
NASA/TM—2009-215802

Failure Analysis of Sapphire
Refractive Secondary Concentrators

Jonathan A. Salem
Glenn Research Center, Cleveland, Ohio

George D. Quinn
National Institute of Standards and Testing, Gaithersburg, Maryland

December 2009

https://ntrs.nasa.gov/search.jsp?R=20100000129 2019-08-30T08:39:07+00:00Z



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk
at 443–757–5803

• Telephone the NASA STI Help Desk at
443–757–5802

• Write to:
NASA Center for AeroSpace Information (CASI)

7115 Standard Drive
Hanover, MD 21076–1320



NASA/TM—2009-215802

Failure Analysis of Sapphire
Refractive Secondary Concentrators

Jonathan A. Salem
Glenn Research Center, Cleveland, Ohio

George D. Quinn
National Institute of Standards and Testing, Gaithersburg, Maryland

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

December 2009



Acknowledgments

The authors thank Charlie Castle and Wayne Wong or many useful discussions,
Rick Rogers for x-ray diffraction, and Terry McCue for electron microscopy.

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information	 National Technical Information Service
7115 Standard Drive 	 5285 Port Royal Road
Hanover, MD 21076–1320	 Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov



Failure Analysis of Sapphire Refractive Secondary Concentrators

Jonathan A. Salem
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

George D. Quinn
National Institute of Standards and Testing

Gaithersburg, Maryland 20899

Abstract
Failure analysis was performed on two sapphire, refractive secondary concentrators(RSC) that failed

during elevated temperature testing. Both concentrators failed from machining/handling damage on the
lens face. The first concentrator, which failed during testing to 1300 °C, exhibited a large r-plane twin
extending from the lens through much of the cone. The second concentrator, which was an attempt to
reduce temperature gradients and failed during testing to 649 °C, exhibited a few small twins on the lens
face. The twins were not located at the origin, but represent another mode of failure that needs to be
considered in the design of sapphire components. In order to estimate the fracture stress from
fractographic evidence, branching constants were measured on sapphire strength specimens. The
fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins.
Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC.
Better machining and handling might have prevented the fractures, however, temperature gradients and
resultant thermal stresses need to be reduced to prevent twinning.

Introduction
The Sun is a readily available source of thermal energy for space systems if its power can be

efficiently harnessed and applied. Refractive secondary concentrators (RSCs) provide higher solar
concentration ratios, efficiency, and heat receiver cavity flux tailoring as compared to conventional
hollow refractive parabolic concentrator systems (Refs. 1 and 2). The materials considered for RSCs are
generally single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-alumina-garnet
(Y3Al5 O 12 or YAG), magnesium oxide (MgO) or sapphire (Al 2O3). These materials are very brittle, and
the reliability of such RSCs under the thermal shock conditions encountered during space mission sun-
shade transitions is of great concern. In addition to thermal shock, an RSC may have large, continuous
temperature gradients and associated stresses at elevated temperature depending upon the design. This can
lead to slow crack growth and creep in many systems, and in sapphire it can lead to twinning when the
stress state involves compression induced shear.

Testing of a single sapphire RSC resulted in catastrophic failure (Ref. 3). A second RSC with a
redesigned mounting system to minimize thermal gradients also resulted in failure. This report
summarizes the failure analysis and the failure stress estimation for both RSCs, and gives
recommendation for future design and testing of RSCs.

Test Conditions Leading to Failure

Both concentrators were machined
1
 from Heat Exchange Method grown boules 2 such that the RSC

long axis was parallel to the c-axis of the crystal as shown in Figure 1, and the front lens face was normal

1 Computer Optics Inc., Hudson, New Hampshire
2Crystal Systems Inc., Salem, Massachusetts
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to the c-axis. The RSC test assemblies are shown in Figure 2 and details of the test assembly shown in
Figure 3.

Testing was performed in NASA Glenn Research Center’s Tank 6 under vacuum conditions
(2× 10 -5 torr). The tank has nine independently powered and controlled 32 kW xenon arc lamps capable of
providing 1.2 suns at the primary concentrator. Two types of primary concentrators were used: a fixed
disk and an inflatable type. Multiple thermocouples were located outside the rhenium cavity. Details of
the testing have been summarized in references 3 and 4.

First Concentrator

On April 17, 2000, efficiency tests were run at low temperature and high power. The rhenium
receiver was not used and the output of the RSC was directed into a calorimeter. The crystal was held in
place with eight spring loaded shoes, to allow for expansion, as shown in Figure 2(a). These tests are
described in detail in Reference 4.

(a)
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Figure 1.—(a) Sapphire crystal showing mineralogical and Miller index notation. The
c-axis is a 3-fold symmetry axis, but sapphire is indexed as a hexagonal unit cell
with c/a = 2.730; and (b) sapphire concentrator prior to testing.
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(b)

Figure 2.—Test assembly for (a) the first (exposed cone) and (b) the second (covered cone) RSCs.
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(b)

Figure 3.—Layout of the receiver, thermocouples, insulation and calorimeter for (a) the first and (b) the second
refractive concentrator.
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Figure 4.—Average temperature profiles of (a) the first RSC and (b) the second RSC. The dips at the start of phases
3 and 5 are due to short periods in which the solar simulator shutter was closed to allow ignition of additional
lamps.
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(a)

(b)

Figure 5.—(a) Overall view of RSC no. 1, the first solar concentrator, after testing.
The lens diameter is 89 mm (3.5 in.) and the overall length is 284 mm
(11.2 in.). (b) View of the fracture surface face of the bottom half (piece 1)
showing the fracture origin and bifurcation that is located 44 mm away from the
origin.
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On August 30, 2001, two tests were run with the rigid primary concentrator—one at lower
temperatures without the Re receiver and one at higher temperatures with the Re receiver. The high
temperature test had an approximate maximum receiver temperature of 1300 °C (1573 °K) and an
approximate front shoe temperature of 532 °C (805 °K), with a peak shoe temperature of 582 °C (855 °K)
after shut down. The first indication of performance problems was an unexpected decrease in temperature
as shown in the temperature—time profile in Figure 4. The test was shut down and cracks in the lens
could be seen once the temperature cooled to ~982 °C. Upon inspection the crystal was observed to be
cracked as shown in Figure 5.

Second Concentrator

On March 31, 2004, tests were performed with a new concentrator and holder that were designed to
lower thermal gradients and minimize contact stresses. The new holder was made from a ceramic
insulation fabricated to fit in a glove-like fashion around the RSC, with a molybdenum sheet between, as
shown in Figure 2(b). In 2004 two tests were run—one test with an inflatable primary concentrator at a
lower temperature and one at mid-temperature with the rigid primary concentrator and Re receiver. For
the mid-temperature exposure the maximum receiver temperature was approximately 649 °C (922 °K)
and the front shoe temperature was approximately 438 °C (711 °K). The crystal again failed. The
temperature at failure was one-half of that in the first test, despite the use of more insulation and a lower
temperature gradient. Figure 6 shows RSC no. 2 after removal from the test rig.

Figure 6.—RSC no. 2 after removal from the test rig. It has broken into two pieces.
Cracks at the neck are also visible. The cracks in the neck and extractor are
extensions of the main fracture in the cone body. The lens diameter is 89 mm
(3.5 in.) and the overall length is 284 mm (11.2 in.).
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General Observations

Both failed crystals exhibited similar features, including extensive cracking and internal discoloration
in the conical region. As will be shown below, the primary fractures for both concentrators started at the
rounded front lens faces and then propagated downward and inward through the concentrator. Both had
classic brittle material type fractures. The main cleavage crack in both RSCs was radially aligned and x-
ray diffraction indicated the main crack plane was coincident with the m-plane. The fracture origins were
3-dimensional surface flaws in both concentrators, but the flaws were not the same. Large twins were
observed on the r-plane in one concentrator, but did not trigger the fracture.

First Concentrator

As shown in Figure 5(a), the lens face and cone are fractured near the mid-plane of the lens face and
downward into the body to the extractor. There is a mixture of cleavage and conchoidal fracture and some
crack bifurcations. As will be shown later, fracture started on the face of the lens and propagated
downward into the cone body and extractor.

Besides the severe cracking, Figure 5(a) also shows that the cone region of the lens exhibits a rose
hue when viewed on the cone sides, with thicker regions appearing darker than thinner regions. When
viewed down the lens axis, a light-brown hue is exhibited in the uncracked regions, and rose hues in the
severely cracked regions, probably from side light being reflected out the lens face. The rod region and a
heavily cracked region of the cone are still clear.

Discoloration in sapphire can occur after high temperature heat treatments (usually greater than
1500 °C) if divalent cations are present (Ref. 5). The impurities need only exist at the part-per-million
levels, and break the valence charge. Pink and red generally occur from Cr, however, color changes can
occur from many common elements such as Ti, Fe, Ge, Si, Sn, Mg, Be, etc. Conventional chemical
analyses methods such as x-ray energy dispersive spectroscopy (XEDS) is not sufficient to detect such
impurities in sapphire. Use of secondary ion mass spectroscopy or laser ablation can yield accurate
measurements on sapphire if the operator has sufficient experience (Ref. 5).

Discoloration can also occur after exposure to high-energy electromagnetic radiation, such as X-rays
or ultraviolet radiation, as in this case. This phenomenon is known as “solarization,” and is caused by the
formation of internal defects, called color centers, which selectively absorb portions of the visible light
spectrum. A separate investigation on RSC material chemistry has been published (Ref. 6).

Second Concentrator

As shown in Figure 6, the fracture started on the face of the lens and propagated downward into the
cone body and extractor. The primary crack split the lens face and cone body near the mid-plane down to
the extractor. Several r-plane bifurcations branch from the cone sides. The main crack rotated onto the c-
plane after traveling ~15 mm into the extractor.

Besides being severely cracked, the cone region of the lens exhibits a translucent, lighter rose-grey
hue as compared to the first RSC, with thicker regions appearing darker than thinner regions. The lighter
color is likely a result of the lower temperature (and power) level. The end of the cone and the rod region
just after the cone are clear whereas the remaining portion of the rod is an opaque dark gray.

Fractographic Analysis

First Concentrator

Figure 7 shows the four main pieces that concentrator no. 1 broke into after removal and some
subsequent handling for the fractographic analysis. The origin is on the curved front face, about 20 mm
away from the rim. There also is a large twin that extends diagonally all the way through piece 1 and
which penetrates partially through piece 2. This twin was incidental and did not cause fracture.
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Figure 7.—Concentrator RSC no. 1 fractographic analysis. Fracture started from the fracture origin on the
front face and propagated (white arrows) into the cone body and onwards to the neck and extractor.
The initial main fracture was almost perfectly radial and close to the m-plane in orientation. All the
cracking in the neck and cone body can be backtracked to the one fracture origin. An incidental twin
ran entirely through piece 1 from the lens front face through to the cone side and out the back of the
cone. One end was close to but not exactly at the fracture origin site (2.3 mm away). There were
minor perturbations in the main crack when it reached the twin plane indicating that the twin was in
the RSC before the crack ran through it. The twin was very shallow in piece 2. It ran from the lens
face right through the side of the cone, but did not extend very far below the fractured surface. The
insert shows how subsequent handling caused the extractor to split into two pieces that separated
from the cone body.
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Figure 8 shows a close-up of piece 2 revealing some of the classic fracture surface markings such as
twist hackle, cleavage step hackle, Wallner and arrest lines. The fractographic analysis of single crystals
is covered in detail in Reference (Ref. 7). It should be borne in mind when viewing this and the following
figures that reflections and translucency make photographing single crystals difficult. In the examples
below, some regions are shown with several views with different lighting to bring out various details.
Failure occurred from the fracture origin site and extended parallel to the m-plane. The main crack plane
emanating from the origin contains hackle lines that extend from the lens face to the extractor on one side.
This is a distance of –5 in., and the crack nearly cleaves the cone into two segments that attached at the
extractor rod. On the other side of the origin, the crack cleaved the lens cone only to a depth of –2 mm
along the lens before splitting, moving off the m-plane and forming a confluence of cracks at a variety of
angles.

There is a large density of cracks where the lens cone and extractor rod meet. The temperatures are
large in this location and the section changes shape, so failure might be expected in this region, however,
no origins could be identified and the observed cracking was the result of the main crack front reaching
this region and being redirected and branched. Also, no cracks emanated from the support shoes on the
cone body sides, where a perturbation in the temperature distribution might have occurred.

Figure 8.—Piece 2 of RSC no. 1. The small white arrows show the local direction of crack propagation
(dcp) as identified by hackle lines, Wallner lines (not labeled), and arrest lines. These facilitate the
determination of the crack propagation direction and the fracture origin. The twin runs diagonally
across this view as marked by yellow arrows. Its left end comes very close to but is not coincident with
the fracture origin. The main crack was perturbed slightly when it traversed across the preexisting twin.
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Figures 9 to 12 show that the failure origin is on the lens face, about 20 mm away from the rim. These
views were taken with different lighting at different angles. The origin is a large, partially formed
Hertzian cone crack, that extended from one of two partially polished impact divots or “bruises”
measuring – 0.1 and – 0.2 mm in diameter, as shown in Figure 12. The cracks associated with the bruises
are quite large, – 0.5 mm, and the damaged region can be seen with the unaided eye. Contact damage
usually has two forms depending upon the sharpness or bluntness of the offending impactor (Ref. 7).
Sharp impactor contact damage usually has a small concentrated damage crater with a star like array of
cracks radiating outwards. Blunt impactor damage has a conical or ring shape. Often it may be a partial
ring shape such as shown in Figures 10 and 11. From the size of the ring crack, it may be deduced that the
impact object had a diameter greater than 0.5 mm.

The Hertzian crack likely formed due to impact with a hard blunt object during the grinding or early
polishing steps. As Figure 12 shows, final polishing created some microscractches around the bruises.
These would not have been present if the impact had occurred after the final polishing phase. Better care
would have eliminated this failure source.

In addition to the bruises, large remnant scratches from the rough machining were noted on the lens
faces, Figures 10 and 11, but also on the shaft, Figure 13. Another scratch approximately 2.3 mm from the
rim on the lens face extends along nearly 3/4 of the perimeter and can easily be seen with the unaided eye,
Figure 14. Also apparent are some semi-polished chips on the edge between the lens face and the cone, as
shown in Figure 15. Ideally, better machining and polishing should be performed. Poor polishing, such as
that observed, is referred to as a “short finish” and generally results in a very large variation in the
measured strength (Ref. 8).

(a)	 (b)

Figure 9.—Close- up views of piece no. 2 of RSC no. 1 with about the same orientation as in Figures 7 and 8. Minor
polishing scratches are revealed by the lighting in (a). (b) is a close up of (a).
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Figure 10.—This view shows the curved polished face of pieces 1 and 2 of RSC no. 1 held
together at the origin site. The orange arrows highlight the Herztian (blunt impactor)
contact crack.

Figure 11.—View of piece 1 of RSC no. 1 showing cracks extending from
bruises on the lens face. The sites of the impact bruises are marked in this
view, but they are more obvious in the next figure which has different
lighting.
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Figure 12.—Surface lighting of the bruises revealing polish scratches in the
polished face of RSC no. 1. The residual scratches that radiate from the
contact sites imply that the impacts occurred prior to the final polishing of
the face. Final polishing caused micro scratches to radiate outward from
the damage sites.

Figure 13.—Grinding marks along extractor shaft of RSC no. 1.
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Figure 14.—Grinding damage and scratches on the lens face near
the rim of RSC no. 1.

Figure 15.—Chips on the rim of the lens of RSC no. 1.

The twin that was observed running through RSC no. 1 is shown in Figures 7, 8 and 16, but it
appeared to have been incidental. It could not be determined where it initiated. It was more obvious in
piece 1 and it penetrated completely through the piece. It was seen over all surfaces with the naked eye. It
extends only partially into piece 2. It is also visible on piece 2 primarily by how it affected the main crack
propagation. Additional twins that were detected in the front face of piece no. 1 are shown in the
Appendix.
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Figure 16.—A prominent twin (the light colored band) ran through the body
of piece 1 of RSC no. 1. This is a view of the piece through crossed
polarizers.

Second Concentrator

Figure 17 shows fractured RSC no. 2, which was intentionally sliced after the test in order to facilitate
chemical analysis and fractographic examination. Hereafter the two halves of the conical body are
referred to as half A or half B as shown in the figure. The main crack plane emanating from the origin
contains twist hackle and cleavage step hackle that extend from the lens face to the rod neck and
extractor. Once entering the rod extractor, the crack turned onto the c-plane, nearly cleaving the rod.

The crack path down the cone is parallel to the m-plane on one side and ill-defined on the other, and
separates the cone into two halves. At –17 mm from the origin along the side, the crack bifurcated once
onto the r-plane. This bifurcation was followed by several others, one of which exited the cone, causing a
portion of the lens to separate diagonally from the rest of the cone. Along the lens face, the crack
extended along the r-plane until the middle of the lens, where it propagated in a conchoidal fashion. The
first bifurcation occurred onto an m-plane at –17 mm along the face. This was followed by second and
third bifurcations at –22 and –30 mm (shown later in Figure 22(a)). The third bifurcation extended to
edge of the lens, whereas the first two stopped within the concentrator.

There was a single fracture origin on the lens face that was located only 0.5 mm away from the rim
bevel and 1.3 mm away from the cone side wall as shown in Figures 17 and 18. It is not known whether
this site was coincident with a shoe contact site as shown in Figures 2 and 3. On half B the origin is
clearly identified as a large curved scratch. Close up views of half B are in Figures 19 and 20 which show
the curved scratch in more detail.

Figure 21(a) and (b) shows a variety of grinding irregularities in the lens front face and bevel.
The matching half A of concentrator 2 is shown in Figures 22 to 25. The crack from the scratch is less

clearly evident and attention is drawn to what appears to be a pit at the origin site. No trace of the
apparent pit existed on half B. The “pit” is probably secondary chipping after the main fracture occurred
or it may have been a small initial pit that was enlarged by secondary chipping. The scratch is the primary
flaw.
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In addition, occasional, large remnant scratches from the initial rough machining stages can be noted
on the lens, rod and cone, as shown in Figures 26 and 27. Several other features in the vicinity of the
origin were also detected as shown in Figure 28, but they appeared to be incidental micro twins.

Figure 17.—Concentrator 2. The white arrows show the direction of crack
propagation.

Figure 18.—View of curved forward face of RSC no. 2. Fracture started from a
curved scratch best seen on half B on the bottom. Note the secondary chipping
on both halves along the main fracture plane.
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(a)

(b)

Figure 19.—Stereo optical microscope views of half B of RSC no. 2. The piece has
been tilted so that both the fracture surface and the polished curved lens face
can be seen. (b) is a close up of (a).
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Figure 20.—Detail of the fracture origin of RSC no. 2, in half B. A crack
extends from the scratch region (out of focus in this view) which is
characterized by tell tale short lateral spall cracks. The crack created
underneath the scratch extended upwards and curved to the left in
this view (small arrow). The crack penetrates at least 250 µm deep
beneath the polished surface into the lens body. Lens fracture
started from the deepest point of the crack indicated by the black
arrow. In this view, light reflections from the subsurface curved crack
face cause shadows and bright reflections.
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(a)

(b)

Figure 21.—Two views of the same area of the polished face and edge
bevel of half B of RSC no. 2 revealing additional irregularities
besides the curved scratch. Notice how adjusting the lighting in (b)
can bring out some scratches that are not visible in (a).
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(a)

(b)

Figure 22.—Views of the fracture origin area in half A of RSC no. 2
showing both the fracture surface and the polished front surfaces.
Bifurcations onto the {m} plane are evident in (a). The first two do not
extend very far into the body, but the third causes a main crack to
form all the way through the body. (b) shows radiating hackle lines
on the fracture surface that point back to the origin site. “dcp” is
direction of crack propagation.
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Figure 23.—View of fracture surface of half A of RSC no. 2 showing
hackle lines that formed on {r} and {m} planes on either side of the
origin.
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Figure 24.—Two views with different illuminations of lens face of half A
of RSC no. 2 showing surface scratches, pits, and the fracture
origin site.
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(a)
	

(b)

(c)
	

(d)

Figure 25—SEM close-up views of the origin in half A of RSC no. 2. (b) to (d) are close up views. The origin is the
crack that penetrated beneath the polished surface. The “pit” is probably secondary chipping although genuine
pits were noted elsewhere in the vicinity.
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Figure 26.—View of lens cone and rod of RSC no. 2 showing surface
scratches (grinding damage) prior to testing.

Figure 27.—View of RSC no. 2 cone and bevel showing heavy pitting
and surface scratches (grinding damage) prior to testing. Notice the
two step uneven bevel.
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(c)

(b)

Figure 28.—Odd features detected on or just underneath
the surface in half A of RSC no. 2 near but not actually
at the fracture origin site. (a) shows the overall origin
area with arrows marking the strange features. (b) and
(c) are close up views.
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Estimation of the Failure Stress

First Concentrator

Quantitative fractographic analysis may be used to estimate fracture stresses in brittle materials (Refs.
7, 9 to 11). The crack radiates outwards at high speeds once unstable fracture occurs. Telltale markings
form on the fracture surfaces at distances from the origin that may be correlated to the stress in the part at
fracture. The distance to the first crack branch (bifurcation) also depends upon the stress. These distances
may be measured and used to estimate the fracture stress. This is a well established procedure for glasses
and polycrystalline ceramics, but is less commonly used for complex single crystals. The estimates in this
section for the sapphire lenses are only rough approximations for reasons discussed below. Strong thermal
or stress gradients and residual stresses can create deviations from the relationships. Nevertheless, they
provide a check on the finite element analysis predictions of the stresses present in the lenses.

The nominal local fracture stress associated with tension and uniaxial or biaxial flexure can be
estimated from (Refs. 7, 9 to 11):

Ajσ
f 
= 

rj
	 (1)

where σf is the remote fracture stress and Aj is a particular constant corresponding to a particular boundary
with radius rj , where j is m, h, or b for mirror, hackle or branching as shown in Figure 29, which shows
an idealized schematic for a surface flaw. Equation 1 is valid for uniform steady state stress fields.

In RSC no. 1, bifurcation occurred at ~ 44 mm from the origin across the top round polished face, as
shown in Figure 8, with a nominal angle of 52 °.

The value of Aj is a function of the material’s microstructure and to a lesser degree of the specific
conditions of failure (i.e. the stress state and the severity of stress gradients) (Refs. 7 and 12). Application
of this approach to single crystals such as sapphire is complicated by the tendency for cracks to propagate
on specific planes, and ideally the constants should represent the same crystal orientation and stress state.
Unfortunately specific values of the branching constant Ab for the m- and r-planes of sapphire are not
available. However, several estimates of the branching constant were obtained as follows.

Polycrystalline alumina subjected to biaxial flexure has a value of 7.4 MPa √m and for coarse grain
alumina subjected to uniaxial tension, a value of 7.3 MPa√m has been reported (Ref. 7). In addition, the
branching constant was evaluated from data on sapphire uniaxial flexure specimens with a-plane cross
sections that were tested previously (Ref. 8). The results are shown in Figure 30. The specimens exhibited
branching from the a-plane to the r-plane (see Fig. 26 of Ref. 8)). Besides calculating a mean value from
eq. (1), linear regression of the following forms of eq. (1) was used to make estimates:

log σ f = M log rb + log Ab	 (2)

σ f = 
Abrb

− 0.5 + σ th	 (3)

where σth is interpreted as either a threshold stress for branching or a residual stress (Refs. 7 and 13).
Equations 1 to 3 yield Ab of 7.2 ± 0.6, 7.9 ± 1.5, and 7.0 ± 0.3 MPa√m for the sapphire respectively, with
M = -0.49 and 6th =11 MPa, as shown in Figure 30. These results compare well with those in (Ref. 7),
implying a relatively constant value for alumina. The presence of a slight residual stress is not surprising,
considering the grinding damage observed on the specimens via X-ray topography (Ref. 8), but this
would be very shallow. During measurement of the branch lengths, several specimens were observed to
exhibit fracture on the r-plane and bifurcation onto another r-plane. When the principal stresses were
resolved on the r-plane, similar Ab resulted.
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Figure 29.—Idealized regions and boundaries formed around a failure origin on the surface of a part that was
exposed to uniform tension stress. The distance rm is the radius of the boundary for the onset of mist, the distance
rh is the radius of the boundary for the onset of hackle, and the distance rb is the radius of the boundary for the
onset of branching. Problems in interpreting single crystal fracture mirror markings often force one to use the
branching distance for quantitative stress estimates.
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data from Reference 8.
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Assuming that the room temperature fracture constants are applicable, the 44 mm bifurcation distance
used with Equation (3) implies a stress of only –44 MPa. This is much less than the 250 MPa or larger
strengths exhibited by well polished sapphire tested at low temperatures (Ref. 8). This very low stress
estimate is consistent with the observation that the contact crack origin was moderately large. Large
cracks require very little stress to trigger fracture.

Localized heating from the bruises should not have played a role because radiant heating of sapphire
is not too sensitive to the surface finish.

Second Concentrator

Both of the crack fronts running along the m-plane (Fig. 22(b)) and r-plane (Fig. 22(a)) bifurcate at
–17 mm. Figure 22(a) shows several short bifurcations that are in a row, but these all arrested after a short
propagation into the cone. The first significant bifurcation occurred at 30 mm from the origin. The
bifurcation distance of –17 mm combined with A b = 7.0 MPa^m and equation 3 implies a fracture stress
of –65 MPa. The larger distance (30 mm) gives a stress estimate of 51 MPa using equation 3. This also is
a very low stress, but again, these estimates are supported by the observation that the flaw at the fracture
origin was rather large and deep.

Stress Analysis

In order to understand the stress state in the RSC and design better RSC systems, finite element
analyses were performed by using the single crystal thermal and elastic constants (Ref. 14). The resulting
thermal and stress profiles are shown in Figures 31 and 32 for the first concentrator and indicate a
maximum principal tensile stress of 57 MPa at the rim of the front lens face of the concentrator where the
a- and m-axes exit, near the actual failure. This is in reasonable agreement with the value of 44 MPa
based on fractographic measurement.

For the second concentrator, FEA modeling (covered cone design, 1200 °C) shown in Figures 33 and
34 indicates somewhat lower tensile stress of about 20 to 25 MPa on the lens face. Peak stresses up to 52
MPa occur just before the transition from the lens cone to the extractor rod.

As noted previously, the radial cracking suggests that tensile hoop stresses at the rim caused fracture
in both concentrators. The origins were also located near the rims, where shielding and clamping may
alter the temperature profiles relative to those estimated by the FEA analyses based upon the assumed
boundary conditions. Better modeling with more realistic boundary conditions may give improved stress
estimates in the front face rim regions.

Deg. C

_ 534
0 608
0 682
0 756
0 830
0 904
0 978
0 1052
_ 1126

1200

Figure 31.—Temperature distribution in sapphire crystal for receiver temperature of 1200 °C with exposed cone
design.
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Figure 32.—First principal stress distribution in sapphire crystal for receiver temperature of 1200 °C with exposed
cone design. Stress results are in Pa.

Deg. C

Figure 33.—Temperature distribution in sapphire crystal for covered cone design with a receiver temperature of
1200 °C.
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Figure 34.—First principal stress distribution in sapphire crystal for receiver temperature of 1200 °C with covered
cone design. Stress results are in Pa.

Design of Future Solar Concentrators

Fracture in sapphire requires two ingredients: flaws and stresses. Both were present in the lenses.
Twinning requires compression induced shear, with the magnitude depending on the surface finish and
temperature. Intersecting twins can nucleate cracks, and thus twins must be designed against.

The stresses in the lenses are very low in magnitude. They are primarily thermal stresses due to
differential expansions in the lens. Stresses could be generated either during the steady state operating
condition of the lens at peak temperature or during transients such as during heat up. Although fractures
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seemed to occur in both concentrators during their steady state run, the prospect of thermal stresses during
a cool down must also be considered.

With the large preexisting flaws, the stresses in the lenses were sufficient to cause fracture. The plane
of fracture in both was almost perfectly radial across the top curved lens surface. Beneath the top surface
and into the cone body, fracture followed preferred crystal planes, but the radial cracking across the top of
the lens that split the lenses into two primary halves (also along certain cleavage planes) strongly suggests
that hoop stresses were the cause of fracture. The fracture origins were located near the rim of both lenses.
Hence, one is led to the possibility that a temperature gradient may have existed across the face of the
lens, such that the rim was cooler than the middle of the lens face. Such a temperature distribution would
generate tensile hoop stresses near the rim. Various clamps and shields in place during the test sequence
may have contributed to radial temperature gradients. The design of the shields and clamps should be
reviewed prior to any future testing with the goal of minimizing radial temperature gradients.

The flaws (an impact crack in one case and a scratch in the other) were classic types commonly found
in sapphire and most brittle materials for that matter. Sapphire is sensitive to chipping, scratches, and
contact damage. The source of the two flaws that caused fracture of the concentrators appear to be
handling damage incurred either during the preparation of the pieces, or afterwards during handling or
installation in the test rig.

Sapphire is strong, hard, and scratch resistant if carefully prepared such as with bend bars and simple
disks, but it is much harder to prepare complex parts without damage. Scratches, impacts and contact
damage can weaken it considerably. Anything less than near-perfect preparation can lead to fracture if the
part is exposed to any tensile stresses.

The two flaws were aberrant and were not ordinary grinding damage. Ordinary grinding damage and
minor chipping were observed. Although they did not cause fracture in these two lenses, such flaws
would be expected to play a role if the atypical impact and scratch damage had been prevented. Twins
were noted in one lens, but they were incidental. Nevertheless, they could grow or new twins could
nucleate with thermal cycling. They could generate strength limiting cracks and cause lens weakening.

The only ways to predict the survivability of future concentrators is to perform stress and reliability
analyses or conduct costly proof testing. Multiple mechanisms of fracture exist in sapphire. The analyses
will require data representing the expected failure modes for the use conditions. For elevated
temperatures, compression along the c-axis results in the formation of r-plane twins at resolved shear
stress as low as 12.6 MPa (Ref. 15). The r-plane twins nucleate cracks upon intersection (Refs. 15 and
16), and thus serve as a source of fracture. In addition, basal plane twinning has been observed beneath
hardness indentations and abraded surface, and extensive basal plane twinning was generated from the
compressive face of flexure beam (Ref. 7) at room temperature. For humid environments, stress corrosion
produces slow crack growth in tensile regions (Refs. 17, 18, and 7). Slow crack growth has also been
observed in c-axis fibers subjected to pure tension at elevated temperature (Ref. 19). Thermal shock
loading has been noted to produce internal failure, although the specific mechanism was not identified
(Ref. 20). In addition, slip can occur on the basal and prismatic plane at elevated temperatures. Generally
this occurs at temperatures greater than 1000 °C and depends upon the strain rate (Refs. 21 to 23),
however, under condition of confining pressure and compressive loading, basal slip at 600 °C and
prismatic slip at temperatures low as 200 °C has been produced (Refs. 23 to 24). The shear stress levels
for basal slip are on the order of 100 MPa or less for temperatures greater than 1100 °C and 300 MPa for
prismatic slip (Ref. 25). The resolved shear stress for deformation of sapphire can be increased by doping
with Cr 3+ or Ti+4 ions (Ref. 26).

A review of the literature for this study revealed gaps in the data bases. For example, fracture
branching distance constants are incomplete, and we had to make estimates of the appropriate branching
constant. Fracture mirror constant tabulations for sapphire are also spotty. Additional fracture branching
or fracture mirror data to fill the gaps would be very helpful and dramatically improve our ability to do
post mortem failure analyses.

Any twinning, slip, or crack growth will likely cause aberrations in the light transmission within the
RSC. Thus, for the temperature that the RSC is likely to encounter, the stress levels must be minimized,
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and analyses for fast fracture, elevated temperature slow crack growth, and twinning should be
performed. In order for such analyses to be valid, the input data must represent the condition and flaw
population expected (i.e. similitude is required). Because handling damage is generally not well
represented in input data, inspection and proof testing are frequently used for fracture critical hardware.

Conclusions

The first (exposed cone design) sapphire RSC fractured from a large contact crack associated with
bruises on the lens surface that occurred during the grinding or polishing steps of the lens preparation.
The estimated failure stresses were only 40 to 60 MPa and were consistent with a large crack being
present at the fracture origin. Thus the component strength was well below values obtained with typical
lab scale test coupons.

The second (covered cone design) sapphire RCS fractured from a large scratch and underlying
precrack on the lens surface near the rim. The scratch was curved and rough, unlike nearby minor residual
grinding damage, which was common. The estimated failure stress was on the order of 20 to 65 MPa and
also was consistent with the presence of a large flaw at the origin.

Ideally, better handling and control of the parts would minimize the chances of the introduction of
large flaws. Inspection protocols could be established to facilitate detection of such flaws, but it should be
borne in mind that most of the flaw is beneath the surface. Surface traces of the flaw may be hard to
detect or interpret.

Careful controls should be exercised during the machining and polishing or post machining treatment,
such as etching or annealing, should be applied. Poor polishing, such as that observed, is referred to as a
“short finish” and generally results in a very large variation in the measure strength. It must be realized
that component strength and strength measured for ideal coupons can be very different unless very similar
machining and handling is applied.

The stresses causing failure of the two RSCs resulted from thermal variation throughout the lens. One
source of the thermal variation was the heat transfer characteristics of the component and its boundaries,
however, other sources of potential thermal variation, such as the lens discoloration, need further
investigation. Attention should be given to minimizing the radial temperature gradients on the front cured
lens face. Due to the many issues discussed, creation of a reliable sapphire RSC will be difficult.

Recommendations

(1) Polishing with a specified procedure (Ref. 27) that eliminates subsurface damage (i.e., a “short
finish”). This might be done only in critical areas in order to lower cost.

(2) Careful optical inspection of the component prior to testing to ensure that significant damage does
not exist in critical areas.

(3) Elevated temperature annealing of the component to “heal” any unidentified machining damage.
This is usually performed in air or flowing oxygen, and may be difficult because the component is so
large that it may creep or brinnel under its own weight. Careful mounting of the component in the furnace
will be required. An alternative to elevated temperature heat treatments is etching, similar in concept to
that done on glass windows. However, this may require post-etching polishing.

(4) Improved thermal stress and reliability analyses to identify critical areas and quantify the
component reliability. Further analyses will require knowledge of the failure mechanisms encountered in
service. Ideally, analyses against fast fracture (via thermal stresses and shock), elevated temperature slow
crack growth, and other internal mechanisms such as twinning should be considered. Unlike many
ceramics, sapphire is sensitive to compressive stresses.

(5) Mechanical testing of coupons to generate strength, crack growth statistics, and fractographic
constants for the use conditions. The strength of sapphire is a strong function of temperature, orientation,
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surface finish, and stress state. Analysis of the concentrator should guide the coupon testing and the
coupons must be prepared identically to the RSC for the test data to be representative and for any
reliability analysis to be meaningful. Manufacturers generally can prepare flat coupons very well,
however, curved surfaces are more difficult to prepare.

(6) Basic testing of coupons to determine the source of darkening and the affect on the transmission
and heating characteristics of the sapphire.

(7) Analyze other single crystals such as SiC (Moissanite), which has become available in large
diameters in recent years. As compared to sapphire, SiC exhibits some beneficial properties such as lower
thermal expansion and higher thermal conductivity. It has similar fracture toughness (1.8 MPa^m). This
material may therefore be very chip and contact damage sensitive. It also suffers from a low vapor
pressure and active oxidation at low oxygen partial pressures. However, this might be mitigated by optical
coatings.

References

1. X. Ning, R. Winston, J.O’Gallagher, “Dielectrically Totally reflecting Concentrator,” Applied Optics,
Vol. 26 (6), pp. 300–305, Optical Society of America, 1987.

2. D. Jenkins, R. Winston, J. Bliss, J. O’Gallagher, A Lewandowski, and C. Bingham, “ Solar
Concentration of 50,000 Achieved with Output Power Approaching 1 kW,” J. Solar Energy
Engineering, Vol. 118, pp. 141–145, 1996.

3. W.A. Wong and C.H. Castle, “High Temperature Solar Vacuum Testing of a Sapphire Refractive
Secondary Concentrator,” Proceedings of the Space Technology and Applications International
Forum-STAIF 2002. American Institute of Physics Conference Proceedings, Vol. 608, 2002.

4. W.A. Wong, S.M. Geng, C.H. Castle, and R.P. Macosko, “Design, Fabrication and Test of a High
Efficiency Refractive Secondary Concentrator for Solar Applications,” Paper Number AIAA–2000–
2998 from the Proceedings of the 35th Intersociety Energy Conversion Engineering Conference,
2000. Also NASA/TM—2000-210339.

5. George Rossman, Private communication, May 7, 2004, California Institute of Technology,
Pasadena, CA.

6. N. Jacobson and R. Biering, “Materials Chemistry Issues in the Development of a Single-Crystal
Solar/Thermal Refractive Secondary Concentrator,” NASA/TM—2005-213625, 2005.

7. G.D. Quinn, “Fractography of Ceramics and Glasses,” NIST Special Publication 960-16, National
Institute of Standards and Technology, Gaithersburg, MD, 2007.

8. J.A. Salem, “Slow Crack Growth and Fracture Toughness of Sapphire for the International Space
Station Fluids and Combustion Facility,” NASA/TM—2006-214023, 2006.

9. J.J. Mecholsky, S.W. Freiman, and R.R. Rice, “Fractographic Analysis of ceramics,” ASTM Special
Technical Publication 645, B.M. Strauss and W.H. Cullen, eds., American Society for Testing and
Materials, West Conshohocken, PA, pp. 336–379, 1977 .

10. R.W. Rice. “Ceramic Fracture Features, Observations, Mechanisms, and Uses,” ASTM Special
Technical Publication 827, J.J. Mecholsky and S.R. Powell, eds., American Society for Testing and
Materials, West Conshohocken, PA, pp. 5–103,1982.

11. J.J. Mecholsky, and R.W. Rice, “Fractographic Analysis of Biaxial Failure in Ceramics,” ASTM
Special Technical Publication 827, J.J. Mecholsky and S.R. Powell, eds., American Society for
Testing and Materials, West Conshohocken, PA, 185–193, 1982.

12. R.W. Rice, private communication, June 5, 2001.
13. J. B. Quinn, “Extrapolation of Fracture Mirror and Crack-Branch Sizes to Large Dimensions in

Biaxial Strength Tests of Glass,” J. Am. Ceram. Soc., 82 [8] (1999) pp. 2126–2132.
14. J. Palko and S. Geng, Unpublished report on “Thermal and Structural Analysis of a Sapphire

Refractive Secondary Concentrator Assembly,” NASA Glenn research Center, Cleveland, OH,
Mar. 2004.

NASA/TM—2009-215802 	 32



15. W.D. Scott and K.K. Orr, “Rhombohedral Twinning in Alumina,” J. Am. Cerm. Soc., Vol. 66,
pp. 27–32, 1983.

16. F. Schmid and D.C. Harris, “Effect of Crystal Orientation and Temperature on the Strength of
Sapphire,” J. Am. Ceram. Soc., 81 [4], pp. 885–892, 1998.

17. T.A. Michalske, B.C. Bunker and S.W. Freiman, “Stress Corrosion of Ionic and Mixed
Ionic/Covalent Solids, “J. Am. Ceram. Soc., 69, 10, pp. 721–724, 1986.

18. S.M. Wiederhorn, “Fracture of Ceramics,” pp. 217–241 in National Bureau Special Publication 303,
Proceedings of the conference on Mechanical and Thermal Properties of Ceramics, April 1–2,
Gaithersburg, MD, 1968.

19. A. Sayir, “Time Dependent Strength of Sapphire Fibers at High Temperatures,” in Advances in
Ceramic Matrix Composites I, ed. N. Bansal, American Ceramic Society, pp. 691–702, 1993.

20. D. Zhu, N. Jacobson, and R Miller, “Thermal-Mechanical Stability of Single Crystal Refractive
Concentrators for High-Temperature Solar Thermal Propulsion,” proceedings of Renewable and
Advanced Energy Systems for the 21 st Century, April 11–15, Maui, HI, eds. R Hogan, Y. Kim, S
Kleis, D. O’Neil and T. Tanaka, paper No. RAES99–7702, 1999.

21. J.B.J. Wacthman and L.H. Maxwell, “Plastic deformation of Ceramic-Oxide Crystals, II,” J. Am.
Ceram. Soc., 40, 11, pp. 377–85, 1957.

22. M.L. Kronberg, “Dynamical Flow Properties of Single Crystals of Sapphire, I,” J. Am. Ceram. Soc.,
45, 6, pp. 274–279, 1962.

23. H. Conrad, G. Stone, and K. Janowski, “Yielding and Flow of Sapphire in Tension and
Compression,” Trans. Met. Soc., AIME, 233, pp. 889–897, 1965.

24. J. Castaing, J. Cadoz, and S.H. Kirby, “Prismatic Slip of Al 2O3 Single Crystals Below 1000 °C in
Compression Under Hydrostatic Pressure,” J. Am. Ceram. Soc., 64, 9, pp. 504–511, 1981.

25. D.J. Gooch and G.W. Grooves, “Prismatic Slip on Sapphire,” J. Am. Ceram. Soc., 55, 2, pp. 105,
1972.

26. B.J. Pletka, A.H. Heuer, and T.E. Mitchell, “Work-Hardening in Sapphire,” Acta Metall., 25,
pp. 25–33, 1977.

27. J.A. Salem, “Handbook for Recommended Material Removal Processes for Advanced Ceramic Test
Specimens and Components,” NASA –HDBK–6007, Nov. 2007.

NASA/TM—2009-215802 	 33





Appendix A.—Examination Techniques for Twins

Sapphire sometimes forms twins in response to thermomechanical loading. They may be harmless or
they can cause fracture, particularly if intersecting twins nucleate cracks. Twinning will likely cause
aberrations in the light transmission within the RSC and conceivable it could create hot spots. Twins can
be very small and difficult to detect or very large and easy to detect. Large and small twins were detected
in the concentrators. Twins can be distinguished from fracture surfaces since twins are extremely flat and
straight, whereas most fracture surfaces have some irregularities. The simplest examination procedure is
to position the component in a Polariscope as shown in Figure A1, and rotate the component around with
different orientations. An improvised Polariscope that is in some respects easier to use is shown in
Figure A2.

(b)

Figure A1.—Classic style Polariscope. (a) The component is
placed between the polarizer eyepieces and the illuminated
polarizing screen. (b) is a picture of piece 1 of concentrator
1. The photo was taken by a digital camera focused
through one eyepiece. The very large twin appears as a
light colored band running diagonally through the piece
(white arrows). It is not a fracture plane.
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(a)

Figure A2.—An improvised Polariscope examination device. (a) shows a common light box
is with two polymer polarizing sheets. One is clipped to the light box, the other is held by
a clamp on the post in the foreground. Piece 1 of concentrator 1 is placed in between
and rotated about. (b) shows a photo of the twin.
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A third way to look for twins is to use conventional reflected or transmitted illumination and look for
reflections or slight refractions of the light. Figure A3 shows the set up used to find additional twins in
concentrator 1.

(a)

(b)

Figure A3.—Transmitted illumination was used to detect small twins.
(a) shows the two pieces of concentrator 1 mounted in a soft cork ring
on a common ring stand. A fiber optic light source was directed up
through the body. (b) shows a digital camera photograph of the front
face of RSC no. 1. Color felt tip dashed marker lines were marked on
the surface to bracket two twins, which are the very thin white lines
marked by the white arrows. (c) shows other twins on the same surface.
The lighting and component orientation has to be changed to
accentuate each twin set since it is difficult to get all twins visible at the
same time. Twins 5a and b are tiny short segments. Twin 4 is longer.
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(c)

Figure A3.—(Concluded.) Transmitted illumination was used to detect small
twins. (a) shows the two pieces of concentrator 1 mounted in a soft cork ring
on a common ring stand. A fiber optic light source was directed up through
the body. (b) shows a digital camera photograph of the front face of RSC no.
1. Color felt tip dashed marker lines were marked on the surface to bracket
two twins, which are the very thin white lines marked by the white arrows. (c)
shows other twins on the same surface. The lighting and component
orientation has to be changed to accentuate each twin set since it is difficult
to get all twins visible at the same time. Twins 5a and b are tiny short
segments. Twin 4 is longer.
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