
26 NASA Tech Briefs, August 2007

A Method of Partly Automated Testing of Software 
Principles of symbolic execution and temporal monitoring are exploited. 
Ames Research Center, Moffett Field, California

A method of automated testing of soft-
ware has been developed that provides
an alternative to the conventional mostly
manual approach for software testing.
The method combines (1) automated
generation of test cases on the basis of
systematic exploration of the input do-
main of the software to be tested with
(2) run-time analysis in which execution
traces are monitored, verified against
temporal-logic specifications, and ana-
lyzed by concurrency-error-detection al-
gorithms. In this new method, the user
only needs to provide the temporal logic
specifications against which the software
will be tested and the abstract descrip-
tion of the input domain.

For testing a given computer program,
the method involves the software analog
of a hardware test harness, consisting of
four software modules: a test-input-gener-
ator module, a property-generator mod-
ule, a program-instrumentation module,
and an observer module (see figure).
The test-input-generator module auto-
matically generates inputs to the pro-
gram under test, one at a time, on the
basis of a previously developed symbolic-
execution approach. In this approach,
symbolic values (instead of data) are used
to represent program values and the state
of a symbolically executed program is
represented by a combination of (1) the
symbolic values, (2) a program counter,
and (3) a path condition in the form of a
Boolean formula over the symbolic in-
puts that accumulate constraints that the
inputs must satisfy in order to make exe-
cution follow a particular associated path. 

An input generated by the test-input-
generator module is fed to the property-
generator module, which automatically
generates a set of properties that the
program under test is required to ex-
hibit when executed in response to the
given input. The input is then fed to the
program under test. The program is
then executed and generates an execu-
tion trace. 

The instrumentation and observer
modules perform the aforementioned
run-time analysis. The instrumentation
module must be constructed to report
events that are relevant for determining
whether the program exhibits the re-
quired properties during a particular ex-
ecution. The observer accepts, as input,
the execution trace and the set of proper-
ties generated by the property-generator
module to determine whether the pro-
gram exhibits the required properties. 

The test-input-generator and prop-
erty-generator modules must be con-
structed specifically for the program
under test. It may be possible to auto-
mate the construction of the instrumen-
tation module, depending on the nature
of the program under test. The observer
module is generic and can be re-used for
testing other programs. 

This work was done by Mike Lowry,
Willem Visser, and Rich Washington of Ames
Research Center; Cyrille Artho of Computer
Systems Institute; Allen Goldberg, Klaus
Havelund, and Corina Pasareanu of Kestrel
Technology; Sarfraz Khurshid of Massachu-
setts Institute of Technology; and Grigore
Roflu of the University of Illinois at Urbana-
Champaign. 

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to the Ames Technology Partnerships Division
at (650) 604-2954. Refer to ARC-15244-1.

Test-Input-
Generator

Module

Property-Generator
Module

Observer
ModuleProgram Under Test

Instrumentation
Module

Four Software Modules are used together to determine (1) what properties the program under test
should have and (2) whether it does, indeed, have those properties.

https://ntrs.nasa.gov/search.jsp?R=20100002875 2019-08-30T08:47:54+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10552116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

