumed in an OFAT wind tunnel test. Because coding the independent variables so that 

factor ranges include zero makes the y-intercept of fitted regression models equal to the mean of all fitted points, 

systematic error effects can be detected from trends in the intercept time histories of replicated samples fitted in 

different blocks of time. Figure 1, presented by the author in Ref. 20 and explained in more detail there, displays a 

time series of differential y-intercepts for ten ostensibly identical lift polars acquired over a period of 2–3 weeks. 

Each point represents the difference between the intercept of one polar and the mean of all ten polars. Error bars on 

each data point indicate the degree of random error. Clearly, a trend of progressively increasing estimates of lift is 

observed over time, with this systematic error dominating the random error in this test. 

 

The coding transformation described in this section is desirable for response surface modeling from another 

point of view: it decouples slope and intercept effects. That is, least-squares estimators of the intercept are 
uncorrelated with the slope estimators, so changes in the slopes of the response surface that induce shape changes do 

not affect the intercept of the response model and conversely. This ensures that the functional form of the response 

model is decoupled from problems associated with precisely determining the intercept. Bias errors therefore affect 

only the intercept, and not the details of how responses depend on the independent variables.  Marquardt and Snee21 

describe this result of centering independent variables through coding transformations by saying that it reduces 

“nonessential ill-conditioning.” This then reduces the inflation in variance estimates associated with individual 

regression coefficients, which improves model prediction, especially at off-design points within the design space22. 

Table 1 provides an example of how the coding transformation illustrated in Eqs. (1) and (2) reduces 

“nonessential ill-conditioning” for a simple two-level, two-factor experiment to acquire data capable of fitting the 

following response model in coded factors: 

 0 1 2 12M My b b x b x b x x  (4) 

The coded factors x  and xM correspond to angles of attack in the range of -4° to +10° and Mach numbers from 
0.70 to 0.96 in this example, just as in Eqs. (1) and (2), and the b’s are regression coefficients. A similar response 

model (with different coefficients) could be fitted to the variables in physical units, of course. 
For both coded and physical units the factor levels are listed in Table 1 along with the cross-products of each, 

and the cross products are summed. If the columns of factor levels are regarded as vectors, the sum of cross-products 

 
Figure 1. Block effects reveal unexplained systematic variation over time. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

5 

is proportional to the cosine of the angle between them. Note that for the coded units, the sum of cross-products is 

zero, implying vectors that are at right angles, or orthogonal. The vectors of the factors in physical units are not 

orthogonal. This means that if a model is fitted in terms of physical units, the value of the AoA coefficient will 

depend upon whether Mach is in the model or not (and conversely), but if the model is fitted in terms of coded units, 

the value of the x  coefficient will be the same whether xM is retained or not, and conversely. 
When the regressors are not orthogonal as when the response is modeled in terms of factors expressed in 

physical units, each estimated regression coefficient can be a function of some linear combination of the true 

coefficients of more than one regressor. Orthogonality is desirable because it ensures that the magnitude of a given 
coefficient is independent of other terms in the model. This makes the interpretation of regressor effects independent 

of other terms, which is helpful in understanding the underlying physics. Orthogonality is an especially desirable 

property when terms are rejected from the model to reduce prediction uncertainty, as will be discussed shortly. The 

coefficients of regressors that are retained in an orthogonal model are not influenced by decisions to retain or reject 

other terms in an orthogonal model.  

 

We close this section with a mention of two additional advantages of the coding transformation discussed here. 

While less a problem with today’s computers than in the past, mapping each factor into a dimensionless range from 

-1 to +1 can avoid certain computational errors related to a computer’s necessarily finite resolution. These problems 

can arise when different factors are of extremely different magnitudes when expressed in physical units. Consider a 

wind tunnel test in which forces and moments are modeled as a function of Reynolds number per foot (typically in 

the millions), and some measure of surface roughness that might be expressed in micrometers. Regression 

calculations involve differences in sums of squared values, and finite resolution limits could introduce errors in the 

calculation of differences between the squares of very large and very small numbers.  Scaling all factors to a 

common range of -1 to +1 addresses this problem. 

Decoupling slope and intercept effects by coding the independent factors has one further computational 
advantage. Montgomery, Peck, and Vining23 show how it simplifies calculations of the confidence interval 

associated with model predictions. 

Altogether, there are a number of advantages to coding the factors in such a way as to scale and center them in a 

restricted range that includes zero. However, coding the factors in this way does present some complications when 

the models are reduced by rejected certain terms, due to the small size of their regression coefficients, for example. 

We will discuss those complications in Section IV, after first explaining why such model reductions are desirable. 

III. Regression Model Reduction 

The uncertainty associated with a response model prediction depends on the volume of data used to fit the 

model, the number of coefficients in the model, the intrinsic variability of the measurement environment, and the 

location in the design space where the prediction is made (i.e., the combination of independent variable levels). 

Once the experiment has been executed, however, the only one of these four factors that can influence prediction 

uncertainty at a given site in the design space is p, the number of parameters in the model (including the intercept). 

We now show that the quality of a response surface model can be improved by eliminating some of the terms in the 

model. 

Rationale for Reducing the Number of Model Terms 

We begin with a brief review of response modeling basics, following a condensed version of the appendix in 

DeLoach and Ulbrich [2007]24. The general form of a full polynomial model in K factors is as follows: 

Table 1. Orthogonality of coded units 

Point 
Physical Coded 

AoA,  Mach, M  x M x  xM x  x xM 

1 -4 0.70 -2.80 -1 -1 -1 

2 -4 0.96 -3.84 -1 +1 -1 

3 +10 0.70 7.00 +1 -1 -1 

4 +10 0.96 9.60 +1 +1 +1 

Sum: 9.96 ≠ 0 Sum: 0 
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 iij

K

j

ji xy
1

0  (5a) 

where yi is the response recorded for the i
th

 data point, xij is the i
th

 level of the j
th

 regressor, j is the coefficient of the 

jth regressor, and i is an error term, assumed to be drawn from a normal distribution with a mean of 0 and with a 

constant standard deviation for all responses. The quantity 0 is the intercept term. 
Equation (5a) can be described more succinctly in vector/matrix form as follows: 

 Xy  (5b) 

where y is an (n × 1) vector of response measurements,  is a (p × 1) vector of coefficients, and  is an (n × 1) vector 
of error terms. 

X is the design matrix, consisting of n rows corresponding to the number of data points fitted to the response 
model, and p columns, one for each term in the model, including the intercept term. 

Consider a vector x0 = [1 x01 x02 … x0K]′ representing a data point specified by a given combination of factor 

settings, where x0i is the level of the ith regressor corresponding to this point. The estimated mean response at this 

point is 

 ˆ
0 0y x x b  (6) 

where b is a vector of estimated regression coefficients. That is, b is a best estimate (typically by some least-squares 

criterion) of the vector of true coefficients, , in Eq. (5b). The variance in the response prediction at a particular x0 is 
computed as follows: 

 
12

0
ˆVar 0 0y x x X X x  (7) 

Assume for a moment that Eq. (5) represents the largest response model that can be supported by a given test 

matrix. That is, we assume that this equation describes the highest-order response model for which non-singular 

regression results can be obtained for the prescribed test matrix. 

We wish to examine the consequences of reducing the model so that fewer than the K regressors of the model 

described by Eq. (5) are retained. Let r represent the number of regressors that we wish to reject and let p represent 

the number of terms that will be retained in the model, including the intercept term. We can then express Eq. (5) as 

follows: 

 rrpp XXy
 (8) 

Here, Xp is a (p × n) matrix with columns corresponding to the retained terms in the model, including the 

intercept, and p is a (1 × p) vector of the corresponding regression coefficients for this reduced model. The columns 

of Xr represent terms that are deleted from the model, and r is a vector of the corresponding regression coefficients. 
If b is a vector of estimated regression coefficients for the unreduced model, and bp corresponds to those 

coefficients that are retained, it can be shown that the matrix Var(bp) – Var( p) is positive semidefinite.25 Therefore, 
dropping terms from the full model and refitting the data to a subset of the original regressors results in model 

coefficient estimates with variance that is less than or equal to the variance in the corresponding coefficients of the 
full model. In other words, with respect to the precision of the regression coefficient estimates there is nothing to 

lose, and possibly something to gain, by reducing the number of regressors in the math model. 

Consider now the impact of such a model reduction on the variance of response predictions. Note that a vector of 

predicted responses for each point in the test matrix can be generated from the vector of measured responses, y, by 

means of the “hat matrix,” H, as follows: 

 ŷ = Hy  (9) 



 

 

American Institute of Aeronautics and Astronautics 
 

 

7 

where 

 

-1
H = X X X X

 (10) 

and X is the design matrix, as before. The variance in the vector of response estimates is computed as follows: 

 
2ˆVar y = H Var y H = H I H  (11) 

The hat matrix is both symmetric (equal to its transpose) and idempotent, meaning that HH = H. Equation (11) 

therefore reduces to 

 

2ˆVar y = H
 (12) 

Note that the variance of the ith response prediction is just the ith diagonal element of H 2. Following Box and 
Draper26, we consider the trace of this matrix, which is just the sum of all the diagonal elements: 

 
2 2

1

ˆtrace trace Var
n

i

i

-1
H X X X X y  (13) 

We invoke the following matrix identity: trace(AB) = trace(BA). Let A = X and B = (X'X)-1
X'. Then 

 trace trace trace p p
-1 -1

X X X X X X X X I  (14) 

since p is the dimension of the square matrix (X'X)-1 as noted above in the description of the covariance matrix. 

Combining Eqs. (13) and (14) we have 

 

2
2 1

1

ˆVar

ˆVar

n

in
i

i

i

p
p

n n

y

y  (15) 

That is, for any order polynomial model, the prediction variance averaged over all points in a regression analysis 

is proportional to the term count in that model. Obviously, there is some potential to reduce the average prediction 

variance simply by reducing the number of terms in the model. 

Each term in the model carries with it some contribution to the variance that is explained by the model, and some 

contribution to the residual variance that remains unexplained by the model. The prediction uncertainty of the model 

can be reduced by discarding terms with contributions to the explained variance that are too small to justify given 

their contributions to the unexplained variance. That is, the overall “signal to noise ratio” of the response model can 

be enhanced by judiciously discarding selected terms in the model. Ways and means are outlined briefly in the next 

subsection. 

Model Reduction Methods 

Three common model reduction methods will be described briefly here. They are known as “Forward Selection,” 
“Backwards Elimination,” and “Stepwise Regression.” Each method assumes some initial model that is to be 

reduced, which consists of all the terms in the unreduced model. So, for example, if these methods were to be 

applied to a quadratic calibration model for a six-component force and moment balance, the initial model would 

contain all 28 terms of a 2nd-order response model in six factors. 

1. Forward Selection 

If the forward selection method is used, an initial model is constructed consisting of a constant term only, which 

is equal to the mean of all the regression data. The variance of the regression data sample about this mean is 
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computed, and since at this stage there are no independent variables in the model, all of this variance is by definition 

unexplained by any of the factors under study. 

The one regressor from the original candidate model that has the greatest correlation with the response is then 

provisionally added to the model and regression coefficients for the resulting two-term model are computed. An 

analysis of variance (ANOVA) is conducted to quantify how much of the total variance in the regression data is 

explained by this two term model and how much remains unexplained. The total variance is computed from 
residuals consisting of differences between measured responses and the sample mean. This was done in the previous 

step. The explained variance is computed from residuals consisting of differences between model-predicted 

responses and the sample mean (predictions made with the current response model for all factor combinations in the 

regression data sample). 

If the ratio of the variance explained by the current model to the variance explained by the previous model is 

large enough to distinguish the two variance estimates with a suitably high level of confidence, the new term is 

assumed to have explained a sufficiently large portion of the total variance to be retained in the model. Equivalently, 

the variance that is unexplained by the older and newer models can be compared to determine if there is a significant 

difference. If so, the most recent term is retained in the model and a new term is provisionally selected from among 

those remaining to evaluate. The new term is the one that, when combined with terms already in the model, makes 

the largest incremental increase in explained variance compared to the previous model. If this increase is large 

enough to detect with a prescribed degree of confidence, this term is retained, and the process continues until finally 
the most influential new term increases the explained variance by a degree that cannot be detected with the requisite 

level of confidence. At that point, the last ineffective term is discarded and the process stops, with a reduced model 

featuring all of the terms that have been added at this point in the process. If every provisional term increases the 

explained variance significantly, then all terms are retained and the term count for the model is not reduced. 

2. Backward Elimination 

Backward elimination is similar to forward selection except that the process attempts to identify terms for the 

final model by working in the opposite direction. The backward elimination method begins with all terms from the 

full model included. The term with the weakest correlation with the response is provisionally rejected, and the 

impact on the explained variance of the model is assessed as with the Forward Selection process. If rejecting this 

term causes a significant reduction in explained variance, it is retained and the process stops. Otherwise, the process 

continues until no terms in the model can be rejected without causing a significant reduction in the variance 
explained by the model, or until the only remaining term is the intercept. 

3. Stepwise Regression 

Stepwise regression is a combination of forward selection and backward elimination. The process begins as a 

forward selection process and continues until the model contains the intercept and two regressors. Backward 

elimination is then applied to the three-term model, provisionally eliminating each regressor in turn to assess the 

corresponding reduction in the model’s explained variance, starting with the one that has the weakest correlation 

with the response. If the rejection of any term causes an insignificant reduction in explained variance, it is rejected.  

Otherwise, it is placed back in the model and the forward selection process is resumed with whichever remaining 

candidate term causes the most significant increase in the explained variance. If such a term increases the explained 

variance significantly, it is retained and backward elimination is again initiated on the new model. The process 

continues until no candidate regressors increase the explained variance significantly upon entry and none already in 

the model are so weak that they can be eliminated with no significant effect. 
If two regressors are highly correlated, adding one of them to the model may render the first one superfluous, 

and therefore susceptible to rejection in the backward elimination phase. The backward elimination component of 

stepwise regression provides some protection against multicollinearity in this way, although it does not guarantee 

that the resulting model will be completely free of it. 

It is common to apply more than one stepwise procedure to the same data set. For example, the author often 

follows a common convention of applying backward elimination first, to give all model terms a chance to be 

included. He then applies stepwise regression to the surviving model terms, and finishes with one more application 

of backward elimination to reject high-order terms that might survive the first two steps without contributing 

significantly to the model. The model is then manually inspected for terms that might still be candidates for rejection 

based on multicollinearity metrics, coefficient magnitudes, or other factors, including experience and subject matter 

expertise. Each candidate term is provisionally eliminated, and changes in the explained variance are assessed as 
well as numerous other quality assessment metrics. 
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IV. The Role of Hierarchy 

To recap, we have made the case for certain advantages that accrue from fitting experimental data to factors that 

have been coded by scaling and centering them on intervals that contain zero.  We have also demonstrated that the 

quality of the response model can be enhanced by eliminating unnecessary terms, thereby reducing the uncertainty 

in predictions that are made with the model.  In this section we discuss a potential conflict between these two 

procedures.  That is, we review how coding the factors can place certain constraints on which ones can be eliminated 

from a response model without certain unintended consequences that will be described. 
Eq. (4), presented earlier, is a factor-interaction model in coded variables x  and xM that is reproduced here for 

convenience, with a subscript on y to emphasize that the factors are coded: 

 
0 1 2 12coded M My b b x b x b x x  (4) 

We are able to infer a number of things about the behavior of the response just from the form of this model.  For 

example, we can tell that the response surface tilts, with mean slopes in the x  and xM directions dictated by the 
magnitudes of b1 and b2. We can also infer something about the relative strengths of the angle of attack and Mach 

number dependences over the ranges tested, from the magnitudes of these coefficients. We can tell that angle of 
attack and Mach number are not independent in this case.  That is, the effect that a change in angle of attack has on 

the response depends on the Mach number, and conversely.  We can see this explicitly by rearranging the terms in 

Eq. (4) as follows: 

 0 1 12 2coded M My b b b x x b x  (16) 

The response can be regarded as a first-order function of x  and xM, with a slope for x  that changes as a linear 

function of xM. The response surface is therefore a tilted plane that is twisted, with the slope of ycoded vs. x  changing 

as a linear function of Mach number. Collecting terms in xM reveals symmetrical behavior; the slope of ycoded vs. x  
also changes, and as a linear function of angle of attack. 

Considerable insight can often be gained by a consideration of the response function’s geometry, even (one 
might say especially) when the response model is more elaborate than in this simple example.  One can usually tell 

at a glance which factors interact with which other factors and which are independent, what the relative strengths are 

of the interactions, which first-order responses dominate, where there is curvature, whether the degree of response 

curvature attributable to changes in one factor is a function of the level of another factor, whether the rate of 

curvature is changing and where, etc, etc.   
These insights can inform further stages of the investigation.  For example, if two factors are found to be 

independent and resources are constrained, then one can justify independent investigations of the two factors in two 

separate tests, with the second test postponed to save current resources.  However, if a strong interaction exists 

between the two factors, then a study of how the system response variables depend on one of them while the other is 

held constant is likely to produce results of a meager and unsatisfactory kind.  Everything that is learned about the 

factor that is varied will apply only to the case in which the second variable is at the specific level to which it was 
held constant during the first test.  If there is a strong interaction, the behavior of the variable that was examined 

initially could be entirely different in another test, in which the second factor is set at another level.  We conclude 

that it is useful to know about the basic functional form of the model. 
Now insert Eqs. (1) and (2) into Eq. (4) to express the model in physical variables,  and M.   After gathering 

terms: 

 0 1 2 12physicaly M M  (17) 

where 
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 (18) 

We now ask this question: What if the first-order Mach-number term was discarded from Eq. (4) through some 

model selection procedure such as backward elimination or stepwise regression, or for other reasons?  This is the 
equivalent of declaring b2 to be zero in Eq. (4).  If we then convert the response model to physical units, does the 

model predict the same general behavior as it did in coded units?  That is, in physical units would we still see a first-

order AoA term, an interaction term, and no first order Mach term?  The answer, surprisingly, is “no”.   
From Eq. (18) it is clear that even if b2 = 0, both linear terms appear in the model after it is converted back to 

physical units, because even when b2 = 0, 2 ≠ 0.  So in physical units the model retains the first-order Mach term 
that was dropped when the model was expressed in coded units. In other words, the model reacquired the first-order 

Mach term that had been deleted, simply by the act of converting from coded units back to physical units! This is 

unsettling for anyone wishing to extract fundamental insights about the system’s behavior from an examination of 

the form of the response model.   
Consider now another example.  The following provisional model for lift coefficient as a function of the angles 

of attack and sideslip was fitted from data acquired in an early wind tunnel test of approach and landing 

characteristics for a proposed Space Shuttle replacement vehicle: 

 
2

, 538.4 91.0 2.0 3.2L codedC A B B  (19) 

A and B are the angles of attack and sideslip expressed in coded units.  The coding of independent variables in 

Eq. (19) clearly reveals that changes in angle of attack have a much greater impact on lift than changes in angle of 

sideslip over the limited factor ranges tested, a result that was not unanticipated.   
The principal investigator rejected this model, arguing that while the quadratic dependence of lift on sideslip 

angle is consistent with aerodynamic first principles, symmetry considerations imply that there must be no linear 
sideslip term in the model, and that the relatively small linear sideslip coefficient must therefore be attributable to 

experimental error.  The data used to fit Eq. (19) were therefore refitted to the following reduced model, in the form 

known from subject-matter expertise to be correct: 

 
2

, 0 1 22L codedC b b A b B  (20) 

This model features the quadratic sideslip dependence that is anticipated, but does not predict the linear sideslip 
dependence known by symmetry considerations to be artificial.  

It is instructive to examine what happens when this model is converted from coded to physical units. Let us 

assume that the angles of attack and sideslip were coded analogously to Eqs (1) and (2), as follows: 

 

0

0

A
h

B
h

 (21) 
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where in this case  represents sideslip angle, not to be confused with the coefficients of Eqs. (17) and (18).  The 

constants 0 and 0 are the physical angles of attack and sideslip, respectively, about which these factors are 

centered, and h  and h  are scaling constants that map each physical variable into a range from -1 to +1. 
After inserting Eqs. (21) into Eq. (20) and gathering terms: 

 , 0 1 2 12L physicalC b b b b  (22) 

where 

 

2

0 1 0 12
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b
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 (22) 

Note the curious behavior with respect to the linear sideslip term.  After a simple linear transformation from 

coded units back to physical units, the linear sideslip term has reappeared in the model, despite the fact that we 

discarded it from the coded-units model. Eq. 22 predicts in physical units a linear sideslip dependence believed to be 

nonexistent from physical first principals, and therefore rejected from the original model in coded units. 
The two examples treated here illustrate one of the negative consequences of eliminating what are called 

“hierarchically inferior terms” from a polynomial model, resulting in a class of model first described by 

Kempthorne27 as not “well-formulated”.  One polynomial term is defined as hierarchically inferior to another if the 

other term can be constructed by multiplying the inferior term by another polynomial term.  For example, in the 

model of Eq. (19), the linear B term is hierarchically inferior to the quadratic B term because the quadratic term can 

be constructed by multiplying the linear term by another polynomial term (namely, in this case, itself).  In other 

words, hierarchically inferior terms are the “components” or “building blocks” from which higher-order terms in the 

model are constructed.  To be considered well formulated, all of the inferior terms of every term in the model must 
be present.  If a compound term is included to preserve hierarchy, all of the component terms of that term must also 

be present. Eq. (20) is not well formulated because B2 is in the model, but the B sub-element of that term is not.  

Likewise, Eq. (4), which contains a two-way interaction term, is only well-formulated when both of the first-order 

terms comprising that interaction are also present.   
The columns in the design matrix, X, of Eq. (5b) comprise what is called the “estimation space” of that matrix28. 

Peixoto
29

 shows that the estimation space of a polynomial regression model is invariant under coding 

transformations if and only if it includes all hierarchically inferior terms and is therefore well-formulated. It is 

because Eq. (20) is not well-formulated that under coding transformation the estimation space of the design matrix 

changed.  There is one column in the design matrix for every term in the response model, and a coding 

transformation converted the three-column estimation space of the design matrix for Eq. (20) into the four-column 

estimation space of the design matrix for Eq. (22).  
Likewise, from Eqs. (4), (17), and (18) it is clear that reducing a four-term response model in coded units 

(Eq. (4)) to a three-term model by setting to zero the coefficients of either the hierarchically inferior linear Mach 
term (b2) or linear alpha term (b1), produces a four-term model in physical units with linear terms for both variables. 

This is because, by Eqs. (18), setting b1 and b2 to zero does not drive 1 or 2 to zero.  Note, however, that if one 
dropped the two-way interaction term from Eq. (4) the estimation space would remain unchanged.  That is because, 

by Eq. (18), setting b12 to zero drives 12 (and only 12) to zero, resulting in the same model regressors in coded and 
physical units. Only the values of the coefficients would be different.  The estimation space remains unchanged 

because the interaction term is not hierarchically inferior to any other terms in the model. 
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Another consequence of rejecting hierarchically inferior model terms is that various goodness of fit metrics are 

affected by coding transformations if the model is not well-formulated, complicating the adequacy assessment of 

response models.  Peixoto29 gives examples in which third-order models of average January minimum temperatures 

as a function of North-American longitudes and latitudes are reduced by eliminating hierarchically inferior terms.  

He considers two such models with regressors (in addition to intercept terms) of [a, ab, b
3
] for one model and [ab, 

b3, ab3] for the other, where a and b are latitude and longitude, respectively. Note that these two models are in fact 
missing certain hierarchically inferior terms.  The first model lacks the linear b term required by its ab and b3 terms, 

and it lacks the quadratic b term required by its b3 term.  The second model also requires linear and quadratic b 

terms to be well-formulated, as well as a linear a term.  
Peixoto computed R2 coefficients of determination for both models before and after applying a coding 

transformation that centered the longitude variable on 91° west longitude, a coding tactic simply intended to reduce 

“nonessential ill-conditioning” in the Marquardt and Snee21 sense described in Section II.  He noted that this change 

was the equivalent of choosing the origin of longitude measurements to pass near St. Louis rather than through 

Greenwich, which was not expected to have any effect on the functional form of a model describing temperature as 

a function of coordinate space.  Nonetheless, the functional form of the models did change with this transformation, 

just as in the two examples given earlier.  
Furthermore, Peixoto reports an R2 goodness-of-fit statistic for his first temperature model of 0.776 before the 

coding transformation and 0.919 afterwards, while R2 for the second model was 0.921 before the transformation and 
0.124 afterwards.  The coefficient of determination, R2, represents the fraction of the total sum of squares that is 

explained by a given model.  This would not be expected to be a function of the units selected for the independent 

variables of the model.  When the same coding transformation was applied to other models that were well-

formulated (no missing hierarchically inferior terms), Piexoto reported that the R2 statistic was the same before and 

after the coding transformation. He concluded that this and other goodness of fit metrics (he cites Mean Square Error 

and Mallow’s Cp statistic30 specifically) may be artificially raised or lowered by the origin shifts in a coding 

transformation if the model is not well-formulated. 

V. Discussion 

Three specific questions are addressed in this paper: 

1) Should the factors in a polynomial regression model be coded?  That is, are there benefits to imposing a 

linear scaling and translation transformation to the independent variables that exceed whatever costs are 

inherent in doing this? 

2) Should the terms in a response model be examined with a view to discarding some of them? 

3) Is it necessary to respect hierarchy? 
The author has stated his case for answering these three questions in the affirmative.  Key points that influence 

this view are emphasized here. 

A. Rationale for Coding, Model Reduction, and Hierarchy 

The decoupling of slope and intercept terms that results from coding the independent variables is particularly useful 

when significant block effects are in play.  Block effects, representing systematic bias shifts across data samples 

acquired in different intervals (or “blocks”) of time, are attributable to slowly varying state changes within the test 

environment that persist for prolonged periods.  Such effects may occur more often than they are recognized, and in 

fact are quite common in wind tunnel testing and other applications, where stringent precision requirements can 

amplify the consequences of any failure to cope with them effectively.   
An assumption that block effects and factor effects are independent is usually justified; one would expect a one-

degree change in angle of attack to cause the same change in pitching-moment whether the data were acquired on 

Monday or on Tuesday, for example.  This is notwithstanding the fact that absolute levels of pitching moment might 
be different on two different days, even if the angle of attack and all other factors were held constant, due to block 

effects.  

The decoupling of intercept and regressor effects that coding facilitates is useful for isolating and detecting block 

effects because the intercepts used to quantify them are then model-independent.  Fitting errors therefore do not 

complicate the estimation of block effects when the intercept is independent of other regressors. 
Specific examples were used in this paper to illustrate the impact of coding transformations on the estimation 

space of models with rejected terms that are hierarchically inferior to terms retained in a model.  Likewise, the 

impact on goodness of fit was presented for specific models only.  However, this behavior characterizes polynomial 
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models of arbitrary order in any number of factors, which suggests the importance of maintaining hierarchy during 

the reduction of regression polynomials generally when the factors have been coded.  
Even if factors are not coded, a hierarchical model will facilitate coding in the future.  This would be desirable if, 

for example, one might later decide to standardize the regression coefficients by applying a coding transformation to 

the factors, to more clearly assess how each model term contributes to the explained variance.  One might also later 

decide to invoke a factor coding transformation to reduce the variance inflation in estimates of the regression 
coefficients.  In such cases, the estimation space of the response model can only be expected to remain invariant 

under coding if hierarchy has been respected in the original response model. 
Polynomial term reduction procedures such as those outlined in Section III do not take hierarchy into account, 

and often generate models that are not well-formulated.  For this reason, Draper and Smith30 suggest that models 

generated by automated selection procedures should be reviewed and refined to ensure that they are hierarchically 

well-formulated.  
At least one commercial software package (Minitab®31) will not even perform an analysis of variance on 

nonhierarchical models, because the residual sum of squares of a nonhierarchical model includes components due to 

the missing hierarchically inferior terms. This makes the residual variance less representative of the true 

experimental error. 

B. Two Common Arguments against Imposing Hierarchy 

Two practical arguments are commonly offered against imposing hierarchy, notwithstanding the advantages 
noted above (many of which may simply be unrecognized by those who do not place a high priority on hierarchy).  

The first is that it can be regarded as difficult to automate.  The second is that it forecloses opportunities to reduce 

prediction variance by rejecting (hierarchically inferior) terms per Eq. (15). 

1. Implementation Options 

Regarding the first argument, Peixoto has published an algorithm32 which, for a given model in any number of 

variables, generates all possible model subsets that respect hierarchy. This algorithm can be included in any software 

system designed to automate a response surface modeling analysis. As another alternative, Design Expert®33 is a 

commercially available software package that offers to impose hierarchy automatically in cases where hierarchically 

inferior terms are missing from a proposed response model. If the user declines, the software provides a warning and 

a second prompt. If the user still declines the option to make the model hierarchical, Design Expert analyzes the 

nonhierarchical model with this disclaimer: 
“Using this non-hierarchical polynomial regression model (it excludes hierarchically inferior terms) is not recommended. 

Measures of goodness of fit and the predicted response values may not be the same as those from the coded equation. All 
analysis within Design-Expert software is based on the coded equation.” 

While Design Expert does permit one to perform an analysis of variance on nonhierarchical models (under 

duress!), at least one commercially available software package31, as noted above, will not perform such an analysis 

on nonhierarchical models under any circumstances.  Nonetheless, these software packages are representative of 

available ways and means to automate the generation of hierarchically well-formulated polynomial response models. 
2. Adverse Impact on Prediction Variance 

The second practical argument against imposing hierarchy is that reductions in average prediction variance can 

be achieved by reducing the term count, as described in Section III. Proponents of this argument feel that it is a poor 

cost/benefit trade to retain a term, especially an insignificant one, for no other reason than to respect hierarchy, and 

in the process to foreclose an option to achieve some tangible reduction in prediction variance.  We have discussed 

how the benefits of maintaining hierarchy may be underappreciated.  We now make the case that the costs of 

maintaining hierarchy may be overstated.   
Experience in wind tunnel tests and other aerospace response surface modeling applications suggests that most 

of the quality improvement to be derived from a reduction in model terms occurs as a result of eliminating all of the 

insignificant terms that do not conflict with hierarchy.  Relatively small incremental improvements result from 

further eliminating hierarchically inferior terms. The reason is something called “the scarcity of effects principle”, 

which states that higher-order terms are less likely to be significant than lower-order terms in a response model.   
A polynomial response model can be regarded as a truncated Taylor series approximation to the true but 

unknown underlying functional relationship between a response variable of interest and the factors upon which it 

depends.  Higher-order terms in such a series generally explain progressively less and less of the response by the 

scarcity of effects principle, so that beyond a certain order model they can be ignored altogether with no significant 

effect on the predictive capability of the model.  The absence of significant higher-order terms frees lower order 

terms to be deleted from the model without violating hierarchy.  Therefore, when higher-order terms are not present, 

model reduction procedures are more likely to target terms for deletion that are not hierarchically inferior than those 
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that are.  Only terms that are “second-order inferior” are targeted for deletion; that is, terms that are “inferior to 

terms that are inferior” to higher-order terms that have already been rejected. 
Figure 2 illustrates how much of the quality improvement to be derived from a reduction in model term count is 

gained from eliminating terms that are not hierarchically inferior. This figure describes a representative wind tunnel 

test in which the full, non-reduced models for lift, drag, and pitching moment each featured 55 terms including the 

intercept.  These models were full quartic in three numerical factors, with a fourth categorical factor that could 
assume one of three defined levels. Backward Elimination was applied to discard from each full response model all 

terms that were statistically insignificant but not hierarchically inferior.  For the model of lift coefficient, for 

example, this reduced the term count from 55 to 20 terms.   Since, by Eq. (15), average prediction variance is 

proportional to p, the term count including intercept, this would be expected to reduce the average prediction 

variance (“sigma squared”) by the ratio of 20/55, or 36.4%.  The average standard error of the prediction (“sigma”) 

would then be reduced by the square root of this, or 60.3% compared to the full model.  That is representative of the 

decrease in uncertainty that is achievable through model reduction generally in these types of experiments, when 

hierarchy is maintained. 

 

A further five hierarchically inferior terms could have been eliminated from the lift model to maximize the 

reduction in uncertainty, dropping the term count from 55 to 15 instead of 20.  This would be have reduced the 

average prediction variance by the ratio of 15/55, or 27.3%, and the average standard error of the prediction by 

52.2% relative to the full model, compared to the 60.3% reduction achieved while maintaining hierarchy.  These 
results are displayed in Fig. 2 for the CL (coefficient of lift) model. Similar results are displayed for the drag and 

pitching moment models.   
In all three models examined, a further reduction in uncertainty was theoretically achievable by eliminating 

hierarchically inferior terms. However, it is clear that most of the benefit of term-count reduction was achieved 

before the hierarchically inferior terms were eliminated.  The incremental improvement from eliminating those 

terms is relatively small in this case, and in other cases in which the original term count is large.  This is the case in a 

typical wind tunnel test, in which relatively high-order polynomials (typically up to 4th-order, and occasionally 

higher) are fitted in several factors.   
The author has concluded that it is best to strive for as much reduction in prediction variance as can be achieved 

by eliminating insignificant terms, while simultaneously respecting hierarchy. A policy of maintaining hierarchy 

eliminates the potential conflicts between coding and model reduction, allowing the benefits of both coding and 
model reduction to be realized. This ensures a consistency in model form from coded to physical units as well as a 

consistency in model adequacy assessment metrics, at the cost of only a slight increase in prediction uncertainty that 

for practical purposes such as the examples illustrated in Fig. 2, is usually inconsequential.   
When there is a term that is both statistically insignificant and hierarchically inferior to a higher order term 

displaying a substantial level of multicollinearity (as evidenced by a large Variance Inflation Factor, for example), it 

is often worthwhile to provisionally reject the higher-order, correlated term, refitting the model without it.  This can 

[  

Figure 2. Reduction in prediction standard error from eliminating terms in 

three representative wind tunnel models, with hierarchy imposed (blue 

bars) and without hierarchy imposed (maroon bars). 
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result in the elimination of the small, hierarchically inferior term that was retained previously only to maintain 

hierarchy with respect to the higher-order term, so the advantages of term reduction are realized without the need to 

violate hierarchy.  As a bonus, the elimination of higher-order terms simplifies the model, making it less sensitive to 

experimental error in the estimation of higher-order regression coefficients.  However, care must be exercised to 

ensure that any higher-order terms eliminated in this way are not especially important to the fitting process.  

Rejecting important high-order terms generally results in a serious degradation of the curve fit that is easy to detect 
when it occurs.   

C. Other Points of View 

Three questions were highlighted in the previous subsection: a) should we code, b) should we reject selected 

model terms, and c) should we maintain hierarchy?  While the author answers all three of these questions in the 

affirmative, there is no consensus in the literature.  Other points of view, both pro and con, will be summarized here. 

1. Factor Coding 

Montgomery, Peck, and Vining23 note that there is some controversy about the decoupling of the intercept from 

the rest of the model that coding induces. They point out Brown’s34 argument against centering on the grounds that 

it impacts only the intercept, and that Belsley, Kuh, and Welch35 recommend against it because it forecloses certain 

options to diagnose the role of the intercept in near linear dependencies.  However, Montgomery, Peck, and Vining 

themselves recommend scaling and centering the data to be fitted with a regression model because of the intuitive 

appeal of the standardized regressors that result from this operation (see discussion above following Eq.(3)).  They 
also cite the reduction in variance inflation in the parameter estimates that results from removing non-essential ill-

conditioning associated with arbitrary factor intercepts, and cite other authors who also use coding (Hoerl and 

Kennard36-37, Marquardt and Snee22). On the other hand, Bradley and Srivastava38 note that while centering the 

factors decouples the intercept from other regressors in the model, large correlations can still exist among other 

regression coefficients, which is the argument made by Brown34. Coding therefore cannot be regarded as 

comprehensive protection against multicollinearity. 

2. Model Reduction 

Box, Hunter, and Hunter39 distinguish between causation and correlation in an argument against what they 

describing as the “cherry-picking” of individual non-significant terms.  They claim that replacing a non-zero but 

statistically insignificant regression coefficient with zero has nothing to recommend it, pointing out that the resulting 

expression would no longer be a least-squares estimate of the model. (They do not address in their criticism the 
positive impact that term reduction has on model prediction variance, nor the fact that a reduced model can be 

refitted to produce a new set of regression coefficients that will in fact represent a least-squares estimate of the new, 

reduced model.)   
They identify two applications of regression analysis; to find out, in their words, “what causes what” on the one 

hand, and on the other hand to establish a subset of possible regressors that best correlates with some system 

response of interest. It is in this latter application that model term reduction seems to be better justified in their view, 

although they emphasize that a model obtained in this way has little to say about causation, notwithstanding the fact 

that it can be useful for predicting system responses. 

3. Hierarchy 

Draper and Smith30 argue against dropping hierarchically inferior terms under a translation of origin and propose 

the following rule: 
“If a model is to be consistent under a shift in origin, only the highest-order terms can be deleted at first and any chosen 
deletions must keep the model well-formulated. Moreover, if any of the highest-order terms are retained, all terms of 
lower order affected by them in a shift of origin must also be retained, whether or not their estimates are significant in the 
regression fit.” 

Draper and Smith also provide guidelines for removing terms when a rotational transformation is applied. 
Montgomery, Peck, and Vining23, however, express “mixed feelings” about imposing hierarchy automatically.  

They concede that it is attractive to have the model form preserved after a coding transformation in which a model 

fitted in coded units is converted to physical units, but they describe this as “purely a mathematical nicety.” (They 

do not address the fact that model adequacy assessment statistics such as R2 are not invariant under a coding 

transformation.)   They also note that there are natural laws that are not hierarchical, citing Newton’s law of gravity 
and the magnetic dipole law as examples. They further note that there are circumstances in which subject matter 

expertise would argue against the inclusion of a hierarchically inferior term, as described in this paper in the 

discussion surrounding Eq. (20). They recommend generating the full response model, and then relying on discipline 

knowledge to decide which terms, if any, to eliminate 
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VI. Concluding Remarks 

Substantial productivity improvements in aerospace ground testing can be achieved over conventional OFAT 

testing methods when response surface modeling methods are adopted. Response modeling benefits in numerous 

ways by a linear scaling and centering transformation that codes the independent variables by mapping them into a 

limited range centered on zero and extending, typically, from -1 to +1.   
Significant quality improvements can be achieved by rejecting terms in a provisional response model that 

contribute more to the unexplained variance in a sample of data than to the variance that is explained by the model, 

but there are special considerations to take into account when terms expressed in coded variables are candidates for 

deletion.  The shift in origin associated with centering factors used in a regression analysis results in a change in the 

functional form of models with missing hierarchically inferior terms. We say that “the estimation space of the 
response model is not invariant” under such conditions. Goodness-of-fit statistics such as R2 are also artificially 

raised or lowered under a coding transformation when hierarchically inferior terms are missing from the model.  
These factors argue in favor of maintaining hierarchy during term reduction, especially since most of the 

reduction in model prediction variance that is provided by term reduction can be achieved be eliminating terms that 

are not hierarchically inferior.  Further reducing the model by eliminating hierarchically inferior terms, however 

insignificant, often results in only a relatively small additional decrease in prediction variance. This paper concludes 

that such a marginal improvement does not justify the estimation space invariance or the artificial increases or 

decreases in goodness of fit metrics that can accompany the elimination of hierarchically inferior, coded regression 

factors. 
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