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Integrity of the Plasma Magnetic Nozzle

Richard A. Gerwin
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Summary

The injection of hot (100s of eV) plasma propellant into a
nozzle composed of shaped magnetic flux to convert the
plasma thermal energy into directed thrust is fundamental to
enabling high-specific-impulse (10 000s of seconds) and
high-specific-power (10s of kW/kg) piloted interplanetary
propulsion. This report pertains to the theoretical physics
governing certain aspects of the flow of plasma propellant
through a magnetic nozzle, primarily the integrity of the
interface between the plasma and the nozzle’s magnetic
field, for these operational parameters. An expression for the
initial thickness of the interface is derived and found to be
significant (on the order of 10–2 m). A comparison is made
between classical resistivity and gradient-driven Lower
Hybrid Drift microturbulent (anomalous) resistivity, from
which an algorithm is derived that obtains interface
thickening as a time integral, that is then related to the
nozzle-shaped geometry of the interface. An algorithm cha-
racterizing the plasma temperature, density, and velocity
dependencies is derived and found to be comparable to
classical resistivity at local plasma temperatures on the order
of 200 eV. Macroscopic flute-mode instabilities within the
interface in regions of adverse magnetic curvature are dis-
cussed and a practical growth rate formula for magnetic
nozzle design is derived. It is calculated that only one to two
e-foldings of the most unstable Rayleigh-Taylor (RT) mode
would occur. For a more complete treatment of the RT effect
it will be necessary to include the Hall effect as well as ion
magnetoviscosity. The necessity of incorporating the Hall
effect into Ohm’s law is discussed, where the full Hall cur-
rent is able to flow and concomitant plasma rotation allowed.
In that case, a critical nozzle length expression is derived
below which the interface thickness is limited to about 1 ion
gyroradius.

1.0 Introduction

This report pertains to the flow of plasma propellant
through a nozzle composed of shaped magnetic flux, with
application to the propulsion of space vehicles. The integrity
of the interface between plasma and nozzle magnetic field
is a particular concern. We consider at the outset a set of
coaxial, circular, highly conducting coils in vacuum carrying
azimuthal currents. Such a coil set produces a longitudinal
magnetic field B having cylindrical vector components Br

and BZ. In terms of a “long-thin” geometric approximation,

the latter component would be dominant. Plasma thrusters,
in their simplest form, involve the nozzle-based acceleration
of hot plasma propellant along the nozzle-shaped longitu-
dinal magnetic field.

Figure 1 illustrates a simplified few-coil magnetic nozzle
cross section without and with the propellant flowing,
respectively. An engineering design would incorporate a
large number of incremental contiguous coils. The magnetic
nozzle configuration is nominally axially symmetric. It
consists of a figure-of-revolution around the dash-dot axis of
symmetry. The current-carrying magnetic-field coils are
represented in cross section as rectangles. They carry adjust-
able azimuthal currents in the 0- (azimuthal angle) direction.
The magnetic field lines produced by these coils lie in the
meridional r,Z-plane. Some of them are represented here as
solid lines closed around the coils (div B = 0). The chamber
wall of the nozzle is not shown here, but would lie just inside
of the magnetic field coils, at a slightly smaller radius.

Figure 1(a) illustrates magnetic field lines in vacuum,
without injection of hot plasma propellant. The incipient
nozzle breech, nozzle throat, and nozzle exit regions are
indicated. An engineering design would incorporate a large
number of incremental contiguous magnetic coils to smooth
out and control the flow of plasma propellant.

Figure 1(b) illustrates magnetic field lines, before and
after being distorted by conducting plasma propellant
injected into the breech. Magnetic flux is squeezed between
the highly conducting plasma propellant and the yet more
highly conducting metallic magnetic field coils. In the idea-
lized magnetohydrodynamics (MHD) model, the initial
magnetic flux in the chamber volume never penetrates either
the coils or the plasma. The dotted arrows indicate magni-
tude and direction of the plasma flow velocity. The highly
conducting edge plasma flows along the distorted nozzle
magnetic field lines. (The pressure of the conducting plasma
distorts the initial magnetic field lines.) Concomitantly, the
exterior magnetic field acts like a flexible containment wall,
radially confining the interior plasma.

The directed plasma velocity is small in the breech and
large at the exit. Stagnation enthalpy is converted into flow
energy by the converging-diverging magnetic nozzle geome-
try. Magnetic trim coils may be needed beyond the exit
region to straighten out the flow downstream.

Adjustments of details of the configuration geometry, as
well as adjustments of the propellant’s injection geometry, and
the initial time dependence of the setting-up injection rate may
be necessary to achieve a final desired configuration of steady
flow.
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Resistive diffusion of the squeezed magnetic flux into the
slightly resistive external magnetic coils can be mitigated, in
principle, by time-dependent programming of the coil’s
circuit currents or by the use of superconducting coils. Of
course, neither of these options is available for the preven-
tion of resistive interdiffusion of magnetic flux and plasma
propellant. Certain instability mechanisms similarly cause
mixing of plasma and magnetic field regions. These resistive
and dynamical processes are both important because they
degrade the performance of the magnetic nozzle, by allowing
plasma attachment to the closed external magnetic field
lines. The potential harm due to these processes thus consti-
tutes the motivation for this report, which deals with the
interface where the nozzle magnetic field meets the plasma.

When a highly conductive volume of plasma (centered on
the axis) is axially driven into such a longitudinal magnetic
field, azimuthal diamagnetic currents are induced to flow in
the plasma. These induced plasma currents may be regarded
as images of the external currents. The plasma currents are

directed to reduce the internal magnetic field within the
plasma and increase the field on the outside of the plasma.
The net result is as if magnetic flux had been transferred
from the plasma volume to the external volume. From Fara-
day’s law, the total magnetic flux is conserved in the overall
transverse cross section because the external coils are highly
conducting. Pictorially, the intruding plasma pushes mag-
netic flux out of the way.

In an extreme idealization of this process (derived from
very highly conducting plasma), all of the internal magnetic
flux will have been expelled from the plasma to augment the
external magnetic flux that confines the plasma laterally.
Such confinement is affected by external magnetic pressure
of the field (ultimately supported by the external coils). This
external magnetic pressure acts inward across the plasma
boundary to balance the outward lateral thermal and inertial
pressure of the plasma.

The magnetic nozzle concept discussed in this report is
based upon the above-described idealization (illustrated in
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Fig. 1), notably incorporating a “sharp-boundary” model of
the field-free plasma. Moreover, the chosen configuration is
the best that could be hoped for from the viewpoint of the
plasma-detachment problem, since no plasma resides on
magnetic flux. The report focuses upon the degradation of
this ideal zero-order configuration due to the occurrence of
fundamental microphysical processes. Concomitantly, the
detachment problem again becomes a concern.

A more realistic illustration that anticipates the degrada-
tion from an ideal configuration is shown in Figure 2. Start-
ing at the top, distributed coils carry the electric current that
generates the longitudinal magnetic field (B). An insulating
liner is the physical surface that prevents the flow of radial
current and thus provides the Hall voltage. (Without radial
current, the edge plasma will not spinup.) The confining

magnetic field occupies a region largely plasma-free near the
coils and liner, where it is generally parallel to the axis of
symmetry. The field then becomes more diffuse in the direc-
tion towards the axis of symmetry. This is the resistively
expanding plasma-magnetic field (hereafter plasma-field)
mixing layer S, possibly due to anomalous resistivity, which
contains both plasma and magnetic field. The core plasma is
envisioned to be field free.

Starting from the left in Figure 2, the initial penetration
depth of ions into the confining magnetic field A is upstream
of the throat. The resistively expanding plasma-field mixing
layer S increases from the initial penetration depth of the
ions. A region of possibly Rayleigh-Taylor (RT) unstable
plasma due to adverse longitudinal curvature may exist just
upstream on the throat. A smooth throat is formed by gradually
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increasing the azimuthal current in the coils about halfway
down the complete nozzle, then gradually decreasing the coil
currents further downstream towards the exit. Beginning at the
throat, there is a precipitous drop in plasma temperature,
which continues downstream (so the plasma resistivity is
likely to be classical downstream of the throat). Beyond the
“Exit” there will be supplementary magnetic coils to straigh-
ten out the flow of the core plasma. This process will involve
resistive energy losses.

The injection of hot hydrogen-plasma propellant into the
breech of a magnetic nozzle, with subsequent conversion of
its thermal energy into directed energy (and momentum),
constitutes one of the important approaches to high-specific-
impulse propulsion of space vehicles, as envisioned for
certain interplanetary missions (Refs. 1 to 5). A magnetic
field configuration comprising axially symmetric (Br, B0)
field lines (in terms of cylindrical coordinates), can be
shaped into a converging-diverging nozzle by properly
placed coaxial solenoidal coils. It offers advantages over
wall-confined flow for the controlled nozzle flow application
of a high-temperature fully ionized propellant gas.

One such advantage is derived from the nozzle magnetic
field imposing an inward radial pressure balancing the out-
ward plasma pressure, presumably isolating the plasma from
the vessel wall (the coil shields). Such radial magnetic con-
finement of high-electrical-conductivity propellant can in
principle reduce wall erosion by flowing plasma and reduce
contamination of the plasma by heavy, high-atomic-number
wall impurities. Radial magnetic confinement, if successful,
thus mitigates unwanted mass entrainment and consequent
reductions in specific impulse as well as mitigates the loss of
thruster efficiency from inadvertent diversion of enthalpy
into impurity radiation.

Another advantage is the opportunity for expeditious
experimental development since propellant flow control along
shaped magnetic field lines can be controlled and optimized in
a convenient, iterative manner during operation. Such optimi-
zation can be realized by adjusting the size and placement of
coils and their currents. Still another possible advantage may
be magnetic control of the thrust vector if slight deviations
from axial symmetry are tolerated near the nozzle exit.

Viability of the magnetic nozzle concept in its simplest
form rests upon the integrity of a well-defined axially sym-
metric plasma-magnetic field interface. However, some
fundamental microphysical processes, in the form of
electron-ion collisions and microinstabilities, give cause for
concern about the maintainability of a sharp interface. The
sharp plasma edge adjacent to the surrounding magnetic flux
constitutes an ideal axisymmetric equilibrium configuration
in the sense of a pencil perfectly balanced on its point; it is
nevertheless nonequilibrium in that there are closely accessi-
ble asymmetric configurations of lower energy. Such
processes macroscopically broaden the interface by either
classical or anomalous resistive diffusion, the former due to
coulomb scattering of electrons on ions, and the latter due to

time-dependent three-dimensional electric and magnetic
fluctuations.

If the desired interface were to become diffuse because of
the action of these processes, the consequent enhanced
intermixing of the periphery of the propellant core with the
inner edge of the magnetic nozzle field (propellant “attach-
ment”) would create a “detachment problem.” Inadvertent
attachment of propellant to magnetic flux becomes ulti-
mately manifest as resistive drag acting on the attached
portion of the exhaust plume. That is, the attached part of the
exhaust plume axially stretches and bends the returning
magnetic flux lines. Because axial stretching and bending of
returning magnetic field lines requires energy, the energy
drain is manifested as a resistive drag on the propellant’s
egress. Exhaust velocity and thrust thus become degraded.
This situation motivates attention to the attachment process.

In this report, a process of “instant attachment” of newly
injected propellant to the magnetic nozzle flux is described. It
is not accessible to standard MHD simulations, being charac-
terized by Hall effects and individual particle (kinetic) effects.
Examination of interface physics during the first quarter ion
gyroperiod after injection is performed. It shows an initial
boundary-layer thickness in the breech of the nozzle, which
proves to be on the order of the ion inertia length, ccop i (the

speed of light divided by the ion plasma frequency). This layer
thickness in the breech of the nozzle constitutes an initial
condition subject to further resistive broadening (Fig. 2).

One of the inferences of this report is as follows: Despite
the substantial body of excellent theory and some limited
experimental information that have been accrued, there is not
yet a sufficiently comprehensive and accurate subgrid model
readily available for magnetic nozzle design. The effects of
nonzero beta (beta, 0, is defined as the local ratio of total
plasma pressure to magnetic pressure, Ptot/PB, where PB =
B2/2µ0 ; thus, 0 = 2µ0 Ptot/B2) in gradient-driven microturbu-
lence are not yet well understood, and 0 ranges from practi-
cally zero in the external magnetic field to a large value
within the internal plasma. Moreover, there is not yet agree-
ment on the numerical factor in anomalous resistivity in the
plasma edge layer, although there is agreement on the para-
meter dependencies. Such a model ideally would be applied
in tandem with available two-dimensional axially symmetric
MHD computer simulations (such as MACH2, see Ref. 3),
with the intent to optimize the magnetic nozzle configuration
while minimizing the detachment problem.

On the other hand, within the magnetic-fusion-energy
community and within the space-plasma physics community,
there exists the knowledge base and the expertise for devel-
opment of the needed theoretical and computational tools.
The development of such a synergistic design capability to
supplement the MHD codes would require a highly detailed
and computationally intensive effort by a team of scientists
collectively familiar with both the numerical issues and the
physics issues.
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The body of this report is intended to provide substance to
these general remarks. Some of the key journal articles are
reviewed without dwelling overly on their mathematical
details. (It proved necessary to collect and study many
papers to assimilate a certain perspective from which to
identify key contributions.)

1.1 Outline of Report

Section 2.0, “General Physics Description of Magnetic
Nozzle,” presents general physics descriptions of magnetic
nozzle flow, and the flow of a bounded, resistive fluid along
magnetic nozzle field lines is discussed therein, along with
associated processes that may be potentially deleterious to
the plasma-field interface in the magnetic nozzle. The signi-
ficance of local propellant resistivity and of local radial
pressure gradients, in connection with diffusive broadening
of the desired axially symmetric interface at the free-surface
boundary of the propellant region, will be indicated. The
eventual connection due to microturbulence between effec-
tive resistivity and the steepness of edge gradients will also
be pointed out.

We emphasize in Section 2.0 that a local treatment of dif-
fusive intermixing of plasma and field needs to be made well
defined by specifying certain global electrophysical boun-
dary conditions. The need arises because of the Hall effect,
which introduces additional dominant physics considerations
when the electron gyrofrequency in the plasma-field inter-
face is much larger than the electron collision frequency. The
global electrophysical boundary conditions directly influence
the nature of the local Ohm’s law, which, in turn, is a key
player in calculating the evolution of the plasma-field
interface.

The conventional application of the simple Ohm’s law
requires that the radial Hall voltage not be shorted out and
concomitantly, that the Hall current not be allowed to flow.
An important demonstration of this assumption lies in the
opposite case, in which there ensues a severe reduction of
effective plasma electrical conductivity due to Hall current,
which is termed “magnetoresistance.” Magnetoresistance
would be a feature of any simulation or experiment that
allows Hall current but disallows plasma rotation. A prac-
tical consequence of magnetoresistance germane to
magnetic nozzle operation would be a severe enhancement in
the rate of diffusive plasma-field intermixing. Such consid-
erations would apply no matter whether the fundamental
resistivity is classical or anomalous. In the magnetic nozzle
geometry, however, having a flow of Hall current without
rotation of propellant would be unrealistic. Therefore, rota-
tion also has been included here, with attention to satisfying
boundary conditions in the propellant injection region.

Allowing unhindered plasma rotation self-consistently
with the presence of Hall current and with no Hall voltage
drastically changes the character of the plasma-field
transition layer from the artificial nonrotating case. We show
that the layer thickness is limited to about the size of the ion

gyroradius, provided that the nozzle length is shorter than a

certain critical length. That length is Xe mi me , namely

the product of a representative electron mean free path (pos-
sibly anomalously short) with the square root of the ion-to-
electron mass ratio.

The quasi-radial Hall current produces an azimuthal
(JHall x B) force that spins up the edge plasma. In a steady-
flow model that satisfies the up-stream boundary conditions,
the Hall-driven rotational velocity increases going down-
stream. The originally shorted Hall voltage is eventually
reestablished downstream in the reference frame of the
rotating edge plasma after sufficient spinup has been
achieved. This explains why the interface layer broadening,
downstream of the above-mentioned critical length, reverts
to the resistive layer that it would have been had the Hall
current not been allowed to flow. In this regard, it should be
noted that viscous interaction of the plasma’s edge layer with
the core plasma would slow down the spatial rate of Hall
spinup of the edge layer, and would therefore increase the
above-mentioned critical length.

In Section 2.0 we suggest the possibility of backup
approaches to magnetic nozzle utilization. In the event that a
sharply defined plasma-field interface cannot be achieved
and maintained throughout the nozzle, nozzle-based accele-
ration of attached plasma along with core plasma is to be
expected because of the converging-diverging property of
the attached external annular regions of magnetic flux. The
problem of maximizing thrust then occurs at the nozzle exit,
where accelerated attached plasma must be freed from
returning magnetic flux. One approach to that detachment
problem, which supports nozzle efficiency, has been docu-
mented, and the reference is listed.

Section 2.0 also contains a summary of nominal working
parameters (density, temperature, and magnetic field
strength) that may be relevant to some interplanetary mis-
sions and laboratory experiments. These are referred to
occasionally throughout the report in connection with certain
estimates of plasma properties.

In Section 3.0, “Resistivity From Gradient-Driven Micro-
instabilities,” we first address the initial interface width (in
the breech) of the plasma-field mixing layer. This result is
relevant to an important microinstability, the Lower Hybrid
Drift (LHD) instability, regarding its linear and nonlinear
evolution. Then we review the linear theory for that micro-
instability, which is suspected to cause the broadening of
magnetic, shear-free plasma-field interfaces. This is a rela-
tively robust, gradient-driven small-scale instability. Some
stabilizing features are pointed out.

Also within Section 3.0, the most difficult aspect of the
microturbulence issue is addressed. It involves the connec-
tion of LHD microturbulence with anomalous resistivity, as
arising from the nonlinear evolution and saturation of
gradient-driven microinstabilities. The subject is reviewed
and includes quasi-linear and alternative models. The review
also discusses some attempts at numerical simulation. A
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practical formula for resistive interface broadening for gen-
eral resistivity is identified, which can be applied to postpro-
cessing of MHD simulations of magnetic nozzle flow. A
comparison of classical and anomalous resistivity from one
of the simulations is presented, as a function of plasma
density and temperature in hydrogen propellant.

Section 4.0, “Rayleigh-Taylor- (RT-) Type Instabilities,”
deals with RT-type instabilities driven by adverse curvature.
The presence of these RT modes leads to a lack of nozzle-
based control of directed propellant flow. It is important to
be aware that, in addition to diffusive broadening, the boun-
dary surface of the propellant is free to deform, especially
along the direction perpendicular to the field lines, namely
the azimuthal direction. Deformations of the plasma surface
in the azimuthal direction do not involve the expenditure of
energy on local bending or stretching of field lines. The
propellant’s surface therefore is vulnerable to “flute modes,”
in spite of plasma pressure being nominally balanced by
magnetic pressure at the interface. Specifically, regions of
adverse streamline curvature and adverse magnetic curvature
(center-of-curvature lies within the plasma) are susceptible
to RT deformations (Fig. 2). The distinction between the
propellant streamlines and the magnetic field lines is impor-
tant in the injection region (see Sec. 4.0).

The RT modes will be discussed within the context of
magnetic nozzle operation, including the effect of finite
Larmor radius (FLR) stabilization. A physical derivation of
the growth rate will be presented that incorporates the simul-
taneous influences of plasma pressure and plasma flow with
curved streamlines. A practical formula for postprocessing
use with axisymmetric MHD simulations of magnetic nozzle
flow is obtained.

It is recognized that a more rigorous treatment of adverse
curvature instabilities lies within the subject of “ballooning”
modes, which takes into account that the adverse curvature
regions have limited length. This is a complicated subject
from which practical formulae applicable to magnetic nozzle
flow are not readily available. It deserves a special treatment
that is beyond the purview of this report. A reference to work
on the destabilization of ballooning modes in mirror con-
fined plasmas is given.

The FLR stabilization of the long-wavelength RT branch
is reviewed and is utilized to construct a practical formula
for nozzle design. Enhancement of the RT growth rate by
Hall effects is mentioned, with references, but these are not
included in this report. It is observed that adverse curvature
of propellant streamlines in the injection region is practically
unavoidable. The short-wavelength branch of the RT modes
is also reviewed, including the absence of their FLR stabili-
zation, as well as their close connection with the previously
treated LHD instability. For the short-wavelength RT
branch, the relative importance of curvature relative to the
plasma pressure gradient is examined and found to be impor-
tant in the plasma injection region.

Section 5.0 contains a final summary and discussion.

Appendix A provides a list of the symbols used in this
report, and Appendixes B through K expand on various
concepts presented in this report (see “Contents”).

1.2 Basic Notation and Basic Approach

We use uppercase V for macroscopic fluid velocities as in
the MHD model and Vth t for the ion thermal velocity.

Lowercase v is used for particle velocities, as in connection
with the Boltzman-Vlasov equation.

The evolution of the diffusive plasma layer at the edge of
the plasma is described with a local Cartesian coordinate
system. This approach is valid whenever the thickness of the
diffusive layer is small compared with the radius of curva-
ture the short way around. As an example of the validity of
this approach, see Section 2.3.3, “Diffusion of Field Into
Plasma With Hall Effect,” which describes the penetration of
an external magnetic field into the plasma in full cylindrical
coordinates. Whenever the diffusive magnetic layer is thin
compared to the radius of curvature, then the radial variable
r varies negligibly over the region of interest. It thus cancels
out as a constant, and the cylindrical diffusion equations
reduce to a Cartesian representation of the diffusion process.

Appendix B suggests a general and simple computational
approach for obtaining the evolution of the plasma diffusive
edge layer. One uses the exact resistive diffusivity D inside
of the time integral. The time integral is replaced by an axial
one-dimensional spatial integral involving the axial velocity.
The axial velocity is expressed in terms of the density varia-
tion and the area variation along the axial direction using
global mass flow conservation. The density, temperature,
and velocity variations along the flow can be obtained from
the quasi-one-dimensional model. If D is based upon classic-
al resistivity, one can take its temperature dependence from
the quasi-one-dimensional model. If it is based upon ano-
malous resistivity, for example, from the LHD instability,
one can also use the quasi-one-dimensional model for the
other scaling variables.

2.0 General Physics Description of
Magnetic Nozzle

In this section, we consider the physics associated with
the momentum equations of the electrons and ions. The
notation utilized is as follows. The magnetic nozzle field is
composed of the vector field B = (Br, 0, BZ), referring to

cylindrical coordinates (r, 0, Z). The magnitude of the vector
B is B. The Z-axis constitutes the symmetry axis of the

nozzle geometry. The unit vector along B is b̂ . The plasma
velocity vector (ion-fluid velocity vector) component along

bˆ is V// (see Fig. 2).

Let θ̂  be a unit vector in the azimuthal direction. Then
the velocity vector component across the flux surfaces in the
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quasi-radial direction x̂ = θ̂ × b̂  is V⊥. The unit vector x̂
is in the direction normal to the axially symmetric flux sur-
faces (Fig. 2). Propellant rotation is presently precluded (but
included later), so that the total velocity vector of the propel-

lant now is V =Vj +Vj .
The steady-state momentum equation for the plasma (sup-

pressing viscosity) is obtained by adding the momentum
equations of electrons and ions, while neglecting electron
inertia and recognizing that electron-ion collisions cannot
alter the total momentum:

ρV ⋅∇V +∇Ptot = J × B	 (1)

Here, ρ is the plasma mass density, Ptot is the plasma pres-
sure (electron pressure plus ion pressure), and J is the cur-
rent density vector to be obtained from Ohm’s law. When V⊥

<< V//, as is generally desired for magnetic-field guided flow
of plasma, then the dominant components of Equation (1) along

and across b̂  in the interface region are as follows:

 2

∂ l 
V

2
//
_]+( 1 

)∂ lPtot = 0	 (2)

 ρ V/2  x +∇⊥Ptot = J × B 	 (3)
R 	 

 	 

In Equation (2), l is the distance along the local field line (or
streamline in the field-free region of core plasma). In Equa-
tion (3), R is the local longitudinal radius of curvature of the
field line, and it is assumed for definiteness that the local
curvature is adverse, that is, convex outwards. (If otherwise,
replace R by –R .) The symbol ∇⊥Ptot represents the compo-
nent of pressure gradient normal to the flux surfaces, along
x̂ , where ∇⊥ represents the component of the gradient
vector along the quasi-radial direction.

It is assumed below that the plasma pressure is compara-
ble to the magnetic pressure (β ≈ 1) in the plasma-field
mixing layer; that is, for a nominal plasma-pressure versus
magnetic-pressure confinement condition. This is a balance
of pressures. Within the plasma core the local β is therefore
very large, and within the external magnetic field region the
local β is very small. The local β is of order 1 within the
mixing layer, but also globally the internal plasma pressure
must balance the external magnetic pressure across the inter-
face. The latter viewpoint corresponds to the concept of a
“global beta.”

Strictly speaking, Equation (2) as it stands really is only
valid along the actual flow streamlines, which can differ
from the magnetic field lines because of resistive diffusion.
Because the flow vector in the plasma-field mixing layer is

referred to the magnetic field lines, however, Equation (2),
which leads to the Bernoulli equation, is only an approxima-
tion within the plasma-field mixing layer. Its validity
depends upon V⊥ V// << 1. The flow streamlines of the

plasma that have become attached to magnetic flux in the
plasma-field mixing layer can be expected to differ only
slightly from the magnetic field lines because of resistive
diffusion.

In particular, one finds V⊥ V// ≈ 0.5(DV// δ) . Here, D is

a representative resistive diffusivity (D = η /μ 0 in mks units),
and δ is the characteristic diffusive width of the plasma-field
mixing layer. For the parameters of interest and assuming
classical resistivity due to coulomb scattering, the ratio
V⊥ V// proves to be on the order of 0.001. Thus, the flow

lines would approximately follow the field lines even if there
were substantial anomalous enhancement of resistivity (in

D). In this connection, it turns out that δ scales as D , so an
anomaly factor of 100 in D only increases V⊥ V// by a

factor of 10.

2.1 Bernoulli Equation for Nozzle Flow

Use of the Bernoulli equation for nozzle flow illustrates
the conversion of thermal energy into directed kinetic energy—
the fundamental operation of a convergent-divergent rocket
nozzle. A simple example of this is provided when a person
blows up a balloon and then lets the compressed gas stream
out of the blow hole. The total momentum is zero if there are
no external forces acting on the balloon; so when gas streams
out the back, the balloon has to dart forward to preserve the
total momentum at zero. The total energy is initially entirely
thermal. The thermal energy has been converted into directed
kinetic energy, so the gas temperature must drop. Temperature
is a measure of thermal energy. If the gas were a plasma,
classical resistivity would increase.

Integration of Equation (2), assuming that pressure is
related to density adiabatically along a streamline, yields the

Bernoulli equation. Thus, Ptotρ
–Ɣ is constant along a stream-

line. By assuming that the adiabatic index Y = 1 + 2/Q = 5/3
(where Q is the degrees of freedom; i.e., 3), there are at least
occasional collisions. The energy-balance equation in its
entropy-production form yields this adiabatic relation when
there are neither sources nor sinks of mass and heat along a

streamline. The choice Y = 5/3 assumes that charged par-
ticles undergo at least several collisions during their transit
of the nozzle, so that each charged particle samples all three
degrees of freedom.

The result of integrating Equation (2) along a streamline
or flux line is

2	 2
V̂̂ + 

S 
= constant	 (4)

2 (γ− 1 )
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Here, S is the local speed of sound, which is related to pres-
sure and density by

S2 = 
dPtot = 

γPtot	 (5)
dρ	 ρ

Equation (4) can also be related directly to the equation of
total energy balance. With help of Equation (5), Equation (4)
becomes a statement of conservation of total energy per unit
mass along the stationary flow configuration. That is, the
sum of the kinetic energy per unit mass, the thermal energy
per unit mass, and the work done by unit mass against the
ambient pressure constitute a sum that is conserved along a
streamline.

The Bernoulli equation displays the acceleration proper-
ties of a converging-diverging long-thin nozzle when one
recalls the “choked flow” condition at the nozzle throat,
namely that the flow velocity equals the sound velocity
there. Denoting values in the throat by subscript “ t,”

V// t ≡ Vt = St	 (6)

For simplicity, we shall assume infinite contraction and
expansion ratios for the converging-diverging nozzle. It can
be demonstrated, however, that a realistic moderate contrac-
tion ratio of 2, together with a moderate expansion ratio of 3,
yields results very close to those obtained from assuming
these ratios to be infinite. A long-thin coaxial tube of fluid
(either central or annular) of variable cross section A has the
property that mass flow rate m  is conserved along the tube.
Therefore, V// ≈ 0 is set in the breech (beginning) of the

nozzle in Equation (4), because A is assumed very large
(infinite) in the breech. The “constant” in Equation (4) is
then determined to be

2

constant = 
Sb 	 (7)

(γ − 1)

Here, Sb is the speed of sound in the breech of the nozzle.
Use of Equations (6) and (7) in Equation (4) yields the flow-
speed of propellant in the throat,

Vt
2
 = Sr = 

4 
Sb 	 (8)

where Y = 5/3 has been used.
The exit velocity or specific impulse can be obtained from

Equation (4) by recalling that propellant cools down as it
expands through the nozzle. For a fully expanded flow,
Equations (4) with (7) then provide the exit velocity as
follows:

Ve, = 3 Sb	 (9a)

With Equation (8) this also implies that

Ve, = 2Vt	 (9b)

Use of the adiabatic relation in the sound speeds in Equa-
tion (8) then yields the ratio of ion density in the throat to ion
density in the breech, namely as

nti 
=
(4p

3 	
= 0.6495

2
	 (10)

nbi 	3

Since temperature, T, scales adiabatically as n2/3 along a
streamline, Equation (10) implies that the ratio of tempera-
ture in the throat to temperature in the breech is given
exactly by

T 3
= (11)

Tb 4

Before applying the above results, a perspective regarding
acceleration by nozzle flow is presented. The above prin-
ciples of nozzle flow and the realization of high exhaust
velocities govern not only the field-free core plasma, but also
govern plasma that already has interdiffused with the field
and become attached.

Three conditions, however, must be met for nozzle-based
acceleration to be useful on attached plasma. First, electrical
conductivity must be sufficiently large within the nozzle so
that the plasma velocity is approximately confined along
magnetic field lines, notwithstanding the presence of cross-
field diffusion. Second, annular flux tubes carrying attached
plasma must themselves exhibit convergence-divergence simi-
lar to the plasma core, so that nozzle-based acceleration occurs
within each annular incremental flux tube. Third, the plasma-
detachment problem must be addressed and solved at the exit.

Reference 6 and references therein discuss nozzle-based
acceleration of highly conducting attached plasma inserted in
the breech within coaxial magnetic flux tubes (no field-free
plasma) and includes George Marklin’s numerical calcula-
tion illustrating temperature reduction downstream of the
throat of the nozzle. When longitudinal and azimuthal
magnetic fields and longitudinal and rotating flows are all
included, the nozzle-based acceleration process still can be
reduced to a generalized Bernoulli equation. Reference 6
recognizes the importance of solving the detachment problem,
but does not consider special shaping of diverging magnetic
field lines for that purpose. This has been carried out in Refer-
ence 7, however, which does describe a means of successful
detachment with minimal loss of efficiency, while assuming
that downstream plasma has only classical resistivity.

Classical resistivity η cl is the smallest possible. It there-
fore leads to the most difficult detachment problem. Because
ηcl increases downstream as T

–3/2 
due to cooling of the

expanding flow, the detachment process with ηcl can be
successfully effected (Ref. 7). It proves necessary to outfit
the vehicle with coaxial solenoidal trim-coils. They must be
placed downstream in the diverging region of the magnetic
nozzle, in a manner that ensures that the magnetic nozzle
field lines are only weakly divergent, thereby minimizing
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TABLE I.—SAMPLE PARAMETERS RELEVANT TO SPACE
VEHICLE PROPULSION AND RELATED EXPERIMENTS

Parameter Propellant
Hydrogen Helium

Mass, m, AMU 1 4

Number density (breech), nb, cm
−3 1.0 · 10 15 1.0 · 10 15

Number density (throat), nr, cm
−3 0.65 · 10 15 0.65 · 10 15

Temperature (breech), Tb, eV 50 100

Temperature (throat), Tr, eV 38 75

Magnetic field , a B, T 0.20 0.35

Electron cyclotron frequency, Ȧ, e, s
− 1 3.2 · 10 10 5.6 · 10 10

Electrical conductivity (throat),b σr, mho/m 2.6 · 10 5 3.7 · 10 5

Resistive diffusivity (throat), Dr, m2/s 3.2 2.3

Electron collision frequency (throat), υe r, s
− 1 0.8 · 10 8 1.0 · 10 8

Flow velocity (throat), Vr, m/s 1.1 · 10 5 1.0 · 10 5

Exit velocity,
c
 Vex, m/s 2.1 · 10 5 2.0 · 10 5

aLocal ratio of thermal to magnetic pressure β = 1 in breech.
bln Λ = 10, where Λ is length of breech to throat divided by ion

gyroradius.
c
Also, specific impulse (10

–1
 s).

resistive-drag losses. The addition of such trim coils then
becomes a factor in mission considerations dealing with size
and weight of the vehicle. It may be that the occurrence of
enhanced resistivity in the downstream region would further
ease the detachment problem.

The above Bernoulli results on nozzle flow are now
applied to hydrogen propellant, with parameters similar to
those relevant to interplanetary travel. Also, the Bernoulli
results are applied to helium propellant with parameters
similar to those proposed by Turchi (Ref. 2) for a
magnetic nozzle experiment at Ohio State University using
the 1-MJ, 1-GW pulsed-power source. Table I presents
approximate round-number values of nominal reference
parameters assumed to be inserted into the breech of the
nozzle. The quantities are derived according to the Bernoulli
equation for the throat and exit regions of the nozzle.

It is noted that the assumed high-enthalpy plasmas pro-
vide a desired specific impulse of about 20 000 s. Also, only
moderate magnetic field strength is required to effect an
initial balance between plasma pressure and magnetic pres-
sure. (Downstream of the breech, one expects the magnetic
flux to press inward in radius as the plasma’s internal pres-
sure becomes converted into longitudinal flow energy.)
Hydrogen propellant is assumed to be axially inserted into
the breech of the nozzle and preheated to the desired temper-
ature by drawing off edge plasma into the nozzle from the
fusion power reactor.

From Table I, a feature that proves to be very important
with regard to the Hall effect is observed. The electron
cyclotron frequency in the edge plasma ω, e largely exceeds
the electron coulomb collision frequency, υe , by more than 2
orders of magnitude. In the throat, magnetic field B is still

0.7 of its breech value, hence, also ω, e. Even a severely
anomalous electron collision frequency still could be domi-
nated by the electron cyclotron frequency.

At a fixed temperature in the breech, the classical colli-

sion frequency there is proportional to n/T 3/2 whereas the

electron cyclotron frequency there is proportional to nT

via pressure balance. Thus, for the given temperature, the
reference density would have to be increased by orders of
magnitude and out of range in order to bring the electron’s
coulomb collision frequency into the neighborhood of the
electron cyclotron frequency. For these reasons, the Hall
effect in the mixing layer is regarded as sufficiently impor-
tant to merit a separate treatment below.

Finally, we note that the velocity in the throat region, Vt,

together with the envisioned meter-scale length of the
nozzle, can be used to provide a rough estimate of the
transit-time duration available for diffusive spreading of the
plasma-field mixing layer. For a meter-length nozzle, this
longitudinal transit time is on the order of 10 μ s. (In Appen-
dix B it is shown that if we allow for the transit time to
increase from zero velocity in the breech, there is an amplifi-
cation of the transit time by a factor of ~2.)

2.2 Diffusive Intermixing in Plasma-Field Interface

This subsection addresses diffusive intermixing of plasma
into magnetic field and also resistive diffusion of magnetic
field into plasma. Both mixing processes occur together. We
turn now to Equation (3) for crossfield diffusion of plasma.

2.2.1 Diffusion of Wall-Confined Plasma

Equation (3) is discussed as an illustration for the worst
case. This case is one where hot plasma, initially inserted
into the breech of the nozzle, inadvertently immediately
spreads over all upstream flux surfaces (plasma-wall interac-
tions are ignored). The plasma profile is assumed to extend
uniformly from the symmetry axis out to the wall, so that the
transverse pressure gradient is now neglected relative to the
centrifugal force. Effective gravity from centrifugal force
with adverse curvature would cause wall-confined plasma to
sink against the outer wall, creating a pressure gradient that
is positive outwards. By neglecting this pressure gradient,
we will overestimate the crossfield velocity of plasma and
the concomitant resistive deviation of the streamline from
the field line. But even with uniform pressure, the plasma is
still wall confined. Then Equation (3) reads

 ρ V
/Z

]:i 
=J×B 	 (12)

R

At the same time, assume that Ohm’s law holds in its
simplest resistive form, namely
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σV × B = J 	 (13)

where σ is the electrical conductivity of plasma (σ =1η)

and V × B is the effective electric field in the moving refer-
ence frame of the plasma, driving the current density.

Equation (13) implies that

J × B = −σB2 V⊥
	 (14)

It should be observed that this MHD force density, as
obtained from the simple Ohm’s law, is directed oppositely
to the crossfield flow velocity. This phenomenon is known
as “eddy current braking” of the plasma crossfield flow. The
same phenomenon creates the detachment problem at the
nozzle’s exit.

Use of Equation (14) in Equation (12) presents a steady-
flow balance between the outward centrifugal force resulting
from parallel flow along a curved field line and the MHD
braking force. As a concrete example, we shall evaluate this
balance just upstream of the throat, where the field lines
might be curving radially inwards towards the throat with an
adverse curvature (of course, it also is possible to imagine a
nozzle field with good curvature everywhere). This force
balance can be expressed as a ratio of transverse to longitu-
dinal velocities in the following form:

V⊥  Wkin D 
(15) 	 

V//  Wmag  R V// 

Here, Wkin = P V
2 /2 is the kinetic energy density of

parallel flow approaching the throat region; and

Wmag = B 2 2 μ 0  is the magnetic energy density near that

region. Also, Dcl = ((Yclgo)
−1  is the classical resistive diffu-

sivity there (Russian or Soviet papers sometimes refer to D
as “magnetic viscosity”). The magnetic field is chosen to
have β of order unity, and the flow speed is on the order of
the speed of sound. (Even though β is of order unity, it is
assumed that the wall takes up the plasma pressure in the
present example.) Therefore, the first nondimensional
ratio, the ratio of energy densities in Equation (15), is of
order unity. The principal determining factor for the velocity
ratio V⊥ V// is the second nondimensional ratio in

Equation (15). For R = 1 m, the hydrogen parameters yield

Dcl 1RV// ≈ 3⋅10 −5 , and the helium parameters yield

Dcl /RV// ≈ 2⋅10 −5 .

These very small numbers for Dcl R V// signify that

flowing plasma having a diffuse profile remains very well
attached to field lines ( V⊥ << V//), assuming classical resis-
tivity. This situation would still hold true even for R = 0.1 m.
It can therefore be expected that with the simple Ohm’s law

with classical resistivity and for the area of each incremental
annular flux tube having a converging-diverging dependence
on axial distance, nozzle-based acceleration still can occur
for diffuse attached plasma. Moreover, it is worth noting that
the small ratio V⊥ V// is so small indeed that the plasma

resistivity could even be anomalously large by several orders
of magnitude and yet have the plasma remain fairly well
guided by the field lines.

To summarize Section 2.2.1, it can be stated that diffuse
wall-confined plasma preattached to the magnetic flux can
usefully acquire nozzle-based acceleration provided that the
consequent detachment problem is solved. Reference 7 has
described an approach to solving the detachment problem,
which involves implementation of a weakly diverging
magnetic nozzle field in the exhaust region.

2.2.2 Diffusion of Magnetically Confined Plasma

We return now to Equation (3), assuming that the edge
plasma at the interface has such a sharp boundary that the
transverse pressure gradient (negative outwards) completely
dominates the centrifugal force term. Use of the simple
Ohm’s law, Equations (13) and (14), then yields an equation
for the transverse velocity in terms of the transverse pressure
gradient, ∇⊥Ptot ≈ −(Ptot /δ) x̂ :

 η  	 β
V⊥ =− 	 ∇⊥Ptot ≈ 

D

2δ 
x 	 (16)

Here, η is the resistivity, η = 1/σ, and D is again resistive
diffusivity D = ημ0 . Also, β is the ratio of thermal to

magnetic pressure within the interface; (3 = 2µ0Pot 1B2 ,

where Ptot is the sum of electron and ion pressures,

Ptot = Pe + Pi . Finally, δ represents the thickness of the

transition layer of magnetically confined plasma. The pres-
sure gradient of confined plasma is noted to be inward, along
− x̂ , where V⊥ = Vx .

From Equation (16), one then obtains the estimate

V⊥ ≈ β	 (17)
V// 2

(

V//

D_ )

δ

Equation (17) for the magnetically confined plasma has the
same structure as Equation (15) for the wall-confined
plasma, but now with a very small plasma-field mixing layer
width in the denominator. However, even if δ were 4 orders
of magnitude smaller than R, for example δ = 0.01 cm, one
would still have a relatively small transverse velocity, name-
ly V⊥ ≈ 0.1 V//. This can be seen by utilizing the same para-
meters as for Section 2.2.1. Moreover, if δ ≈ 1 cm,
comparable to an ion gyroradius, then V⊥ ≈ 0.001 V// . Thus,
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qualitatively it appears that classical resistivity, with the
given parameters, does not destroy the small ratio of trans-
verse to longitudinal velocity, even for rather thin plasma-
field mixing layers.

The analysis leading to Equation (17) can be extended.
We take into account that the plasma-field mixing layer
width δ is related to the transverse diffusion velocity V⊥. The
two really should be treated together in a self-consistent
manner. To exploit this point of view, we cancel V// from
each side of Equation (17), and make the reasonable identifi-
cation within the plasma-field mixing layer:

V⊥ = 
^	

(18)

This equation represents the rate at which the plasma-field
mixing layer thickens with time as the flow is followed
downstream. Use of Equation (18) in Equation (17) and
multiplying through by δ then yields

	

drδ

/ ≈β
D 	 19 

dt 	2	
( )

Assuming that the initial boundary-layer width of attached
plasma in the breech is negligibly small (corrected in
Sec. 3.0, “Resistivity From Gradient-Driven Microinstabili-
ties,”), this differential equation suggests the estimate

δ ≈ βDtb t	 (20)

where tb t is the time for longitudinal flow to traverse the
nozzle, say from breech to throat. (The integration of
Eq. (19) over time is addressed in Appendix B.) For a pro-
pellant whose transverse pressure is balanced by confining
magnetic pressure, the quantity β will be of order unity
within the plasma-field mixing layer. A more rigorous and
detailed analytic procedure that includes a non-MHD-
derived initial layer thickness is considered beyond the scope
of this report (see Sec. 3.0, “Resistivity From Gradient-
Driven Microinstabilities”).

Note that Equation (20) assumes that there is no signifi-
cant initial thickness of the plasma-field transition layer in
the breech of the nozzle. It is appropriate for comparison to
MHD simulations that make the same assumption. This
issue, which cannot be fully addressed within the resistive
MHD model, is considered later in this report in Section 3.1,
“Interface Width in Breech of Nozzle.” It is assumed here
that the field coils and the injection process are such as to
allow a macroscopically gentle injection, such that there are
no anomalous or extreme dynamical macroscopic processes
that produce an initial width of the transition layer in the breech
of the nozzle. Otherwise, such a macroscopic initial layer

thickness certainly would have to be included in the contribu-
tion to the layer thickness downstream. See Reference 1.

The terse derivation of Equation (20) will now be sup-
plemented with a more rigorous derivation, which provides a
more precise interpretation of the symbol β. It turns out that
β is neither a local nor a global concept here, but has aspects
of both.

For slow, noninertial resistive flow in the interface, one
has a situation of quasi-equilibrium.

	

∇P = J × B 	 (21)

The quasi-radial component of this equation, outwards
across the flux surfaces, involves only the azimuthal compo-
nent of the current density. However, the azimuthal electric
field vanishes in an axially symmetric steady state, so that
the azimuthal current density can be represented in Ohm's
law by

	

η J = V × B	 (22)

which involves the outward cross-flux velocity of plasma.
Use of the latter equation in the former yields

 2 
D∇P = −2  B  V 	 (23)

 2 μ 0 

in which the gradient and the velocity are directed outwards
across the flux surfaces, in the quasi-radial x-direction. Here,
D is the resistive diffusivity η/μ 0.

In the absence of a detailed model of the interface, one
must have recourse to reasonable but expeditious assump-
tions to go forward with the theory. In this instance, such an
assumption is that the plasma outward velocity corresponds
to the rate of thickening of the interface width δ.

	

Vx = 
^	

(24)

Integrating the quasi-equilibrium equation from x = 0 at the
core edge to x = δ at the vacuum end of the interface, we
then have

2

	

− DPcore =−2 
B 	 δd

s
	(25)

2 μ 0	dt

In the above equation, Pcore represents the plasma pressure at
the edge of the core region, and the brackets represent an
average of the enclosed quantity over the interface width,
0 ≤ x ≤ δ. This equation also can be written as
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dS2 
= D0 	 (26)

dt

in which 0 is now given by

	

0 = 
2g0 Poore	 (27)

(
B

2)

In subsequent equations that represent resistive thickening of
the interface by resistive diffusion, 0 should be accorded this
interpretation.

For the transit time t we invoke tb t = Lb t Vt , where

Lb t is regarded as a characteristic length of the nozzle from
breech to throat (similarly, Lb ex is the characteristic length
of the nozzle from breech to exit plane). Also, Vt represents
velocity in the throat region, which is known to be on the
order of the ion thermal velocity. Then, from Equation (20),
it can be shown that the square of the boundary-layer width
is

2
2 	 2 

Lbt  m  c	 Lb t  m
S 2a i —  e = 0	 —  e 	 (28)

Xe  m i	 copi	 e  m i

Here, we have retained 0 in Equation (20) and have set the
electron and ion temperatures equal, Te = Ti. Retention of
beta in Equation (28) is practically just a formality. The
square root of the local beta is near 1 within the interface and
so is the square root of the “combination beta” described
above. The model of the interface invoked here is just not
sufficiently detailed as to provide more accuracy than is
available with such numerical factors. The ion thermal gyro-
radius is connected to the ion inertia length by the square
root of the local beta. So, the factor that is being suppressed
in delta, as given by the second part of Equation (28), is the
square root of the ratio of the combination beta to the local
beta. The square root of that ratio is expected to be near 1.
Also, the resistivity 11 in D in Equation (20) has been reex-
pressed in terms of its fundamental factors for hydrogen

plasma; r1 = me
v

e
ln

e
g2

 , where me is electron mass, ne is

electron number density, q is the magnitude of the electron
charge, and ve is the momentum-transfer collision frequency
of an average electron with background ions or with micro-
turbulent fluctuating fields. The negative charge of an elec-
tron will be explicitly indicated as –q ; thus q is a positive
quantity.

Recall that the resistive diffusivity D = 11g 0 in mks

units, and D = c 2 11/47c in cgs units. Here, g0 is the

magnetic permeability of vacuum, and c is the speed of light

in vacuum. It is useful to note that c2 =1/E 0 g0 in mks

units, where _0 is the electrical permittivity of vacuum.
In Equation (28), ai is a representative ion gyroradius in

the attached plasma within the plasma-field mixing layer,

a i
2
 = [2Ti micoc

2
 i ], 

with coc i being the ion gyrofrequency in

the boundary-layer magnetic field. Moreover, Xe is a repre-
sentative mean free path for collisions of electrons (possibly

anomalous) with ions; hence ke =ve
1 2Te lme , and me/m i

is the electron-to-ion mass ratio. Furthermore, cop i is the ion

plasma frequency, with cop i = 47rrtgi mi in cgs units and

nqi l _0 mi  in mks units. The ratio c/cop i is called the ion

inertia length.
The ion gyroradius ai comprises a principal feature of the

boundary-layer width. Other highly significant factors also
codetermine the resistive MHD boundary-layer width in Equa-
tion (28). Thus, S ai depends upon the dimensionless longitu-

dinal distance traveled, in the form (L Xe )
12 (me mi )14 .

Suppose L = 1 m. The throat velocity is Vt = 105 m/s;

hence the transit time is about t = 10-5 s. Assuming 0 - 1, and
taking classical resistive diffusivity Dcl - 3 m2/s for hydrogen,

one finds from Equation (20) that S - 0.6 · 10
−2

 m = 0.6 cm,
with a slightly smaller value for helium propellant. This
value of S constitutes an estimate for the width attained by
the plasma-field mixing layer after following propellant up
to and just through the nozzle throat. It is generated by resis-
tive diffusion of plasma into the magnetic nozzle field. It
overestimates the diffusion, since Dcl is the throat value with
temperature reduced from its value in the breech. It underesti-
mates the layer thickness, however, by neglecting any initial
thickness. This neglect is appropriate for comparison of layer
thickness S with that from resistive MHD simulations.

In the assumed case of classical resistivity, with 0 of the
order one and taking parameter values listed in Table I
above, broadening of the plasma-field mixing layer after
passage of propellant up to and just through the nozzle throat
thus proves to be rather small compared to system dimen-
sions. This would be so even for a modest plasma throat
radius of 10 cm. Any simulation (or experiment) of magnetic
nozzle flow of nominally confined plasma having those
parameters and giving results with substantially larger diffu-
sion of the plasma-field mixing layer may be violating one or
more of the model assumptions set forth above. Also, the
simulation may contain some numerical diffusion.

In this simple presentation of radial resistive diffusion, we
have used a constant characteristic nozzle flow velocity for
estimating S, which has been taken to be the velocity in the
throat region of the nozzle. This procedure serves to define a
characteristic dwell time as a characteristic axial length
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divided by the characteristic longitudinal velocity. However,
the dwell time of the propellant between breech and throat
actually is somewhat longer due to the time needed for the
propellant to accelerate up to its characteristic velocity. This
increased dwell time then gives the resistive plasma-field
mixing layer more time to grow. The effect of the more
accurate dwell time is discussed in detail later, in Sec-
tion 2.4, “Summary,” and in Appendix B. It is estimated that
the time needed for acceleration engenders a factor of –2 in
the increased thickness of the plasma-field mixing layer.

2.2.3 Diffusion of Confining Magnetic Field

In the preceding case, diffusion of plasma into the confin-
ing field was considered. There also is another process for
attaching plasma to the confining field. After the ambient
magnetic field has been pressed against the outer conducting
wall by the initial pressure of injected hot plasma, the field
can rebound spatially downstream, by undergoing inward
diffusion into the core plasma regarded as a resistive
medium. Turchi analytically treated this view of plasma
attachment (diffusion of a pulsed magnetic field into a resis-
tive medium), using a well-known model of time-dependent
magnetic diffusion (Ref. 8, personal communication), based
upon a discussion of time-dependent magnetic diffusion. We
now analyze this magnetic diffusion process by a slightly
different method than that used by Turchi. The treatment
here of the diffusion of a magnetic field into a conductor
agrees (to within a trivial numerical factor) with that pre-
sented in Section 2.2.2 of plasma diffusion across a magnetic
field. The reason is that the square root of beta is near 1 for
the special beta described.

The point of view adopted here is that the exact time
dependence of the magnetic field experienced at the boun-
dary of the moving plasma is regarded to be less important
than the overall time scale for that time variation. The reason
is that the extent of the field diffusion into the plasma is
obtained by time integration. This point of view thus moti-
vates us to choose a simple but expeditious time dependence,
containing a certain relevant characteristic time, for the
magnetic field experienced by the moving plasma at its
boundary.

In a reference frame moving downstream with the plasma
velocity comparable to the velocity in the throat – Vt, where
that velocity is assumed constant and uniform, Maxwell’s
equations are written as follows. Here, E′ = E + V t×B is the
azimuthal electric field in the moving frame.

∇× E ′ = ∇×(11J ) = ∇× (D∇× B )
(29)

= −D∇ 2B = −∂ tB

In an axially symmetric configuration, one can note the
following property of this set of equations. The longitudinal

component (along B) involves the spatial variation—in the
direction normal to the flux surfaces—of azimuthal vector
components of electric field E′ and current density J.

Here, it is important to note two other key features to be
used in Equation (29). First, in the moving frame, the azimu-
thal electric field E ′ will not necessarily vanish, even in a
situation of steady flow and steady fields in the lab frame.
Second, the azimuthal current density vector J is assumed
related to the azimuthal electric field E′ (in the moving
frame) by the simple Ohm’s law, as before. Since J involves
the difference between two vector velocities, those of elec-
trons and ions, its evaluation in any frame produces the same
result for quasi-neutral nonrelativistic plasma. Also, the
magnetic field is the same in the moving frame, when the
velocity is nonrelativistic. The resistive diffusivity D in
Equation (29) is assumed here to be a scalar constant repre-
sentative of the throat region of the nozzle.

Cylindrical geometry can be suppressed when examining
magnetic diffusion in the vicinity of the plasma’s sharp
boundary, as long as the plasma-field mixing layer width is
small compared to its radial distance from the axis of sym-
metry. Accordingly, if we let the x-coordinate represent the
direction normal to the flux surfaces (so that the distance x
increases towards the wall, see Fig. 2), then the last part of
Equation (29) reduces to a simple diffusion equation within
the plasma, considered as a resistive medium:

∂xB 
=D
	 (30)

There is no loss of generality in setting x = 0 at the plasma
edge. This situation is effectively the same as a magnetic
field diffusing into a conducting half-space bounded by a
planar surface.

Following the line of Turchi’s argument in a general way,
we shall represent the time variation of the magnetic field
experienced by the longitudinally moving plasma with sim-
ple exponential time dependence. The method is a form of
the “separation-of-variables” technique for solving partial
differential equations. Thus,

B(x,t) = G(x)e(tl tbt ) 	 (31)

The incoming conducting plasma in the region upstream of
the throat presses the external field against the metallic wall
(coils), thus increasing the field strength in the local neigh-
borhood. By assuming this monotonic increase with time of
the magnetic field strength seen by the moving edge plasma
during its traverse up to the throat region, the penetration of
field into plasma shall surely be overestimated. (Using the
plasma temperature in the throat, one overestimates the
prethroat classical resistive diffusivity D.) Then, using Equa-
tion (31), Equation (30) is reduced to
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G ′(x) = 1 G (x) 	 (32)
Dtb t

Here, G ′(x) = dGdx . The solution of Equation (32) with-
in the plasma region (x < 0) is

Dt

	

G(x) = CIe 
x j1 b t	 (33)

where x is the positive (decreasing plasma density) or nega-
tive (increasing plasma density) distance from the plasma
boundary (Fig. 2). This spatial profile within the plasma,
engendered by the time-dependent magnetic field imposed at
the plasma boundary, clearly exhibits the character of a
boundary layer of magnetic field protruding into the interior
of the plasma.

The moving plasma would generally experience signifi-
cant changes in field strength of a time on the order of the
plasma’s transit time up to the nozzle throat. Therefore, it is
reasonable to regard the time constant for imposed field
growth as tb t , which is the plasma’s transit time through the
converging part of the nozzle. Then, the plasma-field mixing
layer thickness implied by Equation (33) can be expressed as

δ = Dtb t	 (34)

where tb t is the nominal transit time through the converging
part of the nozzle, tb t ≈ Lb t Xt . Thus, essentially the same

answer is reached for field diffusion into plasma as in Sub-
section 2.2.2 (assuming β is of order 1) when the plasma
diffuses into the field. In both cases, for the given parameters
and classical resistivity, the plasma can be expected to
intermix with the field to a distance of at most about 1 cm
during transit through the converging part of the nozzle. This
distance is to be compared to a system length on the order of
1 m and a plasma throat radius perhaps on the order of
10 cm.

For comparison, the steady-state magnetic-field diffusion
problem is solved in the lab frame in Section 2.3.3, “Diffu-
sion of Field Into Plasma With Hall Effect,” and in Appen-
dix C. In the limit of simple resistive diffusion, a similarity
solution is found from which a characteristic penetration
depth evolves with increasing axial distance downstream.
That result proves to be in very good agreement with the
present treatment in the moving frame.

2.3 Hall Effect, Plasma Rotation, and Electron
Pressure in Ohm’s Law

We consider the foundations of the simple form of Ohm’s
law within the context of magnetic nozzle physics. Certain
global conditions prove to be required in order for the simple
Ohm’s law to provide a valid description. This circumstance

may influence the nature of the computed plasma-field mix-
ing layer and its spatial rate of broadening.

The momentum equation of the electron fluid constitutes
the complete Ohm’s law. Let Ve be the electron macroscopic
(fluid) velocity, whereas Vi represents the ion macroscopic
velocity. Therefore, the current density is

J = ne q(Vi − Ve ) 	 (35)

The electron number density is ne (the same as the ion num-
ber density for atomic number Ξ = 1, which is assumed
here), the electron’s charge is −q, and the mass of a single
electron is me. The fluid-momentum equation of electrons in
the lab frame then reads, in mks units,


∂ tVe + Ve ⋅∇Ve +l 1 )∇Pe

l mene	 (36)

=−υe (Ve − Vi ) − q (E + Ve × B)
me

Here, Pe is the electron pressure, and υe is the momentum-
transfer collision frequency of an average electron with the
ions. As usual, the latter effect is represented as a friction.
The electron collision frequency can be either the classical
coulomb collision frequency, or it can be anomalous because
of the activity of microturbulence. The leftmost term in
Equation (36) vanishes in the assumed steady state, and the
inertial [Ve ⋅∇V e] term generally can be neglected in com-
parison to the electron-pressure gradient when the electron
macroscopic velocity I V eI is small compared to the electron

thermal velocity [2Te /m e ]1l2 . That inequality is well satis-
fied at the postulated temperatures.

Accordingly, by neglecting the two leftmost terms, mul-
tiplying Equation (36) by me/qe, and using Equation (35),
Equation (36) becomes

E + Vi × B = (
mq e )( nq 

)+(q )× B −(q
 )

∇Pe (37a)

A more familiar form is

E + Vi × B =ηJ +(
1

 )J × B −( )∇Pe 	 (37b)
nq	 nq

The left-hand side is the electric field in the moving frame
(E is the electric field in the lab frame), and η is the funda-
mental resistivity of plasma, η = σ−1

.
 The electrical conduc-

tivity of plasma is a = ng 2 /meυe . The second term on the
right, involving J × B, is the magnetic Hall term. Other terms
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in Equation (37b) that go beyond the simple Ohm’s law are
the motional electromotive force due to plasma rotation,
which is part of the V x B term, and the thermal Hall term,
which is the electron-pressure gradient term. The thermal
force term arising from the specific nature of coulomb colli-
sions of charged particles (Ref. 9) is neglected here in the
interest of simplicity. It can easily be included if so desired.

In this section, we want to emphasize that the effective
electrical conductivity is not necessarily the fundamental
conductivity 6. Rather, the effective electrical conductivity
generally depends on the Hall terms, on whether rotation
occurs, and especially on the global electrical boundary
conditions that are present (either in a simulation or an expe-
riment). Concomitantly, we shall illustrate that the nature of
the plasma-field mixing layer and its spatial rate of broaden-
ing depends on the possibility of plasma rotation, on the
presence of an electron pressure gradient, and on the global
electrical boundary conditions. In order to demonstrate the
role of the Hall effect in a simple manner, we first neglect
rotation and electron pressure. They are reinserted later.

2.3.1 No Plasma Rotation, No Electron Pressure

It is apparent that

6B
=

 cOc  e	 ( )

	

=Q	 38
nq	 ve

wherein cOc e is the electron cyclotron frequency, and Q is
the conventional Hall parameter. Recall that Q >> 1 in the
plasma’s edge layer with magnetic field in the parameter
regime of interest. Then multiplying Equation (37b) by the

conductivity 6 = nege meve is seen to be equivalent to

J+QJxb=6(E+Vi xB)	 (39)

where b̂ is the unit vector along B. The Hall term is poten-
tially very important in the considered applications, since Q
is very large in the plasma-field mixing layer, on the order of
400 for hydrogen propellant and 560 for helium propellant in
Table I. Equation (39) is now solved for the current density
to exhibit the effective electrical conductivity.

The azimuthal component of Equation (39) is

	

J0 – QJx = –6VxB	 (40)

where it is noted that, in an axially symmetric steady state in
the lab frame, the azimuthal electric field Ee = 0. The condi-

tion on Ee results from the integral form of Faraday’s law of
induction, namely WE = –atB. The component of Equa-

tion (39) normal to the flux surfaces (the x̂ -component) is

QJθ + Jx = 6Ex 	 (41)

It has been noted that rotation is precluded here. It also has
been implicitly assumed that there is no azimuthal magnetic
field. (The relevance of the azimuthal magnetic field to the
considered magnetic nozzle configuration will be brought
out later. See Appendix D.)

Upon multiplication of Equation (41) by Q and adding to
Equation (40), one finds

J.=( 6 
2 

)(QEx – VB)	 (42)
1+Q

Now in the limit Q << 1 (the electron gyrofrequency much
smaller than the electron collision frequency), Equation (42)
reduces to a form of Equation (13), the simple Ohm’s law:

J0 = –6 Vx B	 (43)

The remainder of this subsection shows how the simple
Ohm’s law for azimuthal current conduction still can be
valid in spite of the presence of a strong longitudinal mag-
netic field, Q >> 1. Two extreme examples will be discussed
to illustrate the importance of the Hall effect together with
global boundary conditions. The first example is that the
Hall current is absolutely not allowed to flow because of
global electrical boundary conditions imposed upon the
system. The second one is at the opposite extreme: namely,
the Hall voltage is completely shorted out by another kind of
those boundary conditions, and the Hall current then flows
unimpeded. (Of course, there could be a number of interme-
diate possibilities, any one of which may be relevant to a
particular experiment or simulation.)

2.3.1.1 No Hall current allowed.—If absolutely no cur-
rent is allowed to flow across the flux surfaces (no quasi-
radial currents) because of insulating boundary conditions at
the wall (and the backplate in the breech of the nozzle), then
Jx = 0 and Equation (40) again yields the simple Ohm’s law,
exactly in the form of Equation (43) above. This result is
obtained in spite of a formally huge magnetic Hall term in
Equation (39). On the other hand, motivated by the huge
Hall parameter Q, it is prudent to be mindful, both in
experiment and numerical simulation, as to whether any
quasi-radial Hall currents are inadvertently allowed to flow.

Of course, the coaxial wall (which is the field coil set) has
to be metallic so as to support and shape the magnetic nozzle
field. However, that requirement need not conflict with the
suppression of Hall currents because the conducting wall can
be covered with a thin layer of insulating material. (Such a
composite boundary condition then should be properly
represented in numerical simulations.) Nevertheless, the
presence of the insulating wall layer does not necessarily
suppress the Hall current. A conducting plasma layer could

NASA/TP—2009-213439	 15



form along the wall in a real experiment and thus could
support a closure path for the Hall current.

In the present subcase it is instructive to examine the Hall
electric field that corresponds to complete suppression of the
Hall current. If no quasi-radial currents can flow, Equa-
tion (41) indicates that the associated space-charge field (the
Hall field) is given by EHall = (Ωσ)Jθ . It is instructive to

write this in reverse, utilizing Equation (38), as

Jθ = (
_σ)

EHall = nq B
Hall
	 (44)

In the given circumstance of no Hall current, a Hall electric
field builds up across the flux surfaces to just such a value
that the azimuthal “E/B” (ratio of of electric to magnetic
field strengths) drift velocity exactly satisfies the simple
Ohm’s law. The effective electrical conductivity then is just
the fundamental conductivity σ, which is the same as if there
were no magnetic field. The Hall electric field is a space-
charge field associated with surface charges that are built up
on insulating surfaces that stop the flow of the Hall current.

The E/B drift velocity referred to above must be the azi-
muthal guiding-center drift velocity of the electrons.
Although it is true that the ions have exactly the same E/B
guiding-center drift velocity, such an ion drift is not effective
in canceling the electron current for the following reason: it
has been assumed here at the outset that the ion fluid has no
macroscopic rotational velocity; hence, within the present
model the ion fluid is incapable of providing an azimuthal
current to cancel that of the electrons. The physics that
makes this consistent is that there are other ion drifts besides
the E/B guiding center drift. For example, there is the ∇B
drift, and there is the diamagnetic drift resulting from a
density gradient, which means that there is a lack of cancel-
lation of neighboring gyro-orbits.

In order that the ion fluid not rotate, which was the
present assumption, it must be the case that the azimuthal
E/B guiding center drift velocity of the ions is canceled by
other effects, such as ion ∇B drifts or ion magnetization
currents. It does not really matter what the other effects are.
All that matters is the assumption that such individual par-
ticle mechanisms add up to constitute an ion fluid that does
not rotate. It will be seen later that the assumption of no ion-
fluid rotation is indeed consistent with the companion
assumption that the Hall current cannot flow.

2.3.1.2 Hall current allowed (voltage shorted out).—
Suppose the Hall electric field is completely shorted out
(EHall = 0), and the Hall current (the quasi-radial current
JHall) is perfectly free to flow. Note that plasma rotation is still
assumed to be absent. The assumption of no macroscopic
mass rotation is not generally consistent with the presence of
Hall current in the axially symmetric configuration of the
magnetic nozzle, but could be made consistent in a simula-
tion. Also, it could represent a physically realistic situation

within a limited region upstream, before the new ion fluid
has had a chance to be spun up by the JHall × B magnetic
body force of the Hall current.

A concrete example of shorting out the Hall electric field
would be the use of a noninsulated metallic backplate in the
breech of the nozzle. Conduction in the metallic backplate,
for example a copper plate, is unaffected by the embedded
magnetic nozzle field because of the very large collision
frequencies (with phonons) of the metallic conduction elec-
trons, which, however, also have a very high density that
produces a high conductivity. If high-conductivity longitu-
dinal electron currents (along the magnetic field lines) were
to be allowed access to the backplate, then it would have the
effect of setting all flux surfaces at practically the same
potential, thus shorting out the radial space-charge field.
Such a condition, which allows the radial Hall current to
flow unimpeded, implies that either the uninsulated coaxial
wall or an edge layer of conducting plasma is available at
large radius to provide a longitudinal current return path to
the backplate. If there were no such return path, then either
net charge would be continually removed from the system or
bipolar space-charge electric fields would continually build
up, neither of which is tenable within the steady-state context.

In the present subcase, in which the Hall electric field

EHall is assumed to be completely shorted out, Equation (42)
reduces to

σVxB
Jθ =−

1 +Ω2 	
(45)

The Hall effect, in conjunction with the assumed boundary
conditions and in the absence of plasma rotation, has reduced
the effective electrical conductivity by a huge factor;

σe ff =σ/(1 +Ω 2 ). For the parameters of interest, this reduc-

tion factor is on the order of 105 .
The physical basis for this reduced conductivity, termed

“magnetoresistance,” has an origin that is somewhat compli-
cated. In view of the present assumption that the ions have
no fluid velocity in the azimuthal direction, the burden of
carrying the azimuthal current falls on the electrons. Without
the “EHall /B” drift velocity induced by the Hall field (as in
the preceding subcase), an electron can only undergo a
displacement at each collision by approximately a tiny gyro-
radius step across the magnetic field. This displacement is in
the azimuthal direction, in response to the azimuthal applied
electric field Eθ app = − VxB. It can be shown that the electron’s

effective gyroradius must be small, on the order of Eθ app/Bωc e.

This particular gyroradius is much smaller than the electron’s
thermal gyroradius. Hence, the effective step size involved in
the azimuthal electrical conductivity of electrons across the
magnetic field is even smaller than the electron’s thermal
gyroradius. In contrast, the null-magnetic-field conductivity is
based upon a much larger step size; namely λe.
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When the Hall voltage is shorted out, thereby precluding
the EHall/B drift, it is the very small step size in the azimu-
thal direction at a collision of an electron that proves to be
responsible for the decreased electrical conductivity. This
phenomenon is termed “magnetoresistance.” The details of
the three-dimensional scattering of the cycloidal electron
orbits underlying magnetoresistance lie beyond the purview
of this report.

The minimal intermixing of plasma and magnetic field,
found earlier for the case of classical resistivity, was based
upon the applicability of the simple Ohm’s law. In the
present context, that result requires that no Hall current be
allowed to flow. However, if the Hall electric field were
even partially shorted out, Hall current would flow, and a
concomitant drastic reduction in effective electrical conduc-
tivity would ensue, thereby enhancing the plasma-field
intermixing.

Clearly, it is important for the elucidation of plasma-field
intermixing in the magnetic nozzle to ascertain the boundary
conditions and Hall-return-current paths in the envisioned
magnetic nozzle device or experiment, as well as in numeri-
cal simulations of plasma flow through magnetic nozzles.
Attention also should be directed to whether plasma rotation
is allowed in the simulations. Also, computer simulations are
vulnerable to subtle numerical effects that impact the com-
puted physics. It is conceivable that these might inadvertent-
ly allow such Hall currents to intrude. Thus, any observed
deviation in the magnetic nozzle device or in its numerical
simulation that allows even some Hall current may signify a
partial shorting of the Hall voltage. The question should then
be raised regarding the effective electrical conductivity that
governs diffusive intermixing of plasma and magnetic field.

It is instructive at this point to examine the Hall current
with completely shorted Hall field. From Equations (41) and
(42), with EHall = 0 (Hall field shorted out), and in the limit
of large Ω, one finds with the help of Equation (38) that

JHall = negVx 	 (46)

Note that the velocity V represents the massive plasma
velocity, not the electron velocity. Thus, the Hall current is
carried across flux surfaces by ions. Electrons remain rela-
tively attached to the flux surfaces in regard to their radial
motion, in the limit of large Ω and concomitantly small
electron collision frequency υe . Since the space-charge field
is assumed to be globally shorted out, quasi-neutrality is not
enforced in the conventional manner. Electrons vacate the
local region at the same rate as the ions by flowing away
along the longitudinal magnetic field.

Note also that the above result for JHall can be written as
follows:

JHall = neg (V × B )×
B2 

(radialx-component) (47)

This form of expression for the quasi-radial Hall current
indicates that it is associated with a guiding-center drift
velocity of the ions Eθ app/B in the applied electric field,

Eθ app = V × B. A stationary magnetoplasma placed in an
externally applied electric field would acquire a Hall current
of this form when the Hall voltage is shorted out.

Obviously, electrons connecting longitudinally along
magnetic flux to a conducting backplate could serve to pro-
vide part of a current-return path for ions that connect trans-
versely across flux surfaces to the conducting coaxial wall or
to a conducting low-density plasma layer along the wall. If
such a partial current path were fully completed along the
wall, the space-charge field (Hall field) that otherwise
enforces quasi-neutrality in the radial direction would be
shorted out. Instead, quasi-neutrality would then be main-
tained by having the electrons and the ions vacate a given
position at the same rate; however, they would flow out in
their different directions, longitudinal versus radial.

With regard to such a closure path for the Hall current, in
terms of classical (Spitzer) resistivity, the longitudinal elec-
trical conductivity in a plasma-wall layer would be rather
insensitive to the density of plasma in that layer (Ref. 10). It
is important to note that such a path-closure process with
longitudinal electron flow is implicitly assumed in the above
result for the ions as carriers of the radial Hall current. Oth-
erwise, powerful radial space-charge electric fields would
cause electrons to move across flux surfaces with the ions to
preserve quasi-neutrality. Examples of such powerful space-
charge fields are given in a later discussion in the beginning
of Section 3.0, “Resistivity From Gradient-Driven
Microinstabilities.”

As already mentioned, a highly conducting backplate
would practically set all flux surfaces at the same potential,
thus shorting out the Hall electric field. But even if the con-
ducting backplate were rendered inaccessible to electrons by
a coating of insulating material, an alternative Hall-current
return path might become available, such as a layer of low-
temperature plasma next to the insulated backplate. A low-
temperature plasma-wall layer would raise the electron
collision frequency up to near the electron cyclotron fre-
quency. A 50 eV in hydrogen plasma dropping to 1 or 2 eV
in the plasma layer at the backplate would accomplish simi-
lar results. The possibility then arises of electron conduction
currents flowing radially outwards across flux surfaces that
are intersecting the backplate. Although the electrical con-
ductivity of such an electron-shorting path (~10 3 mho/m)
would be quite small in comparison to metallic conductivity
(~107

 mho/m), it would still be many orders of magnitude
larger than the conductivity of any insulator. Since the full
effect on the conductivity with unimpeded Hall current is a
huge effect, even an imperfect shorting path may make a
meaningful difference. Moreover, ions within the plasma-
wall layer next to the backplate could also contribute to path
closure by crossing the flux surfaces there, traveling radially
inwards.
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It is important to remark that having longitudinal Hall-
current closure along magnetic nozzle field lines necessitates
allowing for azimuthal magnetic field components. Longitu-
dinal currents in axially symmetric configurations generate
azimuthal magnetic fields according to the integral form of
Ampere’s law: ∇×B = μ 0J. In Appendix D the subject is
briefly addressed, while also allowing for rotation of plasma.
It is shown there that the consequent azimuthal magnetic
field component Bθ has the order-of-magnitude βiB , where βi

is the ratio of ion thermal pressure to magnetic pressure of
the nozzle magnetic field, B.

A complete model of propellant flow in a nozzle magnetic
field, which embodies longitudinal currents and azimuthal
magnetic fields as well as plasma rotation and electron pres-
sure, is very complicated. It would be accessible to simula-
tions that include Hall effects and that carefully treat global
boundary conditions. The model is not extended in such a
manner here, although some discussion of the extended
model is offered in Appendixes D and E. However, a partial
extension of the present model that is tractable and instruc-
tive is introduced in Section 2.3.2.2, “Hall current allowed
(voltage shorted out).”

Thus, we shall complete this section on the Hall effect by
including electron pressure and plasma rotation in the exten-
sion of Ohm’s law. In the axially symmetric configuration, it
will be seen that Hall current and plasma rotation must occur
together. The partially extended model presented below,
however, does preclude an azimuthal magnetic field, B θ .
Nevertheless, it is found that allowing for the possibility of
plasma rotation proves to have a profound effect upon the
nature of the plasma-field mixing layer, when the Hall elec-
tric field is shorted out.

2.3.2 Plasma Rotation and Electron Pressure

In the above discussion, the azimuthal component of the
plasma fluid momentum equation has been ignored. This
restriction would apply to a simulation that had provision
only for radial and axial components of propellant velocity.
To be consistent, as shown below, such a code also should
have hard-wired into it the condition that the Hall current
automatically be forbidden. In the above discussion,
however, rotation was automatically excluded but the Hall
current was not automatically excluded. In a real magnetic
nozzle experiment or device, the occurrence of propellant
rotation and Hall current would be coupled.

These remarks are illustrated by the azimuthal component
of the plasma momentum equation for the case of an axially
symmetric steady-state configuration.

ρ(V ⋅∇V )θ = (J × B)θ	 (48)

Upon working out the details, one finds


  r(

l )


V ⋅∇  r ( l ) Vθ  =  VII  ∂ l  r (l ) Vθ  =−JHallB (49)
 	 

Here Vθ is the rotational velocity of plasma, V// is the
velocity of plasma along the field line, l measures length
along a field line, and the x-direction (normal to the flux
surfaces) pertains to JHall. The magnetic field component Bθ

has been ignored.
It is important to note that the radius variable r(l) is a

function of l that characterizes the geometry of the magnetic
nozzle field. Thus r(l) constitutes the distance from the axis
of symmetry to a considered point a distance l along a given
field line, as measured from the breech. Strictly speaking, the
spatial derivative in Equation (49) is along the r,Z-projection
of a propellant streamline, since the θ-coordinate is in the
ignorable direction. In principle, the shape of the field line
r(l) will be somewhat distorted from its vacuum-field shape
by the plasma propellant and must be determined self-
consistently with the propellant flow, as is done in MHD
simulations such as MACH2. However, the Hall effects were
excluded from the MACH2 simulation in Reference 2.

It is important to remark that if the Hall current density
JHall is everywhere forbidden by external boundary condi-
tions, then Equation (49) implies that there can be no rota-
tion of plasma, provided that injected plasma is inserted with
axial symmetry into the breech and has no net injected
macroscopic rotation at any radius. Conversely, if it is
known that there is no macroscopic rotation anywhere, then
Equation (49) implies that there also can be no Hall current.
Simulations that are without access to the azimuthal momen-
tum equation of the propellant then lose that means of
enforcing consistency between the presence of the Hall
current and the presence of rotation.

It is also important to note that even in the event of Hall
currents and concomitant rotation of plasma, the rotational
kinetic energy can be recovered downstream for conversion
into axially directed thrust. This conversion can be effected
in the diverging region of the nozzle where presumably
JHall approaches 0. Reduction of temperature downstream

increases υe relative to ωc e , making Hall effects less impor-
tant downstream. From Equation (49) above, the rotational

velocity then vanishes as [r(l)] − 1 . The conversion of rota-
tional kinetic energy into longitudinal kinetic energy is a
consequence of conservation of total energy. This feature
can be demonstrated for axially symmetric steady flow by
means of the generalized Bernoulli equation including rota-
tion, which describes energy balance along the streamline
projections in the meridian plane.

We now invoke Ohm’s law including rotation and elec-
tron pressure. Define an effective electric field Eeff such that

 
Eeff = E + V × B +  1 

J

∇Pe 	 (50)
n q

Here, E is the electric field in the lab frame. Multiplying
Equation (37b) by σ and combining with Equation (38), the
result is
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J +ΩJ × b̂ = σE eff 	 (51)

The azimuthal and Hall components of Equation (51) are,
respectively,

Jθ − ΩJHall = σEeff θ	 (52a)

and
ΩJθ + JHall = σEeff x	 (52b)

Now Eθ = 0 in an axially symmetric steady state in the lab
frame, and there is likewise no azimuthal pressure gradient
∇ θPe = 0. Therefore, from Equation (50),

	

Eeff 0 = −VxB	 (53a)

Also,

 
Eeff x = EHall + VθB +  1 

Ja
xPe 	 (53b)

 ng

2.3.2.1 No Hall current allowed.— In this case, JHall = 0,
so that Equations (52a) and (53a) produce Jθ = − σVxB,

which is again the simple form of Ohm’s law. Thus, the
results obtained earlier for the plasma-field mixing layer width
are again realized even when plasma rotation and electron
pressure are not precluded from the model, as long as the
Hall current is strictly forbidden by the global electrical boun-
dary conditions. Moreover, when the Hall current is forbid-
den, so is plasma rotation, as discussed above.

Electron pressure plays a new role, though, as can be seen
from Equations (52b) and (53b), which now yield, with the
help of Equation (38)

Jθ = ng
(

E

B 
ll X 1 ∂xPe
	 (54)

B

In this case, the electron-fluid pressure-gradient term
B −1 ∂ xPe contributes to the azimuthal current density as
well as the E/B drift. The second term of Equation (54) is
partially caused by a lack of cancellation of azimuthal
current elements from neighboring electron gyro-orbits, due
to the spatial gradient of electron density in the x-direction
(normal to flux surfaces). From the manner in which the
fluid equations are derived from more detailed kinetic mod-
els, the electron pressure gradient in the fluid model also
automatically incorporates other individual-particle contribu-
tions, namely, guiding center drifts. For brevity, the
B −1 ∂ xPe term is henceforth referred to as “magnetization
current.”

Although the E/B guiding-center drift velocity of the ions
equals that of the electrons, seemingly canceling that

contribution to the electron current, it is also true—in this
subcase—that there is no net rotation of the ion fluid. The
“ion-fluid momentum” is the same as the “plasma-fluid
momentum.” The ion fluid cannot produce any macroscopic
contribution to azimuthal current in the absence of
propellant-fluid rotation, as pointed out earlier. Thus, on the
basis of the azimuthal momentum equation of the plasma
when the Hall current is forbidden, the E/B drift velocity of
the ions must be canceled by other individual-particle ion
effects, such as other guiding-center drifts and magnetization
currents. Therefore, the E/B drift velocity in Equation (54)
must refer to the guiding-center drift velocity of the electrons
only, it being understood that there is no net rotational con-
tribution from the ions when JHall = 0.

2.3.2.2 Hall current allowed (voltage shorted out) .—In
the extreme case in which EHall = 0, concomitant with the
existence of current-return paths sufficient to provide a
complete circuit for the Hall current, the solution for the
azimuthal current density Jθ from Equations (52a) and (52b)
reads as follows: Using Equations (53a) and (53b), one finds

σ 
= 1 

S22 −
V x B +Ω VθB +  I 

)
∂xle


'  (55)Jθ

Cl(	 )l	 

In the limit of large Ω, with help of Equation (38), this
expression reduces to

 	 Jθ = −  ngVx J+ngVθ +( I )∂xPe 	 (56)
 Ω 	 B

It will be seen shortly that over most of the length of the
nozzle, Vθ >> Vx in the plasma-field mixing layer between
plasma and magnetic field. Moreover, Ω >> 1 there. Hence
the azimuthal current carried by the plasma in the plasma-
field mixing layer essentially contains two principal contri-
butions, one from the ion-fluid rotation, and the other from
the electron magnetization current.

Next, we calculate the Hall current density for large Ω,
from Equations (52b), (53b), and (56):

JHall = - 52.10 + 6Eeff x

= ngVx −ΩngVθ− ( B 
)∂xPe +σ  VθB +  

ng J
∂xPe


= ngVx 	

 	 

(57)

The last step is obtained by invoking Equation (38). Thus, in
the approximation Ω2 >> 1, it would appear that ions still
carry the Hall current across flux surfaces, when rotation and
electron pressure are included in the model. However, this
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result is misleading because Equation (56) is not completely
accurate, being only the leading approximation (for small
Ω−1

). The leading approximation to Jθ, in terms of Ω−1
, is

prone to error if Jθ is multiplied by large Ω, as in the above
equation for JHall. The exact answer, using the exact Equa-
tion (55) instead of Equation (56), and again invoking Equa-
tions (38) and (53b), proves to be

 Ω 2

JHall =  1 +Ω2


ngVx +
( 1 +Ω2 )[ngVθ + (

B
 )∂xP  (58)

Now finally taking the limit of large Ω, this reduces to

JHall =
(

1
− 

U 
)ngVx + ( Ω 

)[ngVθ + ( B
 )∂xPe


(59)

Thus, the quasi-radial Hall current is only partly carried
directly by ions across flux surfaces. Because of subtle mag-
netic effects, it also contains contributions from the ion-fluid
rotation and from the azimuthal electron magnetization
current. This is true only in regions that the plasma has been
able to reach. The final results will indicate that Vθ/Ω is
indeed of the same order of magnitude as Vx .

It will be seen that the ions do not travel very far radially
from the core plasma during times of interest. Although the
Hall current circuit could be completed near the core's edge,
the presence of an inadvertent halo of low-density plasma
could as well facilitate a more distant closure of the Hall
path. Nevertheless, the inadvertent presence of a pervasive
low-density halo plasma might allow longitudinal comple-
tion of the Hall current circuit out near the wall, and across a
conducting backplate.

Now safely invoking Equation (56) within this higher order
calculation in Ω− 1, Equation (59) becomes, in leading order,

JHall = ngVx + S
Z 	

(60)

This result also is in direct agreement with Equation (52a),
whose meaning is now clarified.

With the help of Equations (56) for Jθ and (60) for JHall,

both transverse components of the plasma momentum equa-
tion can be utilized to find Vθ and Vx. An inversion in the
procedure proves convenient relative to the simple case of a
resistive plasma-field mixing layer. Now the quasi-radial
momentum equation determines the rotational velocity,
whereas the azimuthal momentum equation determines the
quasi-radial velocity. These results are then used to examine
the evolution of the plasma-field interface layer thickness.

The qualitative conclusion follows. If the Hall voltage is
shorted to allow Hall current in the presence of self-
consistent rotation and electron pressure, the plasma-field
mixing layer thickness between propellant and magnetic
field becomes very different from that obtained using the
simple resistive Ohm’s law.

To carry out this calculation, we first utilize the plasma
momentum equation in the direction normal to the flux
surfaces, the x-direction (as usual, it is assumed that the
transverse pressure gradient dominates the transverse inertial
effects). This equation reads

∂ xPtot = JθB ≈ ngVθB +∂x Pe 	 (61)

In the second part of Equation (61), we made use of Equa-
tion (56), wherein the small Vx/Ω term was neglected in
comparison to Vθ. Since the total plasma pressure is Ptot = Pi

+ Pe, the second part of Equation (61) is equivalent to

(B 1 

J
∂x

Pi ≈ 
ngVθ 	 (62)

B)

Therefore, the macroscopic ion-fluid rotation is actually
seen to be effected by the ion magnetization current, to
leading order in Ω− 1 .

Next, Equations (61) and (62) are input to Equation (49),
the azimuthal component of the plasma momentum equation.
This is done as follows: Integrate Equation (49) along a
given representative field line, from the breech region over
an indefinite length L, which is a significant fraction of the
length of the nozzle. The present model is valid while Hall
effects are dominant, which means that the temperature is yet
large enough that ωc e > υe . The result is

r rJHa
llB 	( )L

(r Vθ )
L

=−
J 0  ρ V// 

dl 	63
 )

Quantitative numerical results would require carrying out the
indicated integration along a selection of representative field
lines near and in the plasma-field mixing layer, with their
self-consistent field-line shapes characterized via the func-
tion r(l). Instead, we make the following approximation, in
the spirit of obtaining an order-of-magnitude scaling result
for the plasma-field mixing layer width: The integral is
approximated as the average value of the integrand, say, near
the throat, multiplied by the distance L. Then, suppressing
moderate numerical distinctions between the values of quan-
tities at l = L and their representative average values, we
multiply Equation (63) by the quasi-neutral ion number
density multiplied by charge, niq, to obtain
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ni gVe = –L  !VB 

)

JHall 


	 (64)

 	 

Here, for example, the numerical ratio of the average
value of r along a field line to r(L) has been suppressed.

Note that the composite ratio ni gB p is just the ion

cyclotron frequency so, i = gBmi . Accordingly, we define a
large parameter A >> 1 by

so, iL
A =	 (65)

V//

Now V// is closely coupled by the Bernoulli equation to
[
γ (Ti + Te )lmi

 ]1/2, 
the speed of sound, which also is near

the ion thermal velocity. It follows that the parameter A has
the order of magnitude of the ratio of nozzle length to ion
gyroradius. To within a trivial numerical factor,

A = 
L
	 (66)

ai

Therefore, Equation (64) is rewritten, using Equations (60)
and (65), as

ngVe - –AJHall = –A  ngVx +
e

J	
(67)

Here, it is important to note, in view of Equation (62), that
the Hall current JHall exists in virtue of the ion pressure
gradient, which creates the ion-fluid rotation. This is pro-
vided that the Hall electric field EHall is shorted out. Recall
that S2 = so, e/ve , where so, e is the electron gyrofrequency, and
ve is the collision frequency of an average electron with ions.

The quasi-radial velocity Vx is solved as follows: Combin-
ing the left-hand side of Equation (67) with Equation (62),
and substituting Equation (61) for Je on the right-hand side,
the resulting equation for Vx can be written as


ngVx -- –  

1
AB 

)axPi +(S21
'B

)axPtot J
 	 (68)

In the parameter regime of interest, A and S2 are large and of
the same order, and the two pressure gradients also are of the
same order of magnitude. It is implicitly assumed that elec-
trons and ions enter the breech with practically the same
temperature, and also the same density profiles because of
the quasi-neutrality condition. Therefore, this equation
essentially constitutes a verification that Vx is indeed very

small compared with Ve. (See Eq. (62).) Now referring back
to Equation (67), note that all terms therein are of the same
order of magnitude when A is multiplied through on the
right-hand side.

Although not actually necessary, the following discussion
is simplified by setting the electron pressure approximately
equal to the ion pressure, within the plasma and within the
plasma-field mixing layer: Pe = Pi. Then Equation (68) reads

neVx = –n1 +  	
) ^ B 

axP j 	 (69)

It is understood that Equation (69) is not necessarily an
accurate quantitative statement, but rather represents a
qualitative scaling result. In that sense, all quantities therein
are meant to be representative average values when follow-
ing the flow of a piece of propellant along a given magnetic
field line.

Equation (69) can be utilized to estimate the plasma-field
mixing layer width S at the plasma-field interface. The basic
modeling approximation, which also was employed earlier in
the case of resistive diffusion, is to associate Vx with dS/dt,
the rate of increase of the plasma-field mixing layer width as
the longitudinal flow is followed downstream:

Vx = 
dt	

(70)

The other part of the basic idea, also employed earlier, is to
represent the ion pressure gradient within the plasma-field
mixing layer by its value within the core plasma divided by
the width of the plasma-field mixing layer:

axiP =– 
S	

(71)

Then, Equation (69) can be expressed as follows, where Ti

refers to the ion temperature and where Vth i = 2Ti I mi is the

square of the ion thermal velocity:

2
/VVd (S 21

 1 + 2 
A nT 1

 1 + 2 
A  i 72

dt 	 A  ( S2) ngB A  ( S2 ) i 
( )

It can be shown that the right-most factor Vhi /so,i is

insensitive to position along the nozzle.
One now integrates Equation (72) over time, while

following the propellant downstream, assuming that the
initial plasma-field mixing layer width of attached plasma in
the breech is negligibly small. On the right-hand side, one
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simply takes average or representative values during transit
of the length of the nozzle from breech to throat Lb t and then
finds

A  V
2 
i 

S ≈ 	 + 
A   S2 4 ci 

J

A rigorous approach requires integration over Lb t:
ddt = V// d/dL bt , noting that A depends on Lb tIV//  and

that V// cancels in Equation (72). When A < S2, S a i

increases slowly with L, as [ln(Lb t 1Lb )+ (Sb ta i 
)211/2

where Lb is a small starting length in the breech, and Sb i

t

s an
initial layer thickness derived later as Sb = 2ai .

For the transit time t, we invoke tb t = Lb t V// , where

V// is a flow velocity in transit, and also note Equation (65)

for A. Then Equation (73) becomes simply

 	  	 V 2
	 (A 

S
2 =  1 + 2  A 1^ 

th i = [1 + 2 	
J^

, a? 	 (74)
  S2 ) cOc i

S2

It is therefore seen from Equation (74) that when A < S2, the
plasma-field mixing layer width is on the order of just a few
ion gyroradii. This is a very favorable result in the sense that
the width of the plasma-field mixing layer appears to be inde-
pendent of the electron collision frequency, if the condition
A < S2 is satisfied. On the other hand, when the opposite con-
dition is satisfied, namely when A >> S2, then a fundamental
change occurs in the scaling of the boundary-layer width.

To examine this second possibility, note that 2(A/S2) has
the following order of magnitude:

2 
A

 – 2 
L b t	 m

(75) )
e i

where Xe is recalled as the mean free path of electrons due to

collisions (possibly anomalous) with ions. Also, me/mi is the
electron-to-ion mass ratio. Thus, from Equation (74), if there

are fewer electron mean free paths along Lb t than mi me ,

then the boundary-layer width at the plasma edge is just one
ion gyroradius. However, if the characteristic length of the
nozzle is substantially greater than that relative to Xe , then
from Equation (74) with A >> S2,

S
2 2a? 

Lb tTM_ie 	 (76)
Xe

It is satisfying to note that Equation (76) exactly reproduces
Equation (28) for the case of simple resistive diffusion of
plasma into field, without Hall current and without plasma
rotation. It also is of interest to record the following equiva-
lent form of Equation (76), representing the case of simple
resistive diffusion:

S2 _ 
2a iL2b t	 (77)

S

which is to be compared with S
2
 = a? when the nozzle’s

length is subcritical. Here, S2 = cOc e/ve, where cOc e = qB/me

is the electron gyrofrequency, and ve is the electron collision
frequency.

To summarize, in a model that incorporates rotation, elec-
tron pressure, and Hall current unimpeded by a Hall voltage,
we found a transition in the behavior of the boundary-layer
width from the ion gyroradius to the width associated with
simple resistive diffusion. The transition is realized provided
that the nozzle is long enough. The critical length Lcrit is on

the order of Xe mi m e . In the case of classical resistivity, it

can be shown that this quantity is essentially the same as Xi

mi l me , which relates to Xi, the mean free path for ion-ion

coulomb collisions. The physical reason is that the plasma
has spun up enough along its length in the edge layer so that
the rotational velocity in the edge layer represents a motional
electric field in the rotating frame, which is strong enough to
suppress the outward quasi-radial flow of Hall current (sim-
ple resistive Ohm’s law). To see this, note that the outward
flow of Hall current produces a JHallxB force (for a magnetic
field that points downstream), which is counterclockwise
(looking downstream). Therefore, the VrotxB component of
the electric field in the rotating frame produces a quasi-radial
component of the electric field that points inward, towards
the plasma. If Vrot is large enough, this effect can suppress
Hall current.

2.3.3 Diffusion of Field Into Plasma With Hall Effect

This section on the basic physics shall conclude with an
account of external magnetic field diffusion into the interior
plasma, when unimpeded Hall current and consequent
plasma rotation are present, in a straight cylindrical geome-
try model of the core propellant. This complements the
preceding treatment of protrusion of plasma into magnetic
field, with Hall effect, as discussed in Section 2.3.2.2, “Hall
current allowed (voltage shorted out).” Also, this treatment
will thus generalize the earlier one that dealt with a planar
interface, in Section 2.2.3, “Diffusion of Confining Magnetic
Field.” Such a magnetic-field diffusion process into the core
plasma occurs at the same time as that of diffusion of the
plasma into the external magnetic field. When the Hall cur-
rent is totally suppressed by boundary conditions, the simple
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Ohm’s law governs plasma-field intermixing, and both types
of resistive diffusion act simultaneously to broaden the
plasma-field mixing layer.

With Hall current (and rotation) present, a more complex
version of Ohm’s law is in force, together with the presence
of an azimuthal magnetic field. This azimuthal field sur-
rounds the longitudinal return current that replenishes the
quasi-radial Hall current in a steady state. Under such cir-
cumstances, the diffusion of the nozzle magnetic field into
plasma then becomes rather involved. Nevertheless, it is
possible to develop a model of this process—diffusion of
field into plasma —to the point that some of the principal
features can be identified. In so doing, we shall assume axial
symmetry and a steady state. Appendix D shows that the
azimuthal field should be relatively small compared with the
other components of the field.

The development begins with Faraday’s law of induction
in the lab frame:

∇ × E = −∂ tB 	 (78)

According to the complete Ohm’s law, this can be written as

∇× ^ηJ +(-1

 J

J × B −∇×  V × B +  
1

)∇
Pe


∂ tB = 0

 	  	  nq	 

(79)

The right-hand side is zero in a steady state in the lab frame
of reference.

For the J × B term in Equation (79), we use the momen-
tum equation of the plasma. It is assumed that the electron
and ion temperatures are uniform. Then, the plasma pressure
gradient from the momentum equation is parallel to the
plasma density gradient, so that the pressure gradient term
does not survive the curl operator. Hence, only the inertial
term appears from the momentum equation in connection
with the J × B term. Similarly, the electron pressure gradient
is parallel to the plasma density gradient. Then the electron
pressure gradient term disappears from Equation (79).

We shall consider here only the case of classical Spitzer
resistivity, which is insensitive to the electron number den-
sity and depends essentially only on the electron tempera-
ture, assumed uniform. Whether the final conclusions still
would be valid for any anomalous (microturbulent)
resistivity ηa is an open question. In the case of resistivity
arising from the LHD instability, an approximate scaling
argument will be made later. The result is that after allowing
for adiabatic longitudinal flow and for radial pressure
balance in the plasma-field interface layer, ηa is seen to

depend only very weakly on density alone, as n 
1/6

. This
circumstance suggests that the arguments to be given here
for classical resistivity would still hold for the LHD
resistivity. This suggestion cannot be considered a rigorous
conclusion, however, because ηa actually proves to be

profile dependent through factors B/n and (aZ/xn)2, where aZ

is the local thermal ion gyroradius and xn is the radial gra-
dient length at the plasma-field interface.

Returning to the case of classical resistivity, the uniformity
of electrical conductivity follows from the assumption of
uniform electron temperature. Then, it is expeditious to mul-
tiply Equation (79) by σμ0 = 1/D, where D is the resistive
diffusivity. Also note the identity σ/nq = Ω/B, where Ω is the
Hall parameter Ω = ωce υe , and B therein is the magnitude

of the magnetic field (neglecting the azimuthal field compo-
nent). Note that the electron gyrofrequency ωc e ∝ B, whereas

the electron plasma frequency ωp e ∝ n . Also, note that the

electron collision frequency is υe ∝ nlTe ^2 .

We also invoke a vector identity for the ∇×(V×B) term
and recall that ∇ ⋅ B = 0. Then, upon multiplying through by
σμ0, Equation (79) reads

∇×μ0J +rB μ 0ρV ⋅∇VJ

 	 (80)

− D (− B∇⋅ V + B ⋅∇V − V ⋅∇B )= 0

We shall preclude radial velocity from the plasma model,
so that Vr = 0. The inward-radial velocity associated with
resistive dissipation (by the longitudinal return current) of
magnetic energy in the azimuthal magnetic field is estimated
in Appendix E, and is found to be very small. Then, a diver-
genceless flow condition is satisfied by uniform axially
directed flow of plasma, Vz , that is assumed to be constant in
time. Thus, for the purpose of examining penetration of
magnetic fields into the plasma core, the plasma core is here
modeled as a straight cylinder moving rigidly downstream
with a constant axial velocity. The possibility of rotation is
allowed, however, so the inertial term does not vanish, even
if the density is uniform.

In this situation, the plasma density still is allowed to have
a radial gradient, which it must in any case at the boundary
of the core plasma. The plasma continuity equation in a
steady state reads ∇ ⋅ (ρV) = 0 = ρ∇ ⋅ V + V ⋅ ∇ρ . Because of

the assumption about the plasma velocity, and the uniformity
of the plasma density along the axial direction, each of the
two terms on the right-hand side of the continuity equation
vanishes, yet the plasma mass density ρ can have a non-
uniform radial profile.

It is important to note that in this case of uniform tempera-
ture and classical resistivity, the combination (Ω/B) ρ
depends only on the electron temperature and hence is uni-

form; that is, Ω = ωce υe and υe ~ n/Te12 . This feature is

used in carrying out the details in Equation (80).
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In the term (− B∇ ⋅ V + B ⋅∇V − V ⋅ ∇B ) of Equation (80),

those terms that contain both Bθ and Vθ cancel one another
because the configuration is axially symmetric. It therefore is
expedient to define projections of the velocity and magnetic
field vectors in the r,Z-plane. Thus, the projection of the
flow velocity vector is Vproj ≡ (V ⋅Z) ẑ = (0, 0, VZ).

One might believe that we could also assume that Br = 0;
that is, that there should be no radial magnetic field compo-
nent in a straight cylindrical configuration. However, this is
not the case. In the lab frame, one has a steady-state
boundary-value situation, in which the nozzle magnetic field
generally obeys restrictions in or near the breech region of
the nozzle. For example, if the backplate is highly conduct-
ing, then the nozzle field lines are frozen into the backplate.

This constraint implies that when the BZ-component tries to
diffuse into the resistive core plasma, the nozzle field lines
must be stretched inwards and thereby necessarily must
produce a Br-component. This would happen even if the
backplate were not a conductor, for the nozzle field lines
also are somewhat constrained by the very conductive rings
that generate the nozzle field itself. The mathematical rela-
tion between axial and radial components of magnetic field
follows from ∇ ⋅ B = 0. It reads r− 1 ∂ r (rBr ) = −∂ zBz .

Therefore, we must retain Br in principle, and the
magnetic field projection vector then becomes Bproj = (Br, 0,
BZ). Then the term (− B∇ ⋅ V + B ⋅ ∇V − V ⋅ ∇B) of Equa-
tion (80) becomes

(Bproj ⋅ ∇Vproj − Vproj ⋅∇Bproj + Bθ ⋅∇Vproj + Bproj ⋅ Wθ − Vθ ⋅ ∇Bproj − Vproj ⋅ ∇Bθ )


=  − ∂ 	 + 	 + + 	 ∂ + ∂ 	

− r
θ
 

∂θ


(Brr )− VZ ∂Z Bθ
I


	 )Br 	

(81)
r (−VZ ∂Z Br )+6  (Br ∂r + BZ ∂Z ) Vθ− VZ ∂Z Bθ I+ z (−VZ ∂ZBZ )

 	 r	 

=i r (−VZ ∂Z Br ) +d  Brr ∂r  0 )+ BZ ∂Z Vθ− VZ ∂ZBθ I+ z (−VZ ∂Z BZ )
 r	

1^

Here, the obvious unit vectors for the cylindrical coordinate
system have been introduced. The relation ∂θ r̂ = θ̂ was
used. Also, it is worth noting that the operator VZ ∂ Z would
play the role of a time derivative in the moving frame.

The next calculation is to write out the fluid-inertial term
in Equation (80). The occurrence of the inertial term is a
direct consequence of the Hall term in Ohm’s law. In eva-
luating the inertial term, the following vector identity is
used:

∇
^ V 2

)= V ⋅∇V + V ×∇× V 	 (82)

The gradient term on the left-hand side does not survive the
curl operator in Equation (80), when the other factors within
that term are uniform. Therefore, effectively,

V ⋅ ∇V = −V ×ϖ 	 (83)

where ϖ = ∇ × V is the vorticity. Operating on the inertial
term with the curl in Equation (80), recalling that ( Ω/B)ρ is
uniform and using Equation (83), yields

∇×(V ⋅∇V) = −(V∇⋅ϖ −ϖ∇ ⋅ V+ ϖ⋅∇V − V ⋅∇ϖ)


= − ϖ⋅ ∇Vθ −(Le 

)
∂θϖ − VZ ∂Zϖ 

r	 
(84)

Now, the cylindrical components of vorticity (ϖr, ϖθ, ϖZ)

are as follows, when noting V = (0, Vθ, VZ), with uniform VZ :

 	  
ϖ=


−∂Z Vθ , −∂ r VZ ,

  
1 

J
∂r (rVθ;r
	 [−

∂Z	

(85)

Vθ ,0,
Cr 

∂r (rVθ l =(ϖr , ϖθ , ϖZ )

Using this expression for the vorticity in the previous equa-
tion and working out the details, one finds
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∇×(V ⋅∇V )= r̂ (VZ ∂Zϖr )

−θ̂ [ rrar 
C 

r )+ WZ a

Z V0 
+ Z ( Vz  azmz ) 

(86)
L5l

This result is entirely analogous to Equation (81), except that
before in Equation (81), Bθ ≠ 0, whereas now in Equations
(85) and (86), ϖθ = 0.

Finally, we display the first term of Equation (80), using
μ 0J = ∇×B. Assuming the usual axial symmetry, and in
terms of cylindrical coordinates, one finds

I∇×(μ0J )] r
 =−∂ZBr +∂Z ∂rBZ =−∂ZBr

(87a)
 

−∂ r 
r )

∂r (rBr )J

[∇×(μ0J )]
θ
 =− ^ ∂ZBθ+∂ r 

C( r )
∂r (rBθ ) 1


	

 (87b)

∇×(μ0J )  Z 
=  I )∂r r (∂ZBr −∂rBZ ) 

(87c)

Equations (81), (86), and (87) are used in Equation (80). To
simplify the presentation, long-thin ordering for the nozzle-
magnetic field geometry is invoked, namely

Br << BZ	 (88a)

∂Z << ∂r 	 (88b)

Br	
δr	 (88c)

BZ ~ δZ

Here, δr << δZ and symbolize gradient scale lengths in the
r- and Z-directions, respectively, for the special dependence
of the magnetic field. The third of these conditions is
required by the restriction that the magnetic field have no
divergence. Using Equations (81), (86), and (87), the follow-
ing three component equations are then obtained from
Equation (80):
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B

These equations, which describe penetration of fields into
core plasma, are evidently very complicated. For example,
the azimuthal component equation for Bθ depends on both Br

and BZ as obtained from the other two component equations.
Moreover, all three component equations depend on the
rotational velocity Vθ, as calculated from a simultaneous
solution of plasma penetrating into field (why computer
simulations such as MACH2, extended to include Hall cur-
rent and rotation, are needed). Nevertheless, it proves possi-
ble to obtain some information regarding penetration of
fields into core plasma, including cylindrical geometry, Hall
current, return current, and plasma rotation.

The first thing that can be done is to find out what this set
of equations reduces to when the Hall current is absent. In
that case, there is no longitudinal return current; hence
Bθ = 0. Moreover, without Hall current, there is no mechan-
ism to drive up the fluid rotational velocity of the plasma;
hence Vθ = 0. Then the vorticity also vanishes; thus ϖ = 0
(see Eq. (85)). Under these restrictions, the above three
equations reduce to the following:

	

 
∂r

 r )
∂r (rBr )J = (

D )
∂Z Br	 (90a)

0 = 0 	 (90b)

	

Cr 
)∂r (r ∂rBZ) 

= C D 
)∂Z BZ	 (90c)

Clearly, these reduced equations for steady-state disposition
of the r- and Z-components of magnetic field exhibit the
character of resistive diffusion of the magnetic field, which
was the subject of a previous section based upon the simple
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Ohm’s law. When the boundary-layer width is small com-
pared to the radius of core plasma, the relative variation of
the r-coordinate within the plasma-field mixing layer can be
neglected, and the equations reduce to a description of diffu-
sion in planar geometry. The only essential difference from
the previous section just referred to is that now Equation (90)
with respect to the lab frame, is not the moving frame. Thus,
the operator VZ ∂ Z plays the role of a time derivative in a
frame of reference moving with plasma propellant.

In the lab frame of reference, with ancillary boundary
conditions in force at the breech of the nozzle, inward diffu-
sion of the BZ component can occur only with the simultane-
ous appearance and inward diffusion of a Br component.
This must be so whether or not the Hall effect is present. The
fundamental requirement that the magnetic field be diver-
gence free, ∇⋅ B = 0, forces the appearance of Br with a non-
uniform radial profile. This must happen whenever the term
VZ ∂Z BZ is significant. Moreover, although the present
discussion has been cast in terms of a straight cylindrical
plasma core, its conclusions, with allowance for obvious
geometric modifications, have meaning as well for a
converging-diverging nozzle-shaped geometry.

In Appendix C, a similarity solution is derived for BZ in
Equation (90) above, assuming a thin plasma-field mixing
layer. The solution reads

 	  	 
BZ =Bpe  1− erf  X  	 (91)

 	  2 uτ 

where Bpe is the assumed-uniform value of BZ at the plasma
edge, X is the inward radial distance from the plasma edge,
and uτ = ZD/VZ is a time-like similarity variable. In a more
realistic scenario, the edge field would be nonuniform along
Z, since the starting flux between the plasma and the wall
would be preserved because that flux spread out downstream
during the inward diffusion of the magnetic field. However,
such a scenario is not accessible to a similarity solution. We
ask for the value of X where the field is reduced to, say, one-
third of its edge value. For the value of τ, a characteristic
length Z = 1 m, D = 3 m2/s, and Vz = 105 m/s are input, in
accordance with Table I for parameters of hydrogen propel-
lant. The value of X is then chosen so that the value of the
error function is 2/3. The result is that the characteristic
length of protrusion of magnetic field into the plasma—
considered as a simple resistive medium—is X = 0.65 cm, in
excellent agreement with the earlier calculation based upon a
different approach.

We return now to the opposite case, where the Hall cur-
rent, its return current, and plasma rotation are present. A
complete discussion is beyond the purview of this report. It
is sufficient here to just focus upon Equation (89c), which

describes the steady-state disposition of the longitudinal
magnetic field relative to core plasma. For convenience, that
equation is reproduced here:


− I 

1 
)∂r (r ∂rBZ )

\
r

(89c)


+VZ ∂Z
 K B J

μ 0 ρJ ϖZ +(^ )BZ  = 0
 

Let us compare the first term with the second term, the Hall
term. Equation (62) is used in connection with the vorticity
ϖz. That equation states that the ion rotational current
density is given by the ion magnetization current density;
that is, ngV0 = B-

1 ∂rPi . It is not significantly material

whether B is regarded as BZ or as the total magnetic field
including Bθ. Then one can easily estimate, to order of mag-
nitude, the ratio of the second term of Equation (89c) to the
first term. The ratio proves to be βi(λe/Lϖ ) m i me . Here,

VZ ∂Z ~ Vth i /Lϖ , where Vth i is a representative ion thermal

velocity and Lϖ is a characteristic axial length
related to the development of vorticity in the plasma-field
mixing layer. For βi on the order of 1, when the quantity

Lϖ/λe me mi exceeds 1, the Hall term is unimportant and
consequently ordinary resistive diffusion of field into plasma
is obtained. This condition essentially agrees with that
needed for resistive diffusion of plasma into field in the
presence of Hall current and rotation, as described in connec-
tion with Equations (74) to (76) (see Lcrit discussion in Sec-
tion 2.3.2.2, “Hall current allowed (voltage shorted out)”.
Therefore,

Lϖ ≈ λe
VmWe

≈ Lcrit 	 (92)

In the opposite extreme, if the Hall term were very large,
one might expect that the radial gradients of BZ would have
to become very large in the first term of Equation (89c) to
keep that equation in balance. The “sharp boundary” picture
emerging from such a scenario implies that BZ has not dif-
fused very much into the core plasma.

It is instructive to take a somewhat different approach to
the issue of resistive diffusion of field into plasma as regards
the alteration of this process by the Hall effect and rotation.
Note that

C

Ω

B

0
ρ )= (
	

(93)
qD

NASA/TP—2009-213439	 26



Here, as usual, mi is the mass of an ion, q is the magnitude of
the electron’s charge, and D is the resistive diffusivity. In
this section, we are assuming singly charged ions. Then
Equation (89c) can be rewritten as

(-
1

)∂r
r

	 (r ∂rBZ) =  D
	 + 

miϖZ

	

(94)(BZ
	g

Recall Equation (85), in particular that the longitudinal com-
ponent of vorticity ϖZ is related to the ion-fluid rotational

velocity by oZ = r− 1 ∂ r (rVθ ). Utilizing again the ion mag-

netization current density B − 1
 ∂ rPi to represent the ion-fluid

azimuthal current density ngi Vθ, it can then be qualitatively
estimated that the vorticity term (mi/gi)ϖZ in Equation (94),
can become significant in comparison to the BZ term when the
plasma-field mixing layer width (for diffusion of plasma into
field) is small on the order of an ion gyroradius, ai.

A more quantitative estimate proceeds as follows. Factor-
ing out m i/gi, one has in Equation (94) a comparison of the

ion gyrofrequency, ωc i with the vorticity component ϖZ.
Then for a radially uniform ion temperature, a radially uni-
form magnetic field, and invoking the magnetization current
density, one can then estimate the vorticity component for a
given density profile. The simplest case is a linearly decay-
ing density profile of the form n(x) = ncore [1 − x/δ], where x
is the radial distance outwards from the nominal plasma edge
and ncore is the number density in the core propellant. Then
one finds

 ngVθ  1
ϖZ ≈ ∂x I ng J= ∂x  I 

ngB 
)∂xPi

(95)
T	 1	 1 ai 

1
2 ncore 

2

=( gB
)∂x

[ n
 )∂xn

 	 2 ( δ)  n ) ωc i

Thus, the vorticity ϖZ is comparable to or larger than the ion
gyrofrequency ωc i when the plasma-into-field layer width δ

is small on the order of the ion gyroradius ai and particularly
in the low-density edge of the layer. This admittedly
non-self-consistent argument indicates that when the plasma-
into-field layer width δ is on the order of ai, then also under
the same condition, a large Hall effect manifested as ion-
fluid rotation acts to dominate resistive penetration of field
into plasma.

Assuming that the Hall-vorticity term does indeed domi-
nate the right-hand side of Equation (94), one can then pro-
ceed to estimate the field-into-plasma penetration depth δB

as follows. According to the remarks in the previous para-
graph |ϖZ| ≈ | CI | ωc i, where | CI | is a number exceeding 1 (see

Eq. (95)). Then, equating the left side of Equation (94) to the
Hall term on the right side one has the following:

	

1 = 
CI Vth i 	 (96a)
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me	 c	 υe Vth e Lϖ

CA ωpi  Vth e Vth i

Here, the expression (1/σμ0) is inserted in place of D and set
in terms of the electron plasma frequency,

ωpe = ng2 /ε0 me . Also, the corresponding ion plasma

frequency ωp i is introduced. Then the relation ε0 μ 0 = 1/c2 is
invoked, where c is the speed of light in mks units. Finally,
the electron thermal velocity Vth e is also introduced. For
simplicity, electron and ion temperatures are assumed equal.

Recalling that the electron collision mean free path is
given by λe = Vth e/υe, the above equation for the square of
the field-penetration depth becomes the following:

f

2 1

V

 c La

	

δB ≈ 
CI  ωpi	 M	

(96c)

In the present example of a dominant Hall effect, the product

(Lϖ/λe) me m i is smaller than unity, in contrast to the

situation with resistive diffusion. Hence, the field protrusion
depth is δB < (c/ωp i), which is known as the “ion inertia

length.” Since ai = (c/ωp i) βi , the ion inertia length is on the

order of the ion gyroradius whenever βi is on the order of 1.

We conclude that the field protrusion depth into the
plasma is on the order of the ion inertia length (the ion gyro-
radius), provided that the characteristic axial length does not
exceed a certain critical value. This is essentially the same
critical length found for the Hall effect to dominate resistive
diffusion of plasma into field. It is important to emphasize
that the Hall effect and plasma rotation had to be included
together in order to reach Equation (96c).

2.4 Summary

Since Section 2.0 is lengthy, we pause here for an interim
summary and discussion of its contents and a few recom-
mendations for future work.
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First, a simple model of quasi-one-dimensional nozzle
flow was presented based upon the Bernoulli equation. This
well-known model affords useful estimates of propellant
flow speeds and other quantities as related to the injected
propellant properties; for example, the propellant speed was
derived at the nozzle throat and at the exit plane.

Then, we indicated how the longitudinal flow becomes
distorted by the presence of curved magnetic field lines and
edge pressure gradients when the plasma propellant is not a
perfect conductor. Using the simplest form of Ohm’s law,
we displayed the eddy current braking of propellant flow
across flux surfaces. For the tabulated parameters of interest,
which include an assumption of classical resistivity, we
showed that eddy current braking in the region upstream of
the nozzle’s throat severely limits the growth of the resistive
boundary layer of edge plasma, as generated by pressure-
gradient-driven plasma diffusion into the confining magnetic
nozzle field. The growth of this plasma-field mixing layer is
relevant to the amount of attached plasma that evolves during
transit of the nozzle. A more detailed estimate of the layer
thickness is presented at the end of this summary section.

The implicit assumption in our treatment was that, within
the resistive MHD model, there has occurred no sudden
initial penetration of magnetic field and plasma. Such beha-
vior might be caused by dynamical resistive MHD effects
induced by rapid spatial convergence of field lines down-
stream as induced by upstream plasma impact. Early lateral
displacement of field lines by the highly conducting injected
plasma, together with the unavoidable crowding of flux into
the nozzle’s throat, could enhance the spatial rate of conver-
gence of flux beyond the breech of the nozzle, instigating
strong curvature and thereby spoiling the gentle convergence
of propellant flow. Coil discreteness can exacerbate that
effect. Dynamical resistive MHD processes that may be
engendered by such rapid spatial changes need to be
understood and avoided, if possible. References 1 to 3 have
identified such behavior in an axisymmetric simulation
and has pointed out its importance. A non-MHD effect that
causes instant penetration of field and injected plasma is
demonstrated in Section 3.0, “Resistivity From Gradient-
Driven Microinstabilities.” In other words, the injection
process is here assumed to be sufficiently smooth and
gradual as to be benign. A systematic investigation of the
effects of coil discreteness and the rapidity of spatial conver-
gence, within the axially symmetric resistive MHD model,
would be a worthwhile and instructive project.

Although the propellant temperature drops precipitously
after passage through the throat of the nozzle (see Ref. 6), it
hardly drops at all between breech and throat. Therefore,
classical resistivity should still be small up to the throat. This
leads to the expectation that for 1 m or less of travel (from
breech to throat), there should be very little growth of the
resistive plasma-field mixing layer separating core-plasma
from magnetic nozzle field, in the absence of anomalous
resistivity, when the simple Ohm’s law applies.

A separate companion process, which also generates
attached plasma, is the diffusion of external magnetic field
into the plasma—considered as a fixed resistive medium.
This process also was analyzed on the basis of the simple
form of Ohm’s law with classical resistivity and was found
to produce essentially the same width of plasma-field mixing
layer as previously estimated for the other process. This
result was demonstrated by two independent methods, which
agreed very well. The first was from the point of view of the
moving propellant, with an assumed growing time-
dependent field applied at the boundary. The second was
from the lab frame point of view, assuming a steady-state
configuration with a constant external magnetic field.

It is convenient to encapsulate these results in terms of a
magnetic Reynolds number, defined as Remag = VArDcl .

Here, the Alfven speed is VA = B 2 g0ρ , with B being the

magnitude of the nozzle magnetic field, and p the propellant
mass density. Also, r is a representative radius of the con-
fined plasma in the nozzle, and Dcl = T1 cl g 0 is a represent-

ative resistive diffusivity of plasma propellant. For the
purposes of making approximate estimates, the magnetic
Reynolds number may be evaluated at the throat of the noz-

zle. When β = 1, that is, V = Vth i = VA, with Vth i being

the ion thermal speed, the normalized width S of the plasma-
field mixing layer may be characterized as

S 1 V̂Lb 	
(97)

r	 Remag

where Lb t is a characteristic nozzle axial length. As a numerical

example, in the region just upstream of the throat Re mag = 104,
and Lb t/r = 10 for Lb t = 1 m and r = 0.1 m. Then S/r – 0.03.
This ratio will grow further downstream. The analytical
description of the entire evolution of S over the length of the
nozzle is beyond the purview of this report. Equation (97)
thus is relevant to the plasma attachment process.

Turchi (Ref. 8, private communication) points out that if
the angle OB V between field and flow were regarded as an
independent parameter, and if the transverse pressure gra-
dient were neglected, then the boundary-layer width would
scale rather differently, namely as

S  1
–	 sin OB V	 (98)

r  Remag 

This result can be derived from the inertial component of the
plasma-momentum equation across the flux surfaces (the
x-component) while incorporating the simple form of Ohm’s
law for J within the J x B force. In that manner, one finds
that the incident “core” velocity component across the flux
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surfaces, Vx core = V sin OB V , experiences a slowing down

due to eddy current braking, with a characteristic time

tx char = D
I

VA . The boundary-layer width then can be

estimated as S ~ Vtx char sin OB V . Assuming that β = 1 —

that is, V = Vth i 
= VA —one immediately arrives at the

expression in Equation (98). The latter constitutes a much
stronger dependence on Re mag.

The extremely short slowing-down time for inertially dri-
ven cross-flux motion, which is the result of eddy current
braking for the upstream parameters of interest, suggests
that the angle between field and flow may not be indepen-
dently specified in a highly conducting plasma. Section 4.0,
“Rayleigh-Taylor- (RT-) Type Instabilities” quantitatively
estimates the crossfield braking time within the single-fluid
resistive MHD model and the consequent shape of the pro-
pellant streamlines. The flow would very quickly become
practically field aligned, with a very small remnant of cross-
field flow driven by the edge pressure gradient. Therefore, it
would appear that the model that underlies Equation (98) is
more likely to be valid in the low-pressure high-resistivity
region that exists downstream of the throat, where detach-
ment is of interest rather than attachment. There, the magnet-
ic Reynolds number is much smaller, so that the flow angle
(relative to the magnetic field) would be less vulnerable to
alteration by eddy current braking and also would be less
influenced by the broader transverse pressure gradients. The
latter point of view was, in fact, adopted for the detachment
calculation in Reference 7. It is therefore recommended that
the scaling of the boundary-layer thickness be studied as a
function of position along the nozzle in order to elucidate the
transition between Equations (97) and (98).

The small amount of plasma-field intermixing estimated
upstream of the throat, for the parameters of interest and
using classical resistivity, serves as a prompt to consider
possible causes why simulations or experiments might nev-
ertheless exhibit substantially greater boundary-layer widths
at the nozzle’s throat. Such causes could be as follows:

(1) numerical diffusion
(2) degree of processes allowed (Hall effect, rotation, ion

viscosity, classical vs. anomalous resistivity)
(3) global geometrical configurations (number and

placement of discrete field coils, types of global elec-
trical boundary conditions including plasma effects)

(4) a subtle combination thereof

A feature of the boundary-layer physics notably absent
from this report, so far, is ion viscosity. This feature is intro-
duced later in the discussion of Rayleigh-Taylor type insta-
bilities in Section 4.3, “Finite Larmor Radius (FLR)
Stabilization of RT-Type Flute Modes.” It can be shown that
the collisionless contribution to the force term arising
from ion gyroviscosity (see Ref. 9) bears essentially the
same order-of-magnitude relation to ion inertia in the

plasma-momentum equation as does the Hall term to the
motional electric field in Ohm’s law; that ratio is on the
order of ion gyroradius to the plasma’s radial scale length.
Therefore, collisionless ion gyroviscosity ideally should be
included in the plasma model of the interface whenever Hall
effects are included.

In this concluding discussion of the general physics topic,
we turn now to a review of the underlying physics
represented in the modeling of the edge plasma during
plasma flow through magnetic nozzles, specifically, the
physics associated with the complete Ohm’s law (the elec-
tron momentum equation). The derivation of the general
Ohm’s law was first outlined, and then several special cases
were examined. The emphasis was on the Hall effect and
plasma rotation. A major concern, however, was the justifi-
cation for use of the simple Ohm’s law while in the presence
of a strong magnetic field. The simple Ohm’s law is often
perceived as being the limit of the complete Ohm’s law when
the electron collision frequency is very large, ue >> coc e.

The principal results were as follows: First, it was pointed
out that when the Hall current is completely suppressed by
electrically insulating global boundary conditions, the simple
form of Ohm’s law is restored by means of the quasi-radial
Hall voltage. This result is obtained even though, in the case
of interest, ue << coc e . This justifies the resistive diffusion
result obtained with the simple Ohm’s law, which governs
the spatial growth of the plasma-field mixing layer. Practi-
cally the same result for the plasma-field mixing layer
growth was obtained from two distinct points of view,
plasma diffusion into magnetic field and field diffusion into
plasma.

Next, in simulations that may short out the Hall voltage
and thereby allow Hall current to flow —but inconsistently
without plasma rotation—it was shown that there would be a
very large reduction in the effective electrical conductivity of
plasma. This is the phenomenon of “magnetoresistance,”
which would enhance edge-plasma diffusion across the flux
surfaces. Magnetoresistance associated with the Hall effect
has been observed in gas-plasma and solid-state-plasma
experiments configured so that rotation is impossible.

Finally, self-consistently allowing for flow of Hall current
and plasma rotation, a characteristic length Lo along the
nozzle was identified beyond which the above-mentioned
resistive spatial growth of the plasma-field mixing layer
would occur. However, for lengths smaller than Lo, the
plasma-field mixing layer width proved to be insensitive to
the electron collision frequency; instead, it was on the order
of the ion gyroradius. Again, essentially the same results
were obtained from the two points of view: penetration of
plasma into field and penetration of field into plasma. The
characteristic length Lo (Lcrit) was identified approximately

as Lo = I%e mi l me , where I%e is the collision mean free path

of a representative electron, mi is the mass of an ion, and me

is the mass of an electron. Because the insensitivity of layer
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thickness to electron collisionality is a favorable result, it is
recommended that Hall-MHD simulations be performed in
which the Hall space-charge electric field is shorted out and
rotation of plasma is allowed, while systematically varying
the length of the nozzle configuration. Beyond the length Lϖ,
plasma spinup produces a quasi-radial motional electrical
field that suppresses the flow of Hall current. We then
recover the preceding results where the Hall current was not
allowed to flow.

Lastly, in this concluding discussion of Section 2.0, on
general physics of the magnetic nozzle, we turn to the topic
of the dynamical dwell time available for resistive growth of
the plasma-field mixing layer. The model that was employed
earlier in this report simply assumed that the dwell time is on
the order of Lb t/ Vt, where Lb t is a characteristic axial length
of the nozzle and Vt is the velocity of propellant in the throat.
Now, we shall refine that model by recognizing that the
dwell time (say, from breech to throat) must be longer
because of the time required for acceleration of the propel-
lant up to speed. The plasma-field mixing layer thickness at
the throat will be calculated using this refined model.

From Equation (19) with β ≈ 1 in the transition layer, the
algorithm that is used to investigate the effect of increased
dwell time between breech and throat is

δ2 = 
tbt 

Dcl dt 	(99) 0

where δ is the thickness of the plasma-field mixing layer, tb t
is the time required for the propellant to traverse the distance
from breech to throat, and Dcl is the classical (Spitzer) resis-
tive diffusivity. It is known that Dcl is insensitive to plasma
density and essentially depends only on electron tempera-
ture. Equation (99) is analyzed in Appendix B, using a
generic shape for the nozzle. There, the time variable is
related to the flow velocity, the longitudinal distance along
the nozzle Lb t, and the nozzle’s geometry (i.e., the contrac-
tion ratio). The nominal plasma edge layer width at the

throat Dt clLbtVt is found to be enhanced by the longer

dwell time, but by less than a factor of about 2 from the
original estimate. Specifically, for a radius-contraction ratio
of 2 the bounding numerical factor proved to be 1.7, whereas
for a radius-contraction ratio of 3 it proved to be 2.3.

From these results, an approximate overestimate of the
fraction of attached hydrogen plasma propellant at the throat
can now be made for the sample parameters, with the
assumptions of classical resistivity and no Hall current. First,
the 0.6-cm estimate of δ is doubled to allow for bidirectional
diffusion (plasma into field and field into plasma). Then we
multiply by another factor of 2 to allow for the effect on the
layer thickness of the increase in dwell time from its refer-

ence value Dt clLbt Vt . This adjustment is for the time

required during acceleration of propellant from breech to
throat, over a length of 1 m. The final result is a plasma-field
mixing layer at the throat of about 2.5 cm. Taking a nozzle’s
nominal plasma radius at the throat, r = 10 cm, this leads to an
upper bound of the attached fraction 2 δ/r of about 50 percent.
The factor 2 comes from the geometrically enlarged area of an
outer annulus of thickness δ in cylindrical geometry. To the
extent that this result is even approximately realistic, it sug-
gests a search for mitigating effects. Therefore, an example
of operation at higher stagnation temperature and lower
resistivity with a heavier propellant ion, to achieve the same
specific impulse, could be pursued at a future time.

Since the result for the layer thickness is insensitive to the
radius-contraction ratio, essentially three options for remedi-
ation are allowed, assuming classical resistivity: The first,
suggested by Turchi, is to shorten the length Lb t from breech
to throat. However, the thickness of the plasma-field mixing

layer only scales as Lb t , assuming that the scaling in

Equation (97) is valid. The second is to enlarge the (plasma)
throat, which has the disadvantage of increasing the mass-
flow rate of propellant (for fixed stagnation density and
stagnation temperature), with consequences for vehicle
design and mission logistics. Hence, the second option
would entail a smaller propellant density to preserve the
mass flow rate m . The consequent enlargement of the ion-
ion collision mean free path may require extending the MHD
flow model into the kinetic regime. The third option is to
work at a higher stagnation temperature in order to decrease
the resistive diffusivity D (to increase the magnetic Reynolds
number) and also to work with heavier propellant atoms to
maintain the desired exhaust velocity (specific impulse). See
the discussion on constraints at the end of this discussion
section.

The above estimate of plasma-field mixing layer thick-
ness, applied to hydrogen propellant with Lb t ≈ 1 m from
breech to throat, can as well be applied to the envisioned
”Godzilla” experiment (see Sec. 2. 1, “Bernoulli Equation for
Nozzle Flow”) with fully stripped helium propellant and
Lb t ≈ 0.3 m (see Ref. 2). According to the tabulated parame-
ters, taking into account the higher stagnation temperature in
helium and that the atomic number Ξ is 2, D is about 2/3 of

the hydrogen value; hence, D is about 0.8 of the hydrogen

value. Also Lb t is 1/3 of the previous value, so Lb t is

about 0.6 of the previous value. The velocity near the throat,
Vt, is about the same for both propellants. Consequently, the
previous answer for the boundary-layer width δ, namely

Dt clLb t Vt , is to be multiplied by 0.6 × 0.8 ≈ 0.5. Since

the previous δ for hydrogen propellant was about 2.5 cm, the
new estimate for helium now is δ ≈ 1.3 cm.

Figure 6 of Reference 2 displays results relevant to the
planned helium experiment, as obtained by the MACH2
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simulation using classical resistivity. It indicates that, at the
throat, the radius of core plasma is only about 2 cm. From
there, the magnetic field drops off from its nominal edge
value of 0.75 to 0.28 T on axis over only a radial distance of
about 2 cm. This drop-off ratio is close to a factor 1/ e; hence,
2 cm would appear to constitute a fair representation of the
characteristic boundary-layer width obtained by MACH2 at
the throat (compared with the above overestimate of 1.3 cm).
The plasma density or pressure profiles (not shown in the
figure) might have indicated some additional outward pene-
tration of plasma into field, leading to a somewhat thicker
effective plasma-field mixing layer. Since both field penetra-
tion into plasma and plasma penetration into field engender
plasma attachment, it is recommended that the type of
information in the figure henceforth be made more complete
by providing the radial density and pressure profiles of
plasma corresponding to the magnetic profiles therein. The
He parameters and coil configuration employed in Refer-
ence 2 leading to a 2-cm plasma throat signify that
essentially all of the He propellant has become attached to
magnetic flux at the throat position.

Because the plasma’s corresponding density profile or
pressure profile was absent from Figure 6 in Reference 2,
our assessment of what transpired in that simulation between
breech and throat is necessarily limited. What can be said is
that the model of classical resistive diffusion developed in
Section 2.0 of this report is in fair agreement with the
MACH2 simulation of Reference 2, being too small by
perhaps a factor of about 2 or 3. This is in spite of the fact
that the derivation carried out in Appendix B was biased in
several respects towards too much interdiffusion.

Figure 8 of Reference 3 shows radial profiles in the plasma-
nozzle throat for a larger system. The system length is 1 m,
and the system radius is 18 cm. The radial plasma pressure
profile is shown, along with the radial magnetic pressure
profile. At the throat of the nozzle-shaped plasma, the inter-
face width extends from about 3 to about 7 cm; thus, the
width is about 4 cm. For comparison, a rough estimate of the
resistively diffused width can be obtained from the expres-

sion Dt . For helium at 100 eV, D = 2.3 m2/s. Also, t = 10 µs,
from a quasi-one-dimensional isentropic flow model

5
(velocity in the throat = 10 m/s). Then, the resistively dif-
fused width proves to be about 0.5 cm, which is an order of
magnitude smaller than the width observed in the MHD
simulation. (A factor of 2 or 3 enhancement due to the dwell
time during speed-up does not resolve this discrepancy. See
Appendix B.) An anomalous process within the resistive
MHD model ultimately is held responsible for the 50 percent
mass loss, which is tentatively ascribed to the discrete mag-
netic geometry. In the present report, no attempt is made to
address this anomalous process, which appears to lack a
complete and definitive understanding. The authors of Ref-
erence 3 and this author are in agreement that the observed
anomalous mass loss can probably be mitigated by
employing a more gradual and smoother magnetic geometry

transition between the nozzle inlet and the plasma-nozzle
throat. Such an adjustment may require elongated inlet geo-
metry. This speculation ought to be tested with more numer-
ical MHD simulations.

The influence of the nozzle shape of core plasma on the
accrued diffusive edge-layer thickness yet remains to be
thoroughly investigated. Measured magnetic nozzle field-
line shapes in a real experiment, albeit in coaxial geometry
over part of the effective length of the thruster, are displayed
in Figure 1 of Reference 11. Therein, resistive drag by the
plasma substantially modifies the field-line shape.

Although the occurrence of substantial diffusive plasma
attachment motivates exploration of improvements in design,
it should be recognized that there are fundamental con-
straints arising out of mission logistics. For example, the two
quantities dm/dt = m  and the specific impulse Ve/g ought to
remain fixed for a given mission when searching for
improved parameters. The latter constraint implies that the
stagnation temperature is fixed for a given propellant; the
former constraint implies that the quantity pr

2
 is fixed (say

at the throat). Here, p is the mass density of propellant and r
is the throat radius of the confined plasma core.

However, there is a third constraint associated with the
magnetic nozzle: the external magnetic pressure should
balance the internal plasma pressure transversely. The con-
sequent condition on the global beta, namely that 0 = 1,
along with fixed stagnation temperature, implies that p

scales as B2. Therefore, the product Br must be fixed at the
throat. A fixed temperature then implies that the ratio r/aZ is
fixed; that is, that the ratio of ion gyroradius aZ to the effec-
tive plasma-throat radius r is fixed—for a given propellant.
This result was shown in Reference 2. In terms of different
propellants, the ratio aZ/r scales approximately as mZ/(E) 3/2

for fixed m  and specific impulse, where mZ is the ion mass

and (E)(1.6x 10–19
 C) = qZ is the ion charge. In this report, J qZJ

= Jq eJ, and only hydrogen propellant is of interest.

This constraint on aZ/r should be remembered when con-
templating the use of Hall current and rotation along with

axial lengths shorter than ^e mZ me in order to limit the

plasma-field mixing layer thickness to the ion gyroradius.
This constraint also is important when considering the activ-
ity of certain microinstabilities at the plasma-field interface,
such as the LHD instability. The linear and nonlinear proper-
ties of the latter depend fundamentally on the size of the ion
gyroradius relative to transverse plasma gradient lengths
such as the thickness of the plasma-field interface.

Finally, it should be emphasized that in this report the
concept of axially symmetric resistive MHD flow with a
relatively small rate of resistive interdiffusion at the plasma-
field interface has been taken for granted. If ill-understood
resistive MHD dynamical mixing processes were to exist in
the breech because of the severity of the plasma injection
process, and perhaps as exacerbated by the discreteness
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of field coils, those processes would certainly have to be
identified and eliminated. Otherwise, supposedly educated
attempts at systematic engineering designs of magnetic
nozzles would be premature.

3.0 Resistivity From Gradient-Driven
Microinstabilities

In this section, we review the research that has been done
on certain microinstabilities, which can potentially contri-
bute to anomalously rapid broadening of the plasma-field
interface. Attention is focused primarily on those modes that
propagate in the azimuthal direction, directly across the
magnetic field.

Plasma density gradients that have been formed across a
confining magnetic field are often regarded, within the con-
text of perfect symmetry, as equilibrium states of ideal
dynamical force-balance. In a practical sense, however, they
constitute nonequilibrium configurations precariously sus-
pended away from states of lower energy. That is because
perfect symmetry is never attained. Therefore, such configu-
rations are actually vulnerable to symmetry-destroying
plasma instabilities that grow out of slight asymmetries
and that try to access the lower states. For the magnetic
nozzle, the macroscopic consequence would be a loss of
definition of the plasma-field interface, with thickening of
the plasma-field mixing layer, and concomitant attachment
of peripheral propellant to magnetic nozzle flux. In fact,
even a macroscopically smooth resistive fluid model entails
a graininess and concomitant loss of symmetry at the micro-
scopic level, leading to resistive diffusion.

Some of these instabilities have very large growth rates
and are not amenable to descriptions within a resistive mag-
netofluid MHD model. The LHD instability is one that has
been identified as a major concern in such situations. It is
nominally a robust nonresonant instability that does not
require the extreme conditions needed by some other well-
known microinstabilities. For example, it does not need
current drift velocities in excess of the electron thermal
speed as would be required by the Buneman instability. It is
insensitive to the electron-ion temperature ratio and so does
not need Te >> Ti as would be required for destabilization of
the ion-acoustic instability. Reference 12 presents simula-
tions of screw-pinch and theta-pinch magnetically driven
implosions using a hybrid computer simulation (particle ions
and fluid electrons), which employed the so-called Chodura
resistivity. This is an empirically parametrized representation
of electron resistivity arising from the ion-acoustic
instability. However, they ignored the instability requirement
that Te >> Ti. In their model, the current drift velocity cor-
rectly is required to exceed the ion-acoustic speed, which
is a much more stringent requirement than in the LHD
instability. Then, in the empirical model, the electron
collision frequency is scaled by the ion plasma frequency.

(Chodura resistivity is an option in the MACH2 resistive-
MHD computer simulations.) Sgro and Nielson had some
limited success with this approach. They computed the
structure of the magnetic field in magnetically imploded
plasmas and generated reflected ions in front of the magnetic
piston; nevertheless, the empirical resistivity lacked a firm
theoretical foundation, and there was difficulty in treating
the late phases of those implosions. Regarding the validity
of the empirical resistivity, it should also be remarked that
Chodura himself had a similar degree of success in simula-
tions of magnetically compressed plasma, but employed a
rather different electron collision frequency: namely, the
constant 0.025 multiplied by the electron gyrofrequency in
the external magnetic field (see Fig. 1 in Ref. 13). Also, the
LHD instability can be destabilized by weak plasma gra-
dients, having gradient lengths that are large compared to the
ion gyroradius. Moreover, although nominally stabilized by
finite R, it persists into the ion-cyclotron regime even where
the local 0 is substantially larger than 1. (For a brief review
of the various properties of this instability, see the introduc-
tory discussion in Ref. 14 and the other references therein.)

In the magnetic nozzle, the linear phase of the LHD insta-
bility would manifest itself as a fine-scale rotating azimuthal
ripple (flute-type mode) in the plasma-field interface region.
In this report, the linear and nonlinear theories of this insta-
bility will be briefly reviewed. The nonlinear phase evolves
into a form of plasma turbulence that would be macroscopi-
cally evident as an enhanced resistivity. Whether such
enhancement dominates over classical resistivity depends
upon parameters such as the electron temperature and the
local width of the plasma-field mixing layer.

In this report, the nonlinearly evolved microturbulent
LHD resistivity will be compared with the classical resistivity
that arises from coulomb collisions of electrons on ions.
Although the influence of finite 0 on the linear phase of the
instability has been clarified (Ref. 15), this writer believes
that the 0 dependence of the evolved microturbulence
(Ref. 14) is not yet definitively understood. Therefore, in the
following discussion 0 will simply be taken to be of order 1
within the plasma-field mixing layer.

The width of the plasma-field mixing layer relative to the
size of the ion gyroradius proves to be a key parameter for
driving the LHD instability in its linear phase. This ratio also
characterizes the microturbulent resistivity in the nonlinearly
evolved turbulent phase. For these reasons, it is important to
ascertain whether there is an initial plasma-field mixing layer
width that might be immediately formed during the propel-
lant injection process, and if so, to ascertain its characteristic
thickness. Moreover, this initial plasma-field mixing layer
width defines the initial condition for further resistive
broadening as the propellant moves downstream, no matter
whether that diffusion be classical or anomalous. Thus,
the first order of business is to identify the width of the
plasma-field mixing layer that naturally occurs when
injected plasma first impacts magnetic flux.
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3.1 Interface Width in Breech of Nozzle

We preview the results by emphasizing that there must be
an irreducible initial plasma-field mixing layer thickness
engendered at the very injection of plasma into the external
magnetic field. Moreover, it cannot be understood from
within the resistive MHD model. Hall effects and kinetic
(individual particle) effects are responsible for its formation,
which therefore would be missed in standard resistive MHD
simulations such as those performed by the MACH2 code.
Modeling of the initial mixing layer in the breech of the
nozzle therefore comprises the topic of this section.

Older theories of the interface width separating an impact-
ing plasma from an external magnetic field, self-consistently
taking into account the magnetic shielding by the plasma
particles themselves, predicted that the width would be on

the order of the hybrid electron-ion gyroradius aiae . This

collisionless model is known as the Ferraro-Rosenbluth
sheath. (See Ref. 16 and references therein.) However, Peter,
Ron, and Rostoker demonstrated in Reference 16 that the
sheath would rapidly disintegrate as an entity because of
flute-type instabilities with wavelengths somewhat larger
than the sheath thickness. Moreover, the disintegration
would occur very quickly. The growth rate can be inferred to

be ~ cocicoce , the lower hybrid gyrofrequency. The action

of these fast flute instabilities is believed to be the reason
that the Ferraro-Rosenbluth sheath has never been observed.
In this subsection, we develop a model with early turbulent
collisions for the electrons and later classical or anomalous
electron-ion collisions, for a much larger interface width,
~ c copi . Such a sheath width of impacting plasma has been

observed by Ripin et al. (Ref. 17).
A heuristic picture will be developed of the initial plasma-

field mixing layer thickness produced by injected propellant
in the breech of the nozzle. The result indicates that, on the
basis of fundamental physical processes, the initial thickness
is on the order of the ion inertia length c copi . Here, c is the

speed of light in vacuum and cop i is the ion plasma frequency.
For conciseness, no detailed attempt will be made to derive
exact numerical factors, but the length scale of the initial
quasi-radial plasma-field transition will be established (where
“initial” refers to conditions in the breech of the nozzle that
are immediately experienced by a given element of injected
plasma, but a macroscopic stationary flow is allowed).

The interaction between newly injected propellant plasma
and the magnetic nozzle field may be characterized to first
order as the inability of “new” electrons to freely cross the
nozzle’s magnetic flux surfaces because of their diminutive
electron mass. That is, the electrons have not yet had time to
collisionally diffuse any significant quasi-radial distance
across the magnetic field in the manner discussed earlier. So

in this simplified model, the electrons are, at first, treated as
collisionless during the short initial ion gyrotime of interest.

The individual ions, on the other hand, make sizeable
quasi-radial excursions across the flux surfaces into the
region of strong magnetic field because of their much greater
mass. Thus, a quasi-radial space-charge electric field Ex ,

which limits the ion excursions, is established in the mixing
layer. It points radially inwards towards the core plasma. The
nozzle longitudinal magnetic field Blong is screened out of
the core plasma according to a characteristic spatial transi-
tion of width dx. By Ampere’s law, it arises from the net
azimuthal current layer Jy dx carried by charged particle

species in the interface region.
Our model focuses on a short time interval after injection

of a given plasma element. This is a time interval so short
that only electrons can carry the azimuthal current—for the
reasons explicated below. A motional azimuthal electric field
associated with the quasi-radial fluid velocity Vx expanding
across a longitudinal magnetic field Blong (local coordinates)
is neglected. This simplification proves to correspond to a
highly sub-Alfvenic expansion across the magnetic field, Vx

<< VA. See the justifying remarks in Section 3.1, “Interface
Width in Breech of Nozzle.” Also, see Reference 17.

We consider a planar interface model having the nozzle
magnetic field B in the z-direction (into the page), the quasi-
radial x-direction pointing vertically upwards across flux
surfaces towards the region of strong magnetic field, and the
y-direction (the azimuthal direction) pointing horizontally
rightwards. The nozzle magnetic field becomes negligible
towards the negative x-direction, into the core plasma. Also,
the space-charge electric field E points in the negative
x-direction, and is perpendicular to the magnetic field (see Fig. 3).

The ions cross the magnetic field more easily than the
electrons, so the outer part of the boundary layer is ion rich,
whereas the inner part of the boundary layer is electron rich.
These conditions set up a strong space-charge electric field,
which serves to give the electrons a guiding center drift, in
conjunction with the presence of the magnetic field.

During one ion gyroperiod, only the electrons experience
a guiding-center drift, because of their relatively rapid gyra-
tions. This drift is to the right, in the direction of E ×B
(clockwise in terms of the azimuthal angle). This is equiva-
lent to a current flow to the left, which is in the direction to
weaken the internal magnetic field and to strengthen the
external magnetic field.

We consider only very early times while following newly
injected plasma, during which “new” ions within the mag-
netic field interface can barely complete a significant frac-
tion of a gyroperiod. (For hydrogen ions entering into a
magnetic field of 0.5 T, one gyroperiod is 0.1 µs, whereas
the transit time through the meter-long nozzle is tens of
microseconds for V// = 105 m/s.)
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During this short time interval, the new ions cannot
express a macroscopic azimuthal current—in the absence of
an azimuthal electric field (again, see Sec. 3.1). The reason is
that a macroscopic azimuthal ion current would be the net
cooperative effect of individual ion guiding-center drifts and
magnetization current loops (due to partially uncancelled
gyro-orbits in a density gradient). These individual particle
mechanisms, by their very nature, require many ion
gyroperiods to become macroscopically evident. They are
therefore not available to the ions during an early time
increment lasting less than one ion gyrocycle after injection
while following a given plasma element downstream. By the
way, this view of the situation implicitly defines the local
reference frame with respect to azimuthal velocity, in that
the ions are assumed injected without any macroscopic rota-
tional motion. In other words, at injection there is no azimu-
thal beam of ions in the lab frame of reference. The
electrons, on the other hand, do exhibit very many gyro-
cycles during this first ion gyration and so can indeed manif-
est macroscopic azimuthal currents early on.

To simplify the model, we suppose that the electrons are
collisionless (a restriction removed later) and have negligible
pressure (also removed later). Then, the electrons carry an
azimuthal macroscopic current only as the result of an E/B
azimuthal guiding-center drift velocity (in mks units). This
drift, unlike the other current generating processes, does not
need significant electron pressure. E/B drift results from non-
uniform curvature of a gyro-orbit. During energy gain from
–E, the electron’s orbit acquires a greater radius of curvature.

Over the part of the orbit against –E, energy is lost producing
a smaller radius. The trajectory is a cycloid, a gyrocircle with
a moving center having velocity E/B. If the temperature Te

were very small then the gyrocircle would be very small, but
the description still applies.

This temporary exclusion of electron pressure precludes
other current-generating individual particle effects, namely
magnetization currents and grad-B guiding-center drifts. The
simplifying assumption of no field-line curvature in the
breech also precludes “curvature drifts” of the electron’s
guiding center. At any rate, the latter drift also vanishes in
the zero-electron-pressure approximation. (From the way
the fluid equations are derived from more detailed models,
we know that the electron fluid equations—with electron
temperature included—automatically incorporate the various
individual-particle effects, as regards production of
macroscopic currents.)

In view of the zero-electron-pressure assumption, the
electron macroscopic momentum equation in mks units is
simply

0 = −n e q(E + Ve × B ) 	 (100)

where Ve = E × B/B2 is the guiding-center (macroscopic
fluid) drift velocity vector of the electrons, of number
density ne. The above equation, in component form, where
Bz = Blong, is equivalent to
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Ex = 
Jy Bz 	

(101)
neq

where Jy =−neqVye is the azimuthal current density car-

ried by the electrons in the plasma-field mixing layer, and
Vy e is positive to the right. This current is driven such as to
cancel the vacuum magnetic flux within the plasma and to
increase it outside of the plasma. Since the longitudinal flux
cannot be created or destroyed over a short time interval
within the volume enclosed by the conducting wall (the coil),
the magnetic flux is pushed aside or displaced by the injected
plasma.

By means of Ampere’s law, which reads μ 0 J = ∇× B (or

also μ 0Jy = −∂xBz), Equation (101) for the space-charge field
can be written as

of the particle, not merely the energy associated with the
quasi-radial velocity vx i. That is, in Equation (104)

v2⊥ i = vx
2
i + vy

2
i . Therefore, to make use of this energy bal-

ance equation we also need an independent equation for the
azimuthal velocity component vy i, furnished by the azimu-
thal component of the momentum balance Equation (103):

mi 
dvyi 

= −qvxi Bz 	 (105)
dt

It now proves useful to relinquish the time variable, utiliz-
ing instead the x-coordinate of the particle’s quasi-radial
position as the independent variable. Noting that vxi = dx dt,

the energy balance Equation (104) becomes

2 2 	 2
Ex = – 1 )∂x 

Bz	 (102)	 d 
mi vxi 

+ 
mi vyi 

= Eneq	 2 μ 0 	 dx  2	 2  q x

 	 

(106)

This result proves to be key to estimating the thickness of
the plasma-field mixing layer in the nozzle magnetic field. It
is based on the azimuthal current being carried only by the
electrons.

We now have to consider the time-dependent position,
that is, the trajectory r(t), of an individual ion that is incident
on the plasma-field mixing layer. It can be shown that the
inertial force on the individual ion from radial deceleration
of the plasma fluid is small compared to the force on the
individual ion from the space-charge electric field, provided
that the radial fluid expansion velocity is highly sub-
Alfvenic. See Appendix F for the derivation. The single
particle’s velocity vector is v i = d ri d t . The momentum

balance equation of an ion, in the plane perpendicular to B,
reads

mi 
dv⊥ i 

= q (E + v⊥ i × B ) 	 (103)
dt

Here, the velocity vector of the ion is partitioned as
v i = v⊥ i + vzi B B . The space-charge electric field vector E

is in the local x-direction, and the magnetic-field vector B is
in the local z-direction. The scalar product (“dot product”) of
Equation (103) with v⊥ i then leads to a statement of energy
balance in the form

dV mi vU)

dt	
= qExvxi 	 (104)

Equation (104) shows that the magnetic field does no work
on the ion, and that the work done on the particle by the
x-directed electric field affects the total perpendicular energy

Likewise, the azimuthal momentum Equation (105)
becomes

m i 
d i =−qBz	 (107)

dx

Multiplying through by vy i in Equation (107) shows that
Equation (106) can also be written as

2
d  mivxi 

= q (Ex + vyiBz ) 	 (108)
dx	 2 	 

 	 

Hence, energy balance does indeed apply to just the quasi-
radial x-component of ion motion, but only from within the
instantaneous azimuthal-moving frame of the ion. Note the
appearance of the radial electric field in the moving frame.

The best way to convey our approach to the problem of
the initial thickness of the edge-plasma boundary layer is to
begin by integrating the azimuthal momentum equation,
Equation (107). The injected plasma has no directed azimu-
thal velocity. Thermal ions incident on the plasma-field
mixing layer then will be equally likely to have positive and
negative values of vy i. As a representative ion, therefore, we
choose an intermediate example for which the azimuthal
velocity at the core region is vy i core = 0. The maximum
radial extent of this particular trajectory is called Δ, which is
the quantity to be determined. Presumably, this particular Δ
lies in the midst of the distribution of Δ-values generated by
internal ions incident on the plasma-field mixing layer at all
possible angles.
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Equation (107 ) is integrated from x = 0 to x = Δ. The final
azimuthal velocity is written as vy i Δ. The result of this
integration then reads

2  2	 2mivxi core 
= A	

1 ∂ 
B 

))+ 
mivyi Δ 	

112(	 )
2	

q	
neq 

x  2 μ 0 	 2

vyi Δ =−ωci Δ 	 (109)

wherein ωci ^ = qBz mi is the radial average of the ion

gyrofrequency over the considered trajectory segment. Note
that the appearance of the radial average magnetic field is
mathematically correct and required. The average magnetic
field within the plasma-field mixing layer is identified as

roughly half of the outer magnetic field: ωci ) = ωci 2 .

Thus Bz and ωc i without brackets now indicate the stronger
magnetic field out beyond the plasma-field mixing layer.
Then (109) becomes

ωciΔ 	 ( )
vy Δ i =− 	 110

Now the energy balance Equation (106) can be integrated
from x = 0 to x = Δ. The impacting radial velocity is denoted

by vx i core, and the final radial velocity at the outermost

extent of the trajectory segment is clearly vx i Δ = 0. Inte-
grated energy balance for an individual ion over the entire
specified trajectory segment then can be expressed as

	

= q(Ex ) Δ 	 (111a)

Equation (111 a) slightly rearranged,

2	 2

	

m i vxi core 
=−q (Ex ^ Δ+

mivyi Δ 	
(11 1b)

states that the incident kinetic energy of the outward moving

ion, 1 2 mi vxi
2

core , is partly depleted by doing work

− qEx Δ against the inward-directed space-charge electric

field (recall that Ex is negative). The leftover kinetic energy
at the end of the considered trajectory segment is just

1
mivyiΔ. Again, the appearance of the radial average of2

2

the electric field Ex is indeed mathematically correct and

required.
The expression for the electric field in Equation (102) is

used in Equation (11 1b), which then becomes

In the further interpretation of Equation (112), the
extremely powerful drive to quasi-neutrality is recognized at

the envisioned plasma density 10 15 cm−3
 (provided that the

space-charge field does not get shorted out).
Accordingly, we assume quasi-neutrality in the transition

layer, namely ne ≈ ni = n (for hydrogen, with Ξ = 1).

Thus, n i − n e  << ni. This assumption does not preclude a
significant (but not unrealistically huge) space-charge elec-
tric field that maintains quasi-neutrality. A specific know-
ledge of the anomalous microturbulence that instigates the
early transition to quasi-neutrality in the interface region is
not needed for the estimate of the early width of the interface.

Note: A preliminary transient phase of virulent microtur-
bulence must exist, driven by a huge space-charge electric
field, which facilitates rapid transport of electrons across
flux surfaces as they follow ions in an attempt to preserve
neutrality. The main text assumes that this preliminary phase
is already completed so that quasi-neutrality is preserved.
Without this preliminary adjustment, the space-charge field
would remain huge. For example, if an ion density of

1015 cm−3
 were displaced a distance of only 0.001 cm

beyond the electron boundary, it would create an electric
field of 2 MV/cm, with severe consequences. An alternative
possibility is that the electron boundary remains absolutely
fixed and that the ions are allowed to extend only a thermal
Debye length (0.00016 cm at 50 eV) beyond the electron
boundary into the magnetic field. This also seems unrealistic
and contradicts experimental observations. It seems to be
necessary that there is a preliminary draconian adjustment of
the electrons’ distribution upon plasma injection. This ano-
malous electron turbulence is shown to be necessary in
Appendix F, where classical mobility and collisional drift
cannot cause electrons to traverse the required ion penetra-
tion depth of an order of a fraction of an ion gyroperiod.

An approximate estimate of the average term

(( 1lneq) ∂x (B 2/2 μ 0 )) in Equation (112) can be made by

simply using intermediate values of the quantities therein,
which does not call upon any detailed profiles within the
plasma-field mixing layer. The value of ne ≈ n in the deno-
minator of Equation (112) ranges from its core value to a
much smaller value over the plasma-field mixing layer width
Δ. Its average, therefore, is simply interpreted as half of the
number density ncore in the core plasma. Also, we interpret
the average spatial derivative of magnetic pressure in Equa-
tion (112) as the outer value of magnetic pressure divided by
Δ. (The neglected inner value of magnetic pressure is signifi-
cantly smaller.)

2	 2
mi vxi core mi vyi Δ

+
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The characteristic radial spatial decrease of B2 into the
plasma should be governed approximately by the same layer
width A as governs the characteristic radial outward decrease
of plasma density (associated with the radial protrusion of
the ion trajectories). This behavior of density and magnetic
field profiles is consonant with the constancy of total
(plasma plus magnetic) pressure across the plasma-field
mixing layer (see Appendixes G and H).

Such rudimentary partitioning of the whole quantity

((( 1lneq) ax (B 2/2µ0 ))
\

in Equation (112) proves to be not

far numerically (within a factor of 2) from the exact answer
obtained with specific sample profiles. The detailed profiles
within the plasma-field mixing layer are, of course,
unknown. However, for example, with exponentially
decreasing n(x) and exponentially increasing [B(x)]2 over
width A (qualitatively consistent with pressure balance
across the layer), one obtains a numerical factor 1.17 instead
of 2 in Equation (113) below. Moreover, a square root is
eventually extracted to find the width A, which finally yields
a comparative error of only about 30 percent.

Using just the above rudimentary procedure then, after
multiplying by 2/m i Equation (112) can be reduced to

2	 2 2vxi core = 2VA + vy i A 	 (113)

Here, the square of the Alfven speed VA = B 2/µ0 nm i con-

tains the outer magnetic field beyond the plasma-field mix-
ing layer, and the inner number density of core plasma. We
suppress the subscripts that would have supplied those
meanings.

Equation (110) for vy A i is now used in Equation (113),
together with the key identity

VcA = 	 (114)
coci copi

The result reads

 2

vx core i = (2V2
 )  1 + 

copi 
A2  (115)

8c2

This result is based upon energy and momentum balance for
an individual ion’s trajectory, together with the relation of
the radial space-charge electric field to the azimuthal elec-
tron current, obtained from the fluid electron’s radial
momentum equation. No overt connection is invoked here or
below with the actual temperature of the ions or with the
thermal gyroradius of an ion. This salient point will be
emphasized again below.

Note that the A estimated here depends, in principle, on
the particular slice of the ion’s incident velocity distribution
used to make the calculation. Although this particular A is
assumed to be representative of the plasma-field mixing
layer width, that assumption is not rigorously tested in this
report.

We now heuristically consider the trajectory of an indi-
vidual ion as the ion enters at perpendicular incidence and
proceeds into the plasma-field mixing layer. Incident azimu-
thal velocity vy core i = 0, but incident parallel (to B) velocity
vz core i is arbitrary. If it undergoes roughly one-fourth of a
gyrocircle in the average magnetic field in the plasma-field
mixing layer, such a trajectory segment is expected to be
approximately commensurate with the time needed for that
ion to reach its maximum radial protrusion beyond the core
plasma, denoted by A. Since the final radial velocity
vanishes, the average radial velocity over the quarter circle is
taken to be half of the incident radial velocity. Then one
obviously has

	

2 vx i coreti 1 = 2 
vx i core 7

c /2 
= vx i core 7

c /2	
(116)

4coci 	
coci

In Equation (116), time ti iy
 is taken as one-quarter of the

4

ion gyroperiod in the average magnetic field within the
plasma-field mixing layer. Again, the average magnetic field
is set to half the outer magnetic field, so the ion gyrofre-
quency coc i without brackets in Equation (116) is understood
to contain the outer magnetic field.

Next, we calculate A2 from Equation (116) and use Equa-

tion (115) for vx i core and the identity in Equation (114). In

that manner we easily obtain the following equation for

A2norm = (Acop i c)2 where Anorm denotes the nondimen-

sional version of A measured in units of the ion inertia length
c/cop i (and cop i refers to ncore):

7c 2  A2
Anorm = 2 

1 + grm 	 (117)


 	 

The term Anorm /8 represents the final azimuthal kinetic
energy that ultimately remains of the ion’s incident radial
kinetic energy, after subtracting the work done by the ion

against the space-charge field. The term An 0rm /8 in Equa-

tion (117) proves to be comparable to the first term (i.e., =1).

The solution of Equation (117) is A2norm = 13; then,

Anorm = 3.6 = Acop i c .
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Use of the specific sample profiles mentioned above in
evaluating the average space-charge electric field suggest
the possibility that the coefficient of the first term in Equa-
tion (113) (i.e., 2) should perhaps have been “1.” Then,
instead of Equation (117),

2  A2

A2norm 
n

= 4  1+ 4rm  (118) 	 

with the solution Anorm = 2.6.
These approximate model results paint a definitive pic-

ture. Consider a newly injected plasma element near the
interface between the plasma and the magnetic nozzle flux,
which is followed downstream at early times not exceeding
about one-fourth of an ion gyroperiod. The extent of a repre-
sentative ion protrusion out of the plasma element into the
(displaced) magnetic flux is a few ion inertia lengths as
characterized by the core-plasma number density; that is,


2.6 

c
 < A < 3.6 

c
	 (119)

 COpi COpi

Our heuristic model cannot guarantee the exact numerical
factor. Except possibly for the numerical factor, this result
for the plasma’s edge-layer thickness is dependent neither on
the incident radial velocity of the ion nor on the strength of
the external confining magnetic field. It depends solely on
the ion number density in the bulk plasma.

The constraints built into the model that yields this result
are as follows: First, quasi-neutrality within the plasma-field
mixing layer is achieved immediately in a preliminary tran-
sient adjustment involving microturbulence and is main-
tained thereafter. The almost-massless electrons pulled into
the magnetic flux by quasi-neutrality have become attached
to the magnetic flux. Second, the electron current layer
shields the interior plasma from the magnetic field practi-
cally from the outset of injection of the considered plasma
element (after several electron gyroperiods). Third, the ion
component makes practically no contribution to the azimu-
thal current layer. Finally, a cautionary note is that the calcu-
lated A was obtained here by considering a special restricted
class of individual ion trajectories selected out of the
thermal-ion distribution, namely those that enter the plasma-
field mixing layer without azimuthal velocity. A rigorous
calculation of A requires an average over the entire incident-
ion velocity distribution.

Note that the edge-plasma boundary layer thickness A as
calculated here also characterizes the inward-radial decay of
B2 , according to Equation (112) and the associated discus-
sion. Hence, the characteristic decay distance of B itself into
the plasma must be 2A, and A = 2cCOpi to 3cCOpi

(comparable to Eq. (119)). The ion inertia length is about 1 cm

for a hydrogen-plasma having number density 10 15 cm−3 .
There is indeed experimental evidence (Ref. 17) for

c COpi to be the length scale for the plasma-field transition

layer produced when injected plasma first impacts upon and
displaces the ambient magnetic field. The account in Refer-
ence 17, however, does not provide a clear and definitive
understanding of this feature. Although Reference 17
addresses laser-produced plasma expansion into an existing
magnetic field, the physics issues therein are generic and
relevant to injection of plasma into a magnetic nozzle.

The above results for the width of the plasma-field inter-
face of newly injected plasma can be very simply obtained
from a reduced model, within about a factor of 2. The
reduced model begins by assuming that ions of only a single
outward quasi-radial velocity are initially incident on the
interface, vx core i # 0 and vy core i = 0, with vz core i being
arbitrary but following the plasma in the reference frame of
vz core i. It also assumes, as before, that the electron current
layer is responsible for magnetic shielding of the interior
plasma. A key assumption is that there is pressure balance
across the interface. The electron pressure is still neglected
in this reduced model.

Consider the rate at which outward ion momentum flows
into the interface, per unit area, during the first quarter to half
gyroperiod, before the ions have been fully reflected by the
outer magnetic field: It is the particle flux multiplied by the
momentum of a particle; namely, (ncore vx core i)(mi vx core i)

= Pcorevxcore i . Balancing this outflux of initial radial ion

momentum against the inward magnetic pressure imme-

diately yields vx core i _ VA 2 , in which the Alfven velocity

is evaluated with the outer magnetic field and the inner mass
density. The outward fluid velocity would be smaller with a
full angular velocity distribution.

The distance beyond the core where an ion starts to turn
around (radial velocity —> 0) during one-quarter of a gyrope-
riod in the average magnetic field in the plasma-field mixing
layer is

n_(vxi )tii I
14

' 2 vx core i 
/2

CO ci
(120)

_ n vx core i n VA _ n c
_

~ 2 COci V8 COci 8 COP

Here as before, the average radial velocity in the layer is
taken as half the incident velocity, and the average magnetic
field in the layer has been taken as half the outer magnetic
field. Because electrons have been pulled out into this layer
by the forces that maintain quasi-neutrality, they will have
become attached to magnetic flux in the layer. Thus, the
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evolution of layer width resembles a ratchet process that
cannot be reversed.

Recall the more detailed model that dealt with the energy
and momentum balance of an ion’s trajectory in the space-
charge electric field and the shielded magnetic field. It
apparently gives a somewhat larger value for the width of the
interface: namely 2.6c ωpt to 3.6c ωpt (comparable to

Eq. (119)). Also recall that the corresponding decay length
of the magnetic field into the core plasma is predicted to be
twice this value.

It is important to make a clarification regarding the above
model. A motional azimuthal electric field has been neg-
lected at the outset that otherwise would have been produced
by a radial fluid velocity of injected plasma expanding
across the longitudinal magnetic flux. In principle, the ions
in the interface region can respond to this azimuthal electric
field during their initial quarter gyroperiod. Thereby they can
contribute to the azimuthal macroscopic current provisional-
ly assumed carried only by the electrons. It can be shown,
however, that the ion contribution would be minor, provided
that the plasma-fluid’s initial quasi-radial expansion velocity
across B is highly sub-Alfvenic.

Specifically, it can be demonstrated that the azimuthal
fluid velocity component Vy e of the current-carrying elec-
trons is of order VA . In contrast, the azimuthal fluid velocity
Vy t of the ions in response to the motional electric field
Ey = − VX tBz during the first quarter gyroperiod is much
smaller. In particular, Vy t proves to be merely on the order
of the radial ion-fluid velocity VX t . See Appendix F for the
derivation of these results. The massless electron response to
Ey merely would be a radial E × B guiding center drift. The
electron contribution to the azimuthal current would not be
directly affected by the azimuthal electric field. Therefore, if
the plasma’s radial expansion velocity VX t is highly sub-

Alfvenic, that is, if VX t << VA , then Vy t << Vy e and the ions
cannot make a significant contribution to the macroscopic
azimuthal current. The electrons carry practically all the
azimuthal current.

The reason that it is possible in principle for the fluid
plasma’s radial expansion velocity to be sub-Alfvenic at the
plasma interface with the magnetic field is as follows. After a
brief sub-Alfvenic dynamical adjustment in the strong mag-
netic field limit, described in Appendix H, further radial
expansion of the ion fluid involves the ions having to drag
reluctant electrons across longitudinal magnetic flux. The
resulting expansion velocity principally depends on the nature
of the resistivity or the microturbulence that facilitates cross-
field electron transport, even right after injection. If, on the
other hand, the plasma’s initial quasi-radial-expansion fluid
velocity (macroscopic velocity) were close to the Alfven
speed in the plasma-field interface region, then it would be
important to incorporate into the model the corresponding
motional azimuthal electric field and the ion response to it.

That has not been done in the present report, which definitely
assumes a sub-Alfvenic expansion across the magnetic flux.

We now remove the two restrictive assumptions that were
made on the electrons. These were the neglect of electron-
ion collisions and the neglect of electron pressure.

If electron-ion collisions are included (but still with neg-
lect of electron pressure), then the electron-fluid momentum
equation can easily be solved for the electron-fluid velocity
Ve , which then reads

Ve =−Ω
( 1 +Ω2 ) B

+Ω2

( 1 +Ω 2 

Ê B 
(121)

Here, Ω = ωc e/υe is the ratio of the electron gyrofrequency
qB/me to the collision frequency (possibly anomalous) of a
representative electron with the ions. In the limit Ω → 0, the
second term, the azimuthal E/B drift velocity term, disap-
pears. The remaining first term reduces to the usual electron
drift mobility term along the electric field, without a mag-
netic field; namely, −(q/meυe)E .

For parameters of interest to us, however, Ω2 >> 1. For
example, with the hydrogen plasma particle number density

1015 cm−3
 , a plasma temperature of 50 eV, and a magnetic

field strength of order 0.5 T (5000 G), one has ωc e ≈

10 11 rad/s. In contrast, the classical Spitzer collision fre-

quency is υe ≈ 10 8 s−1
. Then Ω = 1000 and Ω2 = 106. It is

immaterial to the argument whether 0.2 or 0.5 T is used here.
Even if the electron collision frequency were anomalously
large by a factor of 10 or 100, it would still be the case that
Ω

2
 >> 1. For large Ω2

, Equation (121) reduces to

_ 1  E E × B
Ve 	 Ω  B 

+ 
2	

(122)
B

With large Ω, the drift velocity of the electrons along the
quasi-radial electric field (first term) becomes very small
compared with the azimuthal E/B drift velocity (second
term). This result is just what is necessary to carry out the
above simplified derivation and estimate of the thickness Δ
of the edge-plasma transition layer.

The radial diffusion distance of electrons due to their
coulomb collisions with ions during one-fourth of an ion
gyroperiod can easily be calculated, as can the radial mobility-
drift-distance during that same time interval from the first
term of Equation (122). The former distance is approx-

imately Ω−1/2 
c/ωp t ; the latter is Ω− 1 

c/ωp t (see Appendix F
for the derivation). It is still assumed that the transient sub-
phase that preserves quasi-neutrality has already occurred.

The quarter ion-gyroperiod diffusion result Ω 
−1/2 (c/ωp t)

compares with the resistive-MHD boundary-layer diffusion
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as evolved along flow distance Lb t (Eq. (77)), which is

approximately δ ≈ Ω
−
 

1/2(Lb

 
tc/ωp i) 

1/2.

Both of the above distances are small in comparison to the
layer width c/ωp i when Ω >> 1. Thus, the effects of colli-
sional diffusion and mobility-drift of electrons in the radial
direction are not important, for the electrons then would
travel radially only a small fraction of the layer thickness
during one-fourth of an ion gyroperiod. This is the case
although there are many collisions of an average electron
during one ion gyroperiod. Therefore, the dominant motion
of electrons still is governed by the azimuthal E/B drift
velocity, which is what enabled the estimate of c/ωp i for the
transition layer thickness.

Moreover, the same qualitative picture would remain
marginally valid even if the electron collision frequency υe

were several hundred times larger and on the order of the
electron gyrofrequency ωc e, thus making Ω ≈ 1. Hence we
reach a different conclusion with respect to the effect of
electron collisions than did Reference 17, which failed to
emphasize the importance of the electron’s E/B drift in
determining the thickness of the plasma-field transition
layer.

The above remarks addressing the effects of electron col-
lisions can easily be extended to include electron pressure.
Instead of Equation (122) one finds

 1  Eeff E e ff × B
Ve 	 Ω  B +
	

2
	 (123)

B

where Eeff = E + (nqe)−1
∇Pe. Again, large Ω ensures the

dominance of the azimuthal electron-fluid velocity, the
second term in Equation (123).

However, the second term in (123) now contains Eeff

instead of just E, so there are some differences in detail as
regards both the derivation and the result for the thickness of
the plasma-field transition layer. For example, the negative
electron pressure gradient adds its effect to the negative
space-charge electric field so as to enhance the azimuthal
electron-fluid velocity, augmenting magnetic shielding by
the electron current layer. One expects that this current
enhancement will act to decrease the thickness of the
plasma-field mixing layer. Such calculations are performed
in Appendixes G and H.

The derivations in Appendixes G and H include the fluid-
electron pressure gradient and for simplicity allow the elec-
trons to have the same temperature as the ions. Also, these
temperatures are assumed to be uniform within the plasma-
field mixing layer. In addition, Appendix H explicitly
includes the fluid-ion pressure gradient, and moreover, the
assumption of a static plasma-field mixing layer is relaxed.
(Assuming that the expanding plasma element has made
the initial adjustment to quasi-neutrality when it first
encounters the external magnetic field region, then there is

no inconsistency of quasi-neutrality with the small mobility
and drift displacements of the electrons.)

A more rigorous treatment of radial averaging of the elec-
tric field is carried out in Appendix G, a somewhat different
averaging treatment independent from those described
above. Again, specific profile shapes within the plasma-field
mixing layer are not essential restrictions to make the calcu-
lations. Then, instead of Equation (117) or (118),

π2 ff// 	ll

	

2norm = 8 1(e −βG ) + ZΔnorm J 	 (124)

Here e is the base of natural logarithms (≈2.7183) and βG is
the global β across the plasma-field mixing layer, namely,
the inner plasma pressure divided by the outer magnetic
pressure. The new effect of electron pressure is now mani-
fested by the square bracket containing the effect of the
global β. As βG increases, the solution Δnorm decreases, and
so then does the thickness of the plasma-field mixing layer.

However, there must be overall pressure balance across a
static plasma-field mixing layer, so that βG = 1 (see Appen-

dix H). The solution of Equation (124) then is Δnorm ≈ 2.35,
which compares well with the earlier estimates of 3.6 and
2.6. Thus our earlier conclusion retains validity; namely, that
the initial thickness of the plasma-field boundary layer (i.e.,
in the injection region) is a few ion inertia lengths c/ωp i.

Early quasi-radial deceleration of injected expanding
plasma is included in the calculations in Appendix H. Quasi-
radial deceleration is found to have no major effect on the
width of the plasma-field mixing layer, provided that the
quasiradial macroscopic expansion velocity of the fluid
plasma is highly sub-Alfvenic (Ref. 17). This limit corres-
ponds to a strong magnetic nozzle field.

Several important concluding remarks can be made
regarding the initial width of the plasma-field mixing layer.

The plasma-field mixing layer width at the interface
between plasma and magnetic field is formed in the injection
region by processes not accessible to the standard resistive
MHD model. It serves as the initial condition for further
broadening of the layer downstream. The radially protruding
collisionless ion trajectories do not at first become trapped
on magnetic nozzle flux; rather, those ion trajectories return
to the field-free core plasma. However, their positive space-
charge halo beyond the core pulls some edge electrons
radially out of the core so as to preserve quasi-neutrality.
This space-charge effect constitutes a one-way irreversible
process facilitated by microturbulence driven by the initially
large space-charge electric field. A detailed knowledge of
that initial microturbulence is unnecessary. Since electrons
are practically massless, some form of electron collisionality,
be it coulomb collisions with ions or with microturbulent
fluctuations, is necessary to scatter the edge electrons onto
the external magnetic flux.
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There is no physical mechanism of collisions, or effective
collisions, available for pulling those practically massless
electrons radially back off of the magnetic flux so as to return
them, macroscopically, into the core. (Such a mechanism
would have to work “uphill” against the electron density
gradient.) They then effectively become trapped on an exter-
nal annular increment of previously expelled magnetic flux.
The overall process is like a ratchet, in which a continuous
supply of radially protruding ion trajectories furnishes space
charge to keep the ratchet expansion process going, during
the early times following injection of any given plasma
element within the interface region. Note, however, that this
heuristic microphysical description of interface broadening
has general validity not limited to the injection region.

If the quasi-radial space-charge field were shorted out at
early times after injection, by the unimpeded flow of Hall
current, the edge-plasma situation would be fundamentally
altered. Then, some of the edge electrons would preserve
charge balance by flowing longitudinally to the backplate (as
the ions partially vacate the plasma’s edge layer due to the
radial extent of their trajectories). The ratchet effect thereby
would be circumvented. Even if the associated Hall-current
circuit were not completely closed, such a global redistribu-
tion of edge-plasma electrons would drastically reduce the
otherwise huge local space-charge electric field in the edge
region and would at least partially mitigate the ratchet effect
at the plasma-field interface.

The plasma-field mixing layer in the breech of the nozzle
(sometimes called the initial boundary-layer width in this
report) is characterized by the ion inertia length c/cop i,
according to the models employed here. This initial broaden-
ing of the interface is facilitated by the above-mentioned
ratchet effect. The results of these several models contain
numerical multipliers suggesting that the mixing layer in the
breech of the nozzle probably is a few times thicker than
ccop i . This result has important consequences for the

attachment of propellant to magnetic flux. For example, if
the initial interface were 2 cm thick and the nozzle breech of
injected plasma were 30 cm in radius, then 15 percent of the
injected plasma propellant would be immediately affected.
This would occur before the onset of additional adverse
effects along the flow.

The width S of the plasma-field interface—just after
injection—is not only on the order of a few ccop i , but is also

on the order of the ion gyroradius ai. This follows from the

relation ai(ccopi) = Pi , with Pi ~ 1 in the interface.

For example, ai/S = 0.5 Pi = 1/ y 8 = 0.35, when S = 2ccop i

and Pi = 0.5. (For a more rigorous derivation of this numerical
result, see Appendix I.)

The interface itself is expected to broaden during down-
stream flow. An important question then arises as to whether

the width of the interface exceeds ai downstream, as
the flow approaches the nozzle’s throat. This question is
important because both the linear and nonlinear behavior of
the LHD instability are affected by the plasma-field mixing-
layer width relative to the ion gyroradius in the layer.

We will now estimate the ratio ai/S along the downstream
flow. In so doing, we now formally assume the initial conditions

ai

S = 
0.5 Pi where S = 2c/cop i 	 (125)

to hold in the breech (beginning) of the nozzle, where
variables such as n, S, t, and D are labeled with subscript b.

First, to illustrate the method, suppose that the interface is
broadened just due to the action of classical resistivity,

Tlcl - 1/T 3/2
. (Here, T = Te = Ti.) Using the broadening algo-

rithm in simplified form (avoiding the time integral), we take
S2 ~ Dclt, where S is the width of the interface and t is the
longitudinal transit time for the propellant flow. Also, Dcl is
the classical resistive diffusivity arising from coulomb colli-
sions of electrons on ions, Dcl = Tl cl µ0 in mks units and

Dcl = (c2/41L)Tlcl in cgs units. Then S2 ~ t/T 3/2 . The variation
of the squared ratio of ion gyroradius ai to interface width S
can be written as

a2 	T  T3/2 T5/2 T3/2 1

S2 

~ 
C BT J	

~~ _ 	(126)
J t	 nT t	 nt	 t

Here, we utililized radial magnetic pressure balance of

plasma pressure, and the adiabatic relation T ~ ny -1 with Y
= 5/3) between density and temperature along the flow.
From this very simple calculation, one would conclude that
ai/S ~ t

−1/2 
along the flow. That is, the ion gyroradius appar-

ently becomes smaller in relation to the boundary-layer
width as the flow progresses downstream, as t increases. A
more careful calculation, however, shows that this conclu-
sion is too hasty.

The above argument is deficient in that the initial plasma-
field mixing-layer width in the breech Sb was ignored. Also,
there is no indication of a natural time scale for t. Both defi-
ciencies can easily be corrected by allowing for the initial
condition in the diffusive-broadening algorithm. (A more
generalized plasma-field interface thickness calculation at
the throat is performed in Appendix J. Also included is an
example calculation of the fraction of attached plasma.) The

algorithm now reads 82 = Sb + Dcl t . Here, Sb represents the

initial ion penetration depth into the magnetic field. Carrying
out the same derivation as in the above paragraph, one then
finds that
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S 
= 0 11/2 Fnb In 	 (127)i

where the time scale tb is defined in terms of parameter

values in the breech, tb b= S2 lDb . Also, we have invoked

the relation between ion gyroradius ai and ion skin depth

c/wp i, in the form (ai S)b = 0.5 R i for Sb = 2(c/wp i)b.

Now, relevant conditions are such that as the nozzle’s throat
is approached, nb/n = 1.5 and t << tb . The characteristic time
tb is several hundred microseconds, for both classical and
anomalous resistivity; whereas the time for longitudinal flow

is only about 10 µs. The time tb scales as T 32 n. We infer

that a i S is practically unchanged between breech and

throat, when the interface broadens because of the action of
classical resistivity.

Next, the same argument is carried out with an anomalous
resistivity, 1a, that arises from LHD microturbulence. The
expression given below for this resistivity is derived later in
this report. It applies to the case where the plasma-field
interface width extends over several ion gyroradii. This
resistivity is expected to dominate over classical resistivity at
sufficiently high temperatures (see Sec. 3.5, “Comparison of
Anomalous and Classical Resistivities”). One then has

 2
w

2
 e ( me	Vd1a ' CBrack	

Mi )( 

1

(A )  Vwp 	 t	 LH	 th i

where 0.1 5 CBrack 5 0.4	 (128)

The constant contour factor CBrack is not precisely known,
but spans 0.1 < CBrack < 0.4. These values are based on a
numerically obtained expression for anomalous resistivity in
the Brackbill et al. computer simulations (Ref. 14) of the
resistivity in a magnetoplasma gradient confined by
magnetic pressure. Here, wc e is the electron gyrofrequency,

wp e is the electron plasma frequency, and wLH = wcewci is

the lower hybrid gyrofrequency in the case of usual interest

wherewP e »wee . In the above expression for anomalous

resistivity 1a, in accordance with the notation introduced
later in Section 3.2, “Linear Theory of Lower Hybrid Drift
(LHD) Instability,” Vd represents the azimuthal drift velocity
of electrons in the equilibrium current layer that separates
plasma from the confining magnetic field. This notation
is meant to apply in a reference frame in which the ions
have no azimuthal drift velocity. Also, Vth i represents the

ion thermal velocity, (2 Ti/mi) 1/2 .The anomalous resistive

diffusivity in cgs units, Da = (c
2/47)1a , therefore scales

along the flow as

Da  B 2
 1 	nT

( Vd / Vth i ) 2
 

~
 n  B	 n	 ,VI n (129)

	

n2/3	 1
~	 ~

n	 n 1/6

Again, we have invoked radial pressure balance for B2 and
the adiabatic relation between n and T along the flow. It is
important to note that the anomalous resistive diffusivity Da

scales with the square of the current-drift velocity.
At first the initial plasma-field mixing-layer width as well

as the factor ( Vd/ Vth i)2 are neglected. Then, using the simple
algorithm for variation of the boundary-layer width along the
flow, S2 ~ Dat, we can estimate the variation along the flow
of the squared ratio of ai to S (where Vth i is the ion thermal
velocity):

2
z

 V
th!	 1 	 T n1/6	 T n1/6a	 1

S2	
w

2 Da t

 jB
2
  t 

~
(nT) t	 n 5/ 6 t 

(130)
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The ratio itself then would vary along the flow as

ai	 1

S	 n 5/12 t1/2	
(131)

For the reasons mentioned earlier, however, it would be
too hasty to accept this result for the variation of ai/S along
the flow. Instead, taking into account the initial layer thick-
ness as in the earlier calculation with classical resistivity, and
now also including the factor ( Vd/Vth 

i)2
 = (ai/S)2 in the

anomalous resistive diffusivity Da, we find

a i = 1 1/2

F(_ n̂n

b In	
132S — Ri 	( 	 )

2	 b11/6 (ai/S)2t

  	Ri /4  tb 

Although the ratio of interest still appears on the right-hand
side in the denominator, that is immaterial in the parameter
range of interest here because the transit time tb t is small:
tb t << tb . As before, the characteristic time tb is defined by

tb = Sb
2/(Da)b. The time tb scales as (nT)−1/2 . Also as before,

nb/n ≈ 1.5 between breech and throat.
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Thus, we again infer that the ratio of the ion gyroradius to
the interface layer width is practically unchanged between
breech and throat. In the breech, this ratio is estimated to be
about 1/3. Hence our review of the LHD instability and its
nonlinear evolution will be performed within the context of a
plasma-field interface width that extends over several ion
gyroradii, at any point along the flow between breech and
throat. The overall conclusion is that the emphasis on the
anomalous LHD resistivity should be in the small-ion-
gyroradius regime (a Z<δ).

Avoiding the time integral of resistive diffusivity D
(whether classical or anomalous) really means that the aver-
age value of D between breech and throat has been used.
This method makes sense here because the plasma parame-
ters do not vary much between breech and throat. The
density at the throat drops to about two-thirds of its breech
value, and the throat temperature drops to three-fourths of its
breech value.

A final remark is that further downstream beyond the
throat of the nozzle, there is a rapid spatial drop in plasma
temperature with increased coulomb scattering of electrons.
One would then expect that beyond the throat, classical
resistivity (which is almost independent of density) would
become more important than the LHD-based resistivity. The
latter is basically independent of temperature and almost
independent of plasma density along the flow (see the above
scaling of Da). Thus, the discussion of microturbulent LHD

resistivity η a will be set within the context of edge plasma
that is situated between the breech and the throat, where ηa

is most likely to matter.

3.2 Linear Theory of Lower Hybrid Drift (LHD)
Instability

This subsection briefly outlines the linear theory of the
small amplitude phase of the azimuthal mode LHD instabil-
ity and summarizes the principal results for the frequency,
growth rate, and wave number of this mode. These results
then are utilized in the following Subsection 3.3, “Quasi-
Linear Evolution of LHD Instability and Anomalous Resis-
tivity” on the nonlinear evolution of the mode and the devel-
opment of an anomalous resistivity due to the mode. It is
understood that all calculations are being done in the local
longitudinal reference frame of the edge plasma. Along the
way, we point out the limitations of the simplified models
that are often utilized and the results of certain papers that
attempted to overcome these limitations. There are three
principal limitations, which can be described as follows:

(1) The Local Approximation: Most of the papers dealing
with the linear theory have assumed that the magnetic field
is in the z-direction and that the wave propagates in the

azimuthal (y-) direction, with the mode structure e[Z(ky − ωt)].

This is then of the “flute-mode” type. The mode frequency ω
may be complex, signifying temporal mode growth. Notably,
the radial structure of the mode, along the plasma density
gradient in the x-direction, is neglected. Such neglect of the
radial structure of the mode is called the local approximation.

(2) The Electrostatic Approximation: It is commonly
assumed that the charged particle density fluctuations both
produce and respond only to fluctuations in the electric field.
Fluctuations in the confining magnetic field are ignored.
This is known as “the electrostatic approximation.” There-
fore, the fluctuating electric field { δE} is in the azimuthal
y-direction, along the azimuthal wave vector k; the electric
field fluctuation then is called longitudinal.

(3) The Unmagnetized Ion Approximation: It is assumed
that the important frequencies and growth rates are so large,
and the mode wavelengths are so short, that the effect of the
direct current (dc) magnetic field on the ion orbits can be
ignored. That is, during a mode-fluctuation time, the ions
cannot nearly complete a gyro-orbit. This is called the
unmagnetized ion approximation. Therefore, the unperturbed
ion orbits, which appear in the linear theory, are just straight-
line orbits.

Attempts to relax these three restrictions will be summa-
rized at the end of this subsection. With these three restric-
tions in force, the dispersion relation for the mode is derived
as follows. One starts with one of the Maxwell equations,
Ampere’s law in the electrostatic approximation, in which
the fluctuating magnetic field { δB} is ignored (we shall use
cgs units here, with c being the speed of light):

∇×{8B}= (
1
)∂{8D}= 0 	 (133)

c

Instead of setting ∇× { δB} = 0, the desired result could be
achieved just by taking the divergence of Ampere’s law. The
vector { δD} is the electric displacement vector. In terms of
Fourier-mode amplitudes, this equation becomes

(

Zω 
1Dy1^(k , ω) = r ĉ ε (k , ω) E yl^(k, ω) = 0 (134)



The superscript “(1)” means that the Fourier-mode amplitude
corresponds to a first-order small perturbation. The { δD} is

analyzed into its Fourier amplitudes D (1) (k, ω) , and the

fluctuating electric field { δE} is analyzed into its Fourier

components EO (k, ω) . We have used the fact that the

electric displacement component D(1) (k, ω) is related to the

electric field component E (y1) (k, ω) through the dielectric

function ε(k, ω).
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In order that the mode amplitude in Equation (134) be
nonzero, the dielectric function must vanish:

quantity. In terms of Fourier amplitudes, the above charge
conservation equation can be written as

ε(k , ω) = 0	 (135)

This equation constitutes the dispersion relation that
determines the real part of the mode’s frequency Real(ω) and
growth rate, which is the imaginary part, Imaginary( ω) = γ,
in terms of the azimuthal mode wave number k. It is found
that the growth rate of the LHD mode is maximized at a
characteristic value of k, which is near the reciprocal of the
electron thermal gyroradius 1/ae. The specific form of the
dielectric function is to be obtained from the linearized
small-amplitude dynamics of the electrons and the ions.

It is convenient to express Equation (135) in terms of the
electric susceptibilities of each charge species, χe(k, ω) and
χi(k, ω). Then Equation (135) reads

1 +χ e (k, ω) +χ i (k , ω) = 0	 (136)

The χe and χ i can be formally obtained from the particle
species conservation equations and the relation of species
current densities to the fluctuating electric field. Ultimately,
these formal relations must be given substance by means of
the Vlasov dynamical equations for the velocity distribution
functions of each charge species; this shall be done in the
next Subsection 3.3, but only for χi(k, ω). It will be seen that,
because of Equation (136), only χi needs to be used to obtain
the anomalous resistivity in the quasi-linear version of the
nonlinear evolution of the mode.

Of course χe also must be known to obtain the dispersion
relation Equation (136) in the linear theory. In the unmagne-
tized ion model χe is much more complicated than χi

because the electrons sense the dc magnetic field while the
ions do not. Therefore χe will not be derived here. The
detailed expression for χe may be found in the paper of
Davidson and Gladd (Ref. 18). Reference 18 also contains
background references to the LHD instability.

The electric susceptibilities, χe and χi, are now related to
the species polarizabilities, αe and αi, in order to indicate how
the Vlasov equations for the species dynamics enter the pic-
ture. From the continuity equation for each charge species “ s,”

∂ t {δns }+∇⋅{8
Js } =

0 	 (137)
qs

Here, { δns } is the number density fluctuation of a species,
{ δJs } is the current density fluctuation of the species, and
the particle charge of the species is q (q = q for ions and
q = –q for electrons). The negative charge of the electron
will be explicitly indicated –qe; thus qe itself is a positive

ikJ (1) (k , co)
− iωn (1)

(k , ω)+ 
ys	 = 0 	 (138)

qs

but the Fourier amplitude of the current density fluctuation
is related to the Fourier amplitude of the electric field
fluctuation by the electrical conductivity σs for that species,

namely J (1)
ys (k, ω) = σs (k, ω)E (1

y ) (k, ω) . The charge-density

Fourier amplitude of each species is then given by

n (1) (k , ω) qs =
 k

)σ
s Ey

1) (k , ω) =αs (k , ω)E(1) (k , ω) (139)
 ω

where αs = (k/ω)σs is the polarizability of species “s .” That
is, polarizability is the ratio of the charge density fluctuation
of species “s” to the electric field fluctuation. This ratio can
be calculated by solving the Vlasov equation, as will be
carried out for ions in the next subsection.

The Vlasov equation (the collisionless Boltzmann equa-
tion), is merely a statement of conservation of particles in
position-velocity phase space.

We can now return to Ampere’s law expressed in terms of
explicit currents and electric fields, instead of using the
electric displacement vector. This allows the derivation of
another equivalent form of Equation (136). Ampere’s law in
the electrostatic approximation is

∇×{8B}= 0 = C
4 

^8J}+(c )∂ t {8E}	 (140)

The divergence of this equation, even keeping ∇ × { δB},
reduces to Poisson’s equation relating the divergence of the
electric field to charge density when charge conservation is
invoked. It is actually unnecessary to set ∇ × { δB} = 0,
provided that only the electrostatic fluctuations are allowed
to have an effect within the model.

The equation for the Fourier amplitudes then reads

0 =
 4

c

  
J

ye
(k , ω)+

^ 4c ^y1z 
(k,ω)−

^ iω  (Nk,ω) (141)
c 

Use of the conductivity relation J (1
ys

) (k, ω) =σs (k , ω)E (1)
y (k , ω),

and multiplication by ik/ω and then dividing by k yields


0 = 1 +  Ẑ 

J_σ̂ek
 )+  Ẑ

 j_σ ik )


	



4πi
	(142)

= 1 + 
k )α

e +αi )
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Comparing Equations (142) and (136), the susceptibility is
related to the polarizability of species “s” by

x s = 
47ci  (143)
k 

s

recalling that as is the ratio of the charge density fluctuation
of the mode to the electric field fluctuation in the mode. Use
in Equation (143) of the expressions for as (s = e, i) obtained
from the Vlasov equation, and then use of xs in Equation
(136), yields the specific dispersion relation. This dispersion
relation provides values of complex w for given azimuthal
wave number k.

The results of this dispersion relation must be obtained
numerically and presented graphically, as is done in the
paper of Davidson and Gladd (Ref. 18). All three of the
approximations mentioned above were invoked in Refer-
ence 18. However, analytical results for growth rate max-
imized over k do become available when Te << Ti. These
results of the linear theory are summarized below, and are
utilized in the nonlinear (quasi-linear) theory in the next
subsection. Moreover, it conveniently turns out that the
numerical results are not greatly changed when Te = Ti, as is
apparent from the numerical results in Figures 2 and 3 in the
paper of Davidson and Gladd (see also Refs. 19 and 22).
Thus, the results presented here are not greatly sensitive to
the electron-ion temperature ratio.

At the wave number for which the LHD-mode growth rate
y is maximized, and when Te << Ti, one has

2
27c Vdy =	 wLH 	 (144a)
8	 Vth i 

kae =F̂T—e or also kVth i ='F2wLH (144b)

Real(w) =
(^2 

Vd 
LH = 2 

kVd( 144c)
Vth i 

Here, Vd is the azimuthal current drift velocity in the
macroscopic rest frame of the ions, Vth i is the ion thermal

velocity 2Ti mi , and ae is the thermal electron gyroradius.

Also, wLH is the lower hybrid gyrofrequency wcewci . The

results in Equation (144) were obtained in the regime
Vd < Vth i . This proves to be the regime of interest, based on
the earlier calculations of the ratio a i S < 1, presented at the

end of the subsection on the initial width of the plasma-field
mixing layer.

Note that in this regime the LHD mode is destabilized
(y > 0) at arbitrarily small current drift velocities Vd. This
small drift-velocity condition corresponds to arbitrarily
broad density gradients. That is because when Te << Ti,

the drift-to-ion thermal velocity ratio becomes
Vd Vth i = 0.5a i xn , where ai is the thermal ion gyroradius

and 11xn = n- 1 axn l is the reciprocal gradient length (xn is

the quasi-radial length of decay of density). However, the
apparent ease with which the mode is destabilized proves to
be an artifact of the unmagnetized ion approximation, as
shown in Reference 19. Nevertheless, within the context of
plasma propellant flow in the magnetic nozzle, Equa-
tion (144a) yields an effective cutoff at which the mode loses
importance for the production of microturbulent resistivity.

To make such an estimate relevant to space-vehicle
propulsion, we note the following parameter values. A
hydrogen ion gyroperiod would be of order 0.1 µs, whereas a
characteristic longitudinal transit time for propellant to
traverse a 1-m nozzle would be of order 10 µs. On that basis,
a growth rate smaller than about 0.01 wc i should be ignored
for practical purposes.

For hydrogen plasma propellant with Te << Ti, the effec-
tive limiting width of the plasma-field mixing layer is esti-
mated from Equation (144a) to be about 20 ion gyroradii,
which actually proves to be in good semiquantitative agree-
ment with the Freidberg-Gerwin cutoff (Ref. 19). For
Te = Ti, Reference 19 would predict about 12 ion gyroradii in
hydrogen plasma. This degree of agreement comes from the
circumstance that, in the solutions of the LHD dispersion
relation allowing for magnetized ion gyroresonances, the
growth-rate envelope of the individual ion gyroresonances is
in good agreement with the theory having unmagnetized
ions. Unfortunately, this condition for effective LHD-mode
stabilization would imply at least about 10 cm of radius
having plasma attached to magnetic flux. It should be
remembered that this result is burdened with the three
approximations mentioned earlier.

We end this subsection with an account of attempts to
relax the three modeling restrictions. Gladd, Sgro, and
Hewett investigated the local approximation both analyti-
cally and with computer simulation in Reference 20. The
simulation was based upon a so-called hybrid model using
particle ions and fluid electrons. Self-consistently treating
the radial structure of the eigenmodes in a nonlocal
model, they found that, while not perfect, the local
approximation still provided fairly accurate quantitative
results. These are graphically compared with the exact
results. While their model was comprehensive, their
investigation had only a limited scope and left untreated
other important aspects of edge-plasma stability (such as
0 effects and gradient-width effects) that are relevant to
the magnetic nozzle application.
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Drake, Huba, and Gladd addressed the accuracy of the
electrostatic approximation for the LHD instability within a
full electromagnetic treatment in Reference 15. In a linear
theory, they found that gradually increasing local 0 had the
effect of relegating the LHD instability into the ion-cyclotron
realm. For a local 0 value below about 1.5, the growth rate
of the mode is still somewhat larger than 0.01 coc i, and so it
would still have some relevance to the space-propulsion
applications of the magnetic nozzle considered in this report.
As the local 0 is further increased up to 2.0, however, the
growth rate suddenly takes a steep dive down towards very
small values that have absolutely no relevance. These results
from a full electromagnetic treatment are important for
magnetic nozzle applications because in the plasma-field
mixing layer the local 0 ranges from very small out in the
magnetic field region to very large in the plasma region.

A few remarks are in order here, to provide a perspective
on the finite-0 results of Reference 15. First, the finite- 0
mechanism that reduces the growth rate of the mode is the
absorption of wave energy by those electrons resonant with
the wave in virtue of their grad-B guiding-center drift. This
means that those particular electrons can be knocked
out of resonance by collisions, and the wave can then be
collisionally destabilized. This possibility deserves further
examination within the context of the magnetic nozzle appli-
cation. Second, Reference 15 utilized the local approxima-
tion. However, an understanding of the edge plasma in the
magnetic nozzle requires a nonlocal treatment of the radial
mode structure all across the edge plasma that also takes into
account the presence of a large radial variation of 0. Third,
the calculation in Reference 15 was not self-consistent
because the ions were modeled as unmagnetized even though
the LHD mode was degraded into the ion-cyclotron regime
by 0 exceeding 1. Thus, it seems that there is still some
relevant work to be done in the area of linear theory—
oriented to the magnetic nozzle application—that includes
electromagnetic effects, collisions of electrons with ions,
nonlocal mode structure, and ion orbits that sense the
ambient magnetic field. E.Y. Choueiri (Ref. 21) studied a
type of instability closely related to the LHD but that has a
component of wave vector along the magnetic field. This is
called the Modified Two-Stream instability in its low-
temperature form, and it is called the Electron Acoustic
instability (in Soviet journals) in its high-temperature form.
In his thesis, the instability is modeled as drift driven by
external electric fields without the presence of plasma gra-
dients. However, in his development of the theory for appli-
cation to coaxial plasma thrusters, Choueiri included
electromagnetic effects (hence non-zero 0) and electron
collisions. His treatment is analogous to the local approxima-
tion of the LHD instability and also is limited to unmagne-
tized ions.

Finally, Freidberg and Gerwin (Ref. 19) addressed the
unmagnetized ion approximation. By taking into account the
effect of the ambient magnetic field on the ion orbits, it was

found that there is a continuous transformation of the LHD
instability into the Ion Cyclotron Drift instability. This trans-
formation occurs as the ratio Vd Vth i = 0.5(1 + Te I Ti )a i I xn

decreases, hence as the gradient broadens. The absence of an
instability cutoff at low drift velocities, found in the unmag-
netized ion approximation, is thereby corrected. For deute-
rium plasma, the instability is stabilized when the gradient
width exceeds 17ai, and it is stabilized at about 12 ai for
hydrogen plasma, which implies, as earlier, an undesirably
large fraction of plasma attached to magnetic nozzle flux. A
note of caution is that Reference 19 still relied on both the
local approximation and the electrostatic approximation.
Hence, as mentioned above, a comprehensive linear theory
free of approximations and oriented to the magnetic nozzle
application would still be useful.

Huba and Ossakow (Ref. 22) clarified the role of colli-
sions in the LHD instability, especially as regards its transi-
tion into the Ion Cyclotron Drift instability at low drift
velocities. They showed that even a very small amount of

ion collisionality, me/mi < v i/coc i < me mi , destroyed the

ion-cyclotron resonance features. The parameters of interest
lie near the low-collisionality end of the indicated range. The
ion-resonance features become smoothed out by occasional
ion collisions into behaviors that make the instability appear
as if it were the LHD instability with unmagnetized ions. In
this manner, the LHD instability acquires more significance
than previously anticipated, within the low-drift regime. It
should be emphasized that the linearized model of Huba and
Ossakow is electrostatic, hence strictly valid only for 0 = 0.
One can speculate that if the same results proved to be true
for the electromagnetic case, then the finite-0, linearized
theory of Drake, Huba, and Gladd (Ref. 15), with unmagne-
tized ions, would also accrue more validity.

3.3 Quasi-Linear Evolution of LHD Instability and
Anomalous Resistivity

Several nonlinear hypotheses have been advanced for the
saturation level of microturbulent fluctuations arising from
the LHD instability in magnetoplasma gradients. The satura-
tion level of those fluctuations, in turn, determines the mag-
nitude and parameter dependence of the anomalous
resistivity Tl a within those gradients. The various saturation
hypotheses have been enumerated, with references, in the
paper of Gladd, Sgro, and Hewett (Ref. 20), and in Brackbill
et al. (Ref. 14). Those hypotheses will be briefly summarized
in the subsection following this one, 3.4 “Alternative Models
for Saturation of LHD Microturbulence.”

The main purpose of this subsection, however, is to
review the second-order, single-mode, quasi-linear hypothe-
sis, as the development of this particular model is easy to
understand. Moreover, an expression is thereby arrived at for

Tla, which—surprisingly—is essentially the same as the
results of other models, as well as those of some simulations.
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It is understood that all calculations are being done in the
local longitudinal reference frame of the edge plasma. The
result of the quasi-linear model for ηa , which is in essential
agreement with an electromagnetic simulation described in
Reference 14 except for the β dependence, will be compared
with classical resistivity. (There is a difficulty of interpreting
the simulation in (Ref. 14) with regard to the β dependence
of ηa, which is provisionally obviated by simply taking β of
order 1 in the plasma-field mixing layer.)

We begin with the Vlasov equation for the electron com-
ponent of plasma. The effect of the ambient static magnetic
field on the electron orbits must be taken into account. (In
the electrostatic approximation, the electrons do not respond
to fluctuations in the magnetic field.) Coulomb collisions of
electrons are neglected for simplicity. This equation for the
electron distribution function fe(re, ve, t) reads as follows:

  	 ∂tfe + ∇Η⋅  aH Jfej = 0 	 (145)
t

Here, the state of a particle is represented by a point in six-
dimensional phase space H, symbolized as follows by the set
of mutually independent position and velocity variables:

Η = (re , ve )	 (146)

In Equation (145), the formal time-rate-of-change of those
variables, as if along an orbit (although not), is defined here
by

dΗ

dt 
= (ve , ad 	 (147)

The acceleration ae of an electron particle is given in terms
of electric field E and magnetic field B, in cgs units, by


ae = -

−q
 )(EJ + 

v
e 

× B
	 (148)
me 	 c

Note that electric and magnetic fields E and B in Equa-
tion (148) depend on particle position re but not on particle
velocity ve . In Equation (145), re and ve constitute mutually
independent variables in phase space, and they also are
independent of the time variable t.

For purposes of the particle-continuity interpretation of
Equation (145), which involves interpretation of the phase-
space divergence operator, ve in the first component of
Equation (147) is considered to be a vector directed within

r-space, and ae in the second component is considered to be
directed within v-space. Accordingly, the phase-space diver-
gence operator in Equation (145), namely ∇H ⋅ [(dH/dt)fe] =

∇r ⋅ [(dH/dt)fe] + ∇v ⋅ [(dH/dt)fe], is to be applied to the
respective components of dH/dt, as defined in Equa-
tion (147). This procedure is described in detail below.

The distribution function fe, which is to be determined by
the partial differential Equation (145), is the phase-space
distribution function of the electrons, fe(H, t). This function
is the number of electrons per unit phase volume at the point
H = (re, ve) at time t. That is, fe(H, t) is the number density
of electron particles in phase space. The flux of electrons
through phase space is just [(dH/dt)fe], the first component
of which (see Eq. (147)) is the particle flux through ordinary
space, and the second of which is regarded as the flux
through “velocity” space.

Now consider a fixed element of phase volume, d 3 r d3v ,

at phase point H. Consistent with the above description of
electron flux through phase space, the spatial divergence

[∇r ⋅ (ve fe )d3 r d3v] signifies the rate at which electrons

leave “ordinary-volume” element d3r; likewise, the velocity

divergence [Vv •(ae fe )d3 r d3v] signifies the rate at which

they leave “velocity-volume” element d3v. The sum of these
rates constitutes the total rate of egress of electrons, −∂t fe

d 3rd 3v , away from the combined volume element,

d 3rd 3v . This rate balance is encapsulated in Equation (145),

which thus signifies the local continuity of a gas of particles
in phase space. Equation (145) closely resembles the equa-
tion of local mass continuity in ordinary fluid dynamics.

Since re and ve are regarded as mutually independent
variables, the first part of the divergence operator reads as

∇r ⋅ ( ve fe ) = ve ⋅ ∇r fe	 (149a)

The second part of the divergence operator is

∇v ⋅ (ae fe) =ae ⋅∇v fe 	 (149b)

Equation (148) for the particle acceleration, ae, was utilized
in Equation (149b). A detailed justification of Equa-
tion (149b) uses the fact that E and B in Equation (148)
depend only upon re and not on ve; and also uses the fact that
∇v ⋅ (ve × Bfe) = ve × B ⋅ ∇v fe + fe ∇v ⋅ (ve × B) = ve × B ⋅ ∇v fe + 0.
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In the electrostatic approximation, the magnetic fluctuation
{ δB} has been ignored. Note that the ensemble-averaged
distribution function f depends upon the averaged prod-

uct of the linear fluctuations on the right-hand side. We will
now define n = “ensemble averaged number density,” and

ve = “ensemble-averaged electron velocity.” Also Pe

will represent the ensemble-averaged electron pressure.
Multiplying Equation (151) by meve and integrating over

all velocity space,  d3 ve , that equation becomes

∂ t (me (n) (ve ) )+∇ ⋅ (me (n )(ve)(ve)) +∇ (P
e)

 	 × 	 
=−(n ) q (E)+ (v

e
)c (B) − q ({δn }{δE}) 

(152)

The second term is the divergence of a symmetric tensor.
We have used the velocity moments of the distribution

function, namely (n)=  (f)d3 v , (n) (ve )=  (f)ve d3 v ,

and δne =   {δfe }d3v . Note the ensemble average of ne is

quasi-neutral. We have also used the moment that defines the
electron pressure tensor; that is not written down. The pres-
sure tensor is assumed here to be a scalar (neglect of electron
viscosity). These moment integrals extend over all of veloc-
ity space.

It is important to realize that the quantities n and ve

are not simply the macroscopic density and electron velocity
of the static, perturbation-free configuration, but that they
embody as well the additional average effects of the second-
order products of the fluctuations. The macroscopically
smooth electron pressure Pe also includes both thermal and
fluctuation contributions that have been averaged over, but it
turns out that these detailed considerations regarding the
pressure do not complicate the following discussion.

We suppose that the macroscopic ensemble-averaged sys-
tem only has radial gradients ∂/∂x perpendicular to the
z-directed magnetic field, and that v e ) , the electron current

velocity, is in the azimuthal (y-) direction. Then the
y-component of Equation (152), which is the macroscopic
y-momentum equation, reduces to the following:

∂ t(me(n)(vye))+ (n)q(Ey) =−q({δne}{δEy}) (153)

Here, {δne } is a real electron density fluctuation, which is

related to the complex wave-Fourier amplitude n (1 ) (k, ω)

and its complex conjugate n e1)* (k, ω) as follows:

Now using Equation (149) and ∇H ⋅ [(dH/dt)fe] = ∇r ⋅ [(dH/dt)fe]

+ ∇v ⋅ [(dH/dt)fe], the Vlasov Equation (145) for the electron
distribution function can be written as follows:

∂ t fe +∇H ⋅ (

 
Ld
HJ fe )=∂ t fe +ve ⋅∇r fe

 	 
	 (150)

+(M )  E+veCBJ ⋅∇v fe = 0

Equation (150) is the conventional form of the Vlasov
equation for the electron phase-space distribution function.
Collisions of electrons with electrons and with ions are
neglected. Replacing − qme by qm i , it becomes the

Vlasov equation for the ion phase-space distribution func-
tion. We now present the quasi-linear formulation of the
microturbulent resistivity of the magnetoplasma, called
anomalous resistivity, as it cannot be described in terms of
coulomb collisions of electrons with ions.

First, the anomalous resistivity of the plasma, ηa , will be
formulated in terms of the electric-field fluctuation energy
by taking the statistical ensemble average of Equation (150)
averaged over a large number of systems, identical but for
the indeterminate phase of the LHD wave. The indeterminate
phase of the wave is due to the fact that there is no preferred
point in azimuth from which the wave should originate, nor
is there a preferred point in time at which the wave should
suddenly appear. That is, the unperturbed configuration is
uniform in the y-direction and uniform in its static behavior
in time. The phase of the wave is here regarded as a random
variable, which is present in the form of a complex exponen-
tial phase factor implicitly attached to the Fourier amplitudes
associated with the wave.

Second, the saturation level of the electric field fluctua-
tions, which determines ηa, will be estimated from energy
balance as in the paper of Davidson and Gladd (Ref. 18). A
very important refinement of that early energy balance
argument then becomes necessary, as was later pointed out
by Davidson (Ref. 23).

Ensemble-averaged quantities are represented by brackets:
for example, f = f +{δf} and n = n +{δn} . The ensem-

ble average of the Vlasov Equation (150) can then be written
as follows:

∂t (fe ) + ve ⋅∇r

qe

meC(E)
+

 Ce 
×(B)J ⋅∇v (fe ) (151)

= 
me 

({δE} ⋅ ∇v {δfe})
e
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− q \ {δne }{δEy } = 2k ImaginarAe )^	
7({δEy

8^ 	 ^

Y)

	

 
	 (157)

{δne}= 
2 

(n (1) + ne
1^ ∗ ) 	 (154a)

Likewise,

{δEy }= 
2 

(Ey(1) + Ey )*)
	 (154b)

As mentioned earlier, a random phase factor eiΨran is
implicitly assumed to be incorporated in the complex Fourier

amplitudes ne1) (k, ω) and Ey
(1 (k, ω) in Equation (154).

Consequently, in the phase-averaged second-order product

{δne }{δEy } in Equation (153), only the cross terms

(n (1)
e E (1)

y* + n (1)*
e E (1)

y) survive the average because the factor

e iΨran cancels. The remaining terms are (n ME (1) + ne
1)*Ey1)* ) ,

which after averaging, produce the factor cos(2ψran ) = 0.

This description of the averaged contribution to {δne }{δEy }

is correct even when allowing for the fact that the wave fre-
quency ω = Real(ω) + iγ is a complex quantity.

Therefore, the right-hand side of Equation (153) can be
written as follows:

− q ({δne }{δEy }= −q (n (1)E (1)* + WT Ey
1) )

4
r
	(155)

=−q Real(ne
1) Ey

1) * ) = 2Real( qn
e1^

E
Y1^*

)

However, from the equations for the electron polarizability
αe and electron susceptibility χe, from Equations (139) and

(143), respectively,	 – gene1) = αeEy
1) = (k/4πi)X eEy

1) .

Therefore,

− q({δne }{δEy })= 1 Real
[( 4πi

 
k

χ eEy(1)Ey(1)* J

2 
(156)

= 
2 C 4

k

π
^maginary(χe 

)
E

y )Eyl)*

The averaged fluctuation energy density in the real electric
field fluctuations may be calculated in terms of its com-
plex Fourier amplitude in the same manner as described

above. One easily finds {δEy 
12) 

= 
/2 

E (1)E (1)*. Then

Equation (156) can be reexpr\essed

l

in terms of the real elec-
tric field fluctuation energy density. Equation (156) becomes

= 2k Imaginary(χe )Wfl

The averaged energy density in the fluctuating electric field

has here been defined by Wfl = {({δEy }2 

)/8
π}.

Now, in the LHD fluctuations, the electron susceptibility
χe(k, ω) is a very complicated object because the electron’s
orbit senses the magnetic field. Fortunately, in the quasi-
linear theory, ω and k of a mode are still regarded as being
related by the dispersion relation. It is expressed in Equa-
tion (136), which implies

Imaginary (χ e ) = − Imaginary (χ i )	 (158)

The ion susceptibility χi is easy to calculate when the ions
are unmagnetized because of the short time scales (so ions
make straight-line (degenerate) orbits only). Use of Equa-
tion (158) in Equation (157) and the latter in Equation (153)
yields the macroscopic azimuthal electron momentum equa-
tion in the form

∂ t (
me 

`n) (vye ))
+ (n)q(Ey )

(159)
= −2k Imaginary (χi ) Wfl

We will now calculate χi from the Vlasov equation for the
ions.

In the macroscopic rest frame of the ions, neglecting the
influence of the static ambient magnetic field as well as of
magnetic fluctuations, the Vlasov equation for the ion phase-
space distribution function fi(r, v, t) reads

∂ tfi + v ⋅∇r fi +(
qE

 J

⋅∇vfi = 0	 (160)
mi

In Equation (160), fi(r, v, t) is the ion phase-space distribu-
tion function described earlier in this section. It represents
the time-dependent number density of ions at position ri, and
the time-dependent number density per velocity volume at
velocity vi.

In the presence of plasma fluctuations, fi naturally splits
into a time-independent part that is not directly dependent
upon the fluctuations, and a part { δfi} that directly partici-
pates in those fluctuations. Moreover, { δfi} can be Fourier
analyzed (expanded in microscopic plane waves) as follows:
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{δ i (r, v,t)} =  j (1) (k, ω(k)) e i (k ⋅r −ω(k ) t) (161)
k

The quantity fi(1) (k, ω(k)) is called the Fourier amplitude

or the Fourier coefficient of { δfi(k , ω(k))}. In this Fourier
expansion, the complex frequency ω(k) is related to the
wave vector k via the dispersion relation. (The dispersion
relation is the outcome of self-consistently applying the
plasma dynamical equations together with Maxwell's elec-
tromagnetic equations.) In the present instance, we focus on
those microscopic waves that possess only an azimuthal
dependence (dependence on the y-coordinate).

The linearized equation for the fluctuations then reads

 	 
∂ t {δf}i

+ v ⋅∇r {δfi }+ 
qE eq

⋅∇v {δfi }
 	 mi
	 (162)

=−
^ q {δE}  ∇ f(°) 

(k, ω)
mi

J ⋅ v

In the macroscopic rest frame of the ions the ion pressure
is electrostatically confined, so the equilibrium electric field

in the quasi-radial (x-) direction is Eeq = (Ti 1#n
−1 ∂xn) 

A.

Moreover, the third term in Equation (162) is on the order of
(qEeq/m i Vth i) { δfi } with Vth i the ion thermal velocity, Vth i =

2Ti mi . The second term in Equation (162) is on the order

of (k Vth i) { δfi,} where k is the mode wave number. There-
fore, ratio of the third term to the second term proves to be

~1/(2kxn), where the gradient length is xn = 1(n −1 ∂ xn) .

For the LHD modes of interest, kai > 1, where ai is the thermal
ion gyroradius. Actually, k is rather larger than 1/ai; kae ~1.

Therefore, kxn >> 1; and so the ratio of the third term to the
second term in Equation (162), 1/(2 kxn), is a very small
number.

Accordingly, we neglect the third term in Equation (162)
and also use the local approximation for an electrostatic
mode with wave propagation in the azimuthal y-direction.
Equation (162) then becomes

∂ t {δfi }+ vyi∂y {δfi }=− -
q
- )δEy }



∂f 	 k , ω
)(163)

mi J 
∂ yi

For a Fourier-mode e
(iky 

− 
i ωt)

, this equation relates the
Fourier amplitudes (corresponding to a first-order small

perturbation) fi
(1) (k, ω) and Ey(1) (k, ω) .

 q 1 	 ∂ (°)

−iGJf 
(1) + ikvy i f

(1) = −  	
)
EyI) f	 (164)

mi	 ∂vyi

The solution for the Fourier amplitude fi(1) (k, ω) of the

ion’s perturbed distribution function { δfi} is then

f 
(1) q EY

1) ∂f (°) 
/∂vyi

	

(k, ω) = i — 	 (165)
mi k vyi −ω k

Notice that for an unstable mode, ω has a positive imaginary
part and therefore the denominator does not vanish. A near-
resonant ion-particle response to the fluctuating fields arises
when the unperturbed particle velocity vy i has a value such
that the denominator in Equation (165) almost vanishes.
Such resonances also can occur for the electrons, although
the electron denominator is more complicated, including the
electron gyrofrequency along with various electron guiding-
center drifts in the unperturbed orbits. The electron reson-
ances can be nonlinearly broadened and are then thought to
provide a mechanism of saturation of the microturbulence, as
will be discussed below.

By calculating the Fourier amplitude of the ion number
density, as given by

nz 
1) 

(k, ω) =  f(1) d3 v 	 (166)

we can calculate the polarizability ratio ai = gn1
1)

 /Ey1) ,

and then the susceptibility χ i = 4πiα i k from Equa-

tion (143). The integration in Equation (166) extends over all
of velocity space.

In carrying out the calculation indicated by Equa-
tions (165) and (166), we shall assume that the equilibrium
distribution function of the ions is Maxwellian:

3
 	 − 2

	

q	

2 − 	 2

	

f
(°) 

(k,ω) (vi ) = ne	
th i  e 

vi ^Vth i 	 (167)

 	 

where Vth
2 = mi /2Ti . We have used and will be using

= 
∞

e−u du . The constant in front of the gaussian
−∞

exponential	 in Equation (167)	 is	 such that

 fi  (°) 
(k, ω

k
v

) 
d3

 v = 
neq.
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The calculation of the Fourier amplitude of the ion density
fluctuation in Equation (166), from Equations (165) and
(167), is uneventful and a bit tedious. The result only is
written here:

2(1) n	 −u

nl
1) 

(k, ω) = −
i qE y eq	 u e	

du 	(168)
T k , π −∞ u − Vph

The complex normalized phase velocity is given by

Vph = (ω/k)IVt},l ,where Vii = mi ^2Ti  with Vth i being

the ion thermal velocity. By subtracting and adding Vph in
the numerator of the integrand, the expression in Equa-
tion (168) can be put into a more convenient form:

E (1)	 

	

ni
1) 

(k, ω) =−i q y neq  1 + 
ω 

Z 
ω	

(169)
T k	 kVth i  kVth i 

where the so-called plasma dispersion function Z( ζ) is
defined by

2u

Z()ζ  
= π  

e

−ζ 
du	 (170)

−∞ u

in which ζ is taken to have a positive imaginary part. Note
that ζ = ω kVth i is the independent variable of Z( ζ) and

that Vth i in Equation (169) is the ion thermal velocity,

2Ti m i .

The ratio ai = gnl
1) E (') is available from Equa-

tion (169). Then χ i = 4πiα i k can be written as follows:

2

χi = 2 
ωpi 

1 + Z	 (171)
k2 Vth i	

kV  kVth i J

The square of the ion plasma frequency has been introduced;

thus, wp i = 4πneqq2 mi in cgs units.

Returning now to the phase-averaged azimuthal momen-
tum equation of the electrons (Eq. (159)), we suppose that
there is a quasi-steady state relative to the rapid microscopic
fluctuations. The reason for this is discussed below after
Equation (174). Furthermore, we also set

	

Ey  
=ηa (

−qnvye ) 
=ηa Jy 	 (172)

which serves to define anomalous resistivity ηa . Then, from
Equation (171), Equation (159) reduces to

2

η a = 4k 
ωpi 

Imaginary —
ω 

Z 
ω

k2Vth i 
kVth i  kVth i J

WE
fl 	

(173)

×
qe (

ne vye)

Here, average electron velocity vy e is identified with the

azimuthal current drift velocity Vd of the electrons, in the
macroscopic rest frame of the ions. Also, recall that the

second-order-small quantity Wfl is the average energy

density in the fluctuating electric field. Thus, Wfl is a

second-order-small factor in the expression for the
anomalous resistivity. The second-order distinction between

the equilibrium number density neq in 2ωp i in the numerator

and the ensemble-averaged n in the denominator is then a

correction of no consequence for the leading second-order
evaluation of the right-hand side of Equation (173).

An anomalous collision frequency υa e of electrons can be
defined as usual, for singly ionized ions, by

ηa = meυa /(n ) q2 . We then find from Equation (173) that

υa e is given by an expression that agrees exactly with Equa-
tion (33) in the paper of Davidson and Gladd (Ref. 18). Our
derivation, however, differs somewhat from that in
Reference 18.

Equation (173) is applied the to the small drift velocity
regime, Vd << vi, which is equivalent to the case in which the
gradient length xn is rather larger than a thermal ion gyro-
radius. This regime is consistent with our estimate of the
initial width of the plasma-magnetic-field mixing layer. At
the same time, we follow Reference 18 by using an energy
argument to obtain an upper bound for the fluctuating

electric-field energy density Wfl . This procedure, with

Equation (173), then yields an upper bound to the anomalous
resistivity in the small-drift regime.

Referring to Equation (144) for properties of the most
rapidly growing linear mode in the low drift velocity regime,
the real frequency Real( ω) approaches zero with Vd, and the

growth rate γ approaches zero withVa . The wave number at

maximum growth, however, stays fixed as Vd → 0. Thus,

ζ = ω/kVth i → 0 as Vd → 0. A simple contour integration
then can be used to show that as ω → 0 from above the real
axis, the Z-function in Equation (173) approaches the imagi-

nary constant value, i π  . The imaginary quantity in Equa-
tion (173) Imaginary[ζ Z(ζ)] can then be evaluated to
leading order in the low-drift regime as
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Imaginary 

w
 Z = 

Real w) 
 	 

 
π (174)

  
 
 kVth i	 kVth i  kVth i 

In order to obtain an upper bound on anomalous resistivity
11 a, it is noted by Davidson and Gladd (Ref. 18) (after Fow-
ler) that the energy in the fluctuating electric field can only
be supplied by the drift kinetic energy of the electron current
(in the rest frame of the ions). This is thought by them to be
the only source of energy available to be converted into
fluctuation energy. We are supposing that this drift current is
at least momentarily sustained by the local average azimu-

thal electric field, Ey , which, in turn, is induced by the

momentary local radial expansion of the plasma across the
longitudinal magnetic nozzle field. Therefore, the electric-
field fluctuation energy can at most be

Wfl = 2 me (n )Cvye >
2
	 (175)

Now, Equations (174) and (175), the expression for 2wpi , as

well as the properties of real frequency Real( w) and azimu-
thal wave number k are used in Equation (144). Then, after
some cancellation, the expression for anomalous resistivity
in Equation (173) reduces to the following simple form in
cgs units (with 11a in seconds):

2
π

11 a = 47c	
me 1 ^-Vd  (Te

 << Ti) (176)
VY 2 mi wLH Vth i 

Here Vth i is the ion thermal velocity, and wLH =wc i wc e

is the lower hybrid gyrofrequency. This expression for ano-
malous resistivity in the magnetoplasma gradient’s current
layer constitutes an upper bound, which is limited by the
available drift kinetic energy in the electron’s azimuthal drift
current in the macroscopic rest frame of the ions. In view of
our somewhat different derivation, it is satisfying that Equa-
tions (173) and consequently (176) for 11 a agree exactly with
Equation (40) in the paper of Davidson and Gladd
(Ref. 18). The upper bound on the fluctuation-electric-field
energy density is called the Fowler bound as discussed in
that paper.

It is sometimes convenient to carry out basic calculations in
cgs units rather than mks units. When applied to resistivity,
the cgs unit is seconds. Thus, the anomalous resistivity in
Equations (176), (179), (196), and (198) all manifestly have
identical dimensions of inverse frequency and hence are
immediately recognized as being in terms of cgs units. The
same is true as well of Equation (193) in the next subsection.

To convert any one of these to resistivities measured in the
mks unit, ohm-meters, multiply these expressions by 9 · 10

9 .
The electron collision frequency associated with 11 a in

Equation (176) proves to be

	

2	 2

va =
	 w2

p 	 Vd	 (177)
V 2 wLH  Vth i

wherein coi p =47c^n) q mi is the ion plasma frequency.

However, a critical refinement of the Fowler upper bound
is required, as observed by Davidson (Ref. 23). In a regime
often encountered in magnetoplasmas, which includes mag-
netic nozzle parameters of interest here, the averaged wave-
energy density Wwave far exceeds the energy density in the

fluctuating electric field WflE . This regime of interest has

w
2
 e >> wce (or 3 · 109

n >> 3 · 10 14
B2 in cgs units, with n in

cm-3 and B in gauss).
The energy density in the fluctuating electric field is only

part of the total wave energy. It is related to the total wave-
energy density as follows, according to Reference 23:

 2
E 

wce 
(	 )Wfl = 2 

Wwave << Wwave	 178
wpe

The reason the wave energy Wwave far exceeds the energy in

the fluctuating electric field WflE is that the totality of wave

energy includes contributions not only from WflE , but also
from energy involved in the fluctuating particle motions
themselves. The latter contribution actually proves much

larger whenWP e >> wce . In turn, the electron-drift kinetic

energy constitutes the source for the total wave energy. In
other words, the “Fowler bound” should be supplanted by
the “wave-energy bound.”

Following Davidson (Ref. 23), who states (without a clear
physical justification) that only half the electron-drift
energy goes into the wave energy, it is apparent from Equa-

tion (178) that a factor 
/2 

wce/w
P e] ] has to be inserted

into Equation (176). Furthermore, Davidson chooses to
express electron-drift velocity in terms of ion gyroradius in
the limit Te << Ti; namely, Vd/Vth i = 12 ai/xn . Here,

1 xn = | n-1 axn | is the reciprocal radial gradient length.

Equation (176) thereby becomes modified so as to yield a
much smaller upper bound on the anomalous resistivity:
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3/2	 2ωce me 1
	

ai

z	
(Te <<T i) (179)η a

	

	—2  ωp

π
	

e 
m

i 
ωLH xn

This is essentially the result stated by Davidson in the first
section of his paper (Ref. 23). It can be shown to correspond
to an electron collision frequency

2

υa =
1

	

π ω
LH 

^_Ed_	 (180)
8 Y 2	 Vth i

scaling as ωLH, whereas υa obtained from the Fowler bound
(Eq. (177)) scales as (1/ωLH).

Later, the result Equation (179) will be compared with
two published computer simulations of nonlinear evolution
and concomitant radial diffusive transport of plasma par-
ticles. In this context, it should be noted that Davidson’s
derivation of Equation (179) had to rely upon the three
approximations mentioned earlier: the local approximation,
the electrostatic approximation, and the approximation of
unmagnetized ions. Moreover, the derivation of Equa-
tion (179) in Reference 23 does not include some other
features that are automatically incorporated in the computer
simulations, such as wave-wave interactions.

3.4 Alternative Models for Saturation of LHD
Microturbulence

Equation (173) indicates that the microturbulent resistivity
ηa depends fundamentally on the quantity of fluctuations
squared in the electric field; specifically, ηa depends upon
the average energy density (second-order small) of electric

field fluctuations, namely, Wfl ={^{δEy p )/8π}. More

complete models of quasi-linear theory include many modes,
not just one. Alternative hypotheses have been proposed for

saturation mechanisms for Wfl , which include trapping of

ions in the electrostatic wave-potential, electron resonance
broadening, wave-wave coupling of growing waves to
damped waves, and individual particle-orbit modification by
the growing wave (see discussions in Refs. 14, 20, and 24
to 27). Each mechanism has had its advocates. Within the
realm of plasma theory, the final arbiter of the various
nonlinear-saturation hypotheses would be a well-done com-
puter simulation with examples covering broad ranges of the
relevant parameters.

In this section, we provide an overview of two ion-
trapping models, one using an energy method and another
based on a time-scale method. Ion trapping, being intuitively
obvious, was one of the first saturation mechanisms to
be suggested. We also summarize the results of two other
models, which proved to be in surprising agreement with
the wave-energy-bound model. It is understood that all

calculations are being done in the local longitudinal refer-
ence frame of the edge plasma. Also, ions are assumed to be
singly charged in this subsection. We then conclude this
subsection by summarizing the results of two nonlinear
computer simulations of LHD microturbulence, one of which
avoids two of the approximations mentioned above and the
other of which avoids all three. Their results for the parame-
ter dependencies of ηa bear a striking resemblance to the
anomalous-resistivity prediction of the quasi-linear model
with the wave-energy bound. Unfortunately, there apparently
is as yet no definitive agreement on the value of the numeri-
cal coefficient. Moreover, this numerical information is
needed for optimization of magnetic nozzle design, so as to
minimize attachment.

The idea behind the energy-based ion-trapping saturation
mechanism is that if the traveling drift-wave potential
accrues too much mass, the wave will be slowed and the
synchronous dynamics that facilitates its growth will even-
tually be spoiled. The possible importance of the ion-
trapping mechanism can be estimated as follows: If the
electric field fluctuation energy density, evaluated according

to the wave-energy bound W ave is smaller than the electric

field fluctuation energy from ion trapping Wfl then the

wave-energy-bound level of electric field fluctuations will be
reached first and will saturate. The fluctuation level for ion
trapping then would not be energetically accessible.

The kinetic energy of a thermal ion relative to a traveling
drift wave of phase velocity Vph is

Y mi (Vth i − Vph )2
 = ^mi Vt i (1 −Φ)2 = T (1 −Φ) 2 (181)

where Ti is the ion temperature, and the ratio of wave phase
velocity to ion thermal velocity is Φ = Vph Vth i . If the

electrostatic potential-energy pulse experienced by a repre-
sentative co-moving ion q { δϕ} reaches the above level of
kinetic energy, then the traveling wave potential can begin to
drag ions along with it. The required electrostatic potential
fluctuation {δϕ} is therefore

{δϕ}≈ 
Ti 

(1 −Φ)2 	 (182)
q

The electric field fluctuation is related to the fluctuation of
electrostatic potential by {δE} ≈ k {δϕ}, where k is essen-
tially the azimuthal mode wave number of the fluctuation.
Also, the field fluctuation energy density from ion trapping

is on the order of Wfl ≈{δE}2 / 8π. Therefore, the electric

field energy-density level associated with ion trapping is

k2 T
2

Wflt ≈ —_ i

2 

(1 −Φ) 4
	 (183)

8π
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On the other hand, the electric field fluctuation energy
density from the wave-energy bound is (suppressing David-
son’s factor of 1/2)

Wwave = 42 e 1 
me (n) Vd = &

cZ 1
 
mZ (n)V

d
 (184)

pe 
2	 co

p
2 

Z
2

The ratio of field fluctuation energy density from the wave-
energy bound (Eq. (184)) to that from the ion trapping
Equation (183) can be written as follows, after a bit of mani-
pulation that utilizes the expressions for coc Z and cop Z:

	

Wfl ave _ 4 Va 	 1
(185)

Wfi

t
 ~ k

2 ai V
2 Z 

(1– (D) 4

As the LHD wave of interest has its phase velocity Vph =
Real(co)/k on the order of the drift velocity Vd to within a
constant CII < 1 (for example, see Ref. 19, nonresonant
case), Equation (185) will be written as

Wwave	 4 Va 	 1

	

it = z 2 2	 4 
where CII < 1 	 (186)

Wfl 	 k aZ V^, Z (1– CII Vd /Vth Z )

In the low-drift-velocity regime of interest (but still the

nonresonant case), Vd <<V2  in Equation (186). This
th

strong inequality signifies a gradient length xn larger than an

ion gyroradius aZ. Moreover, recall Equation (144b), which
gives the wave number of the most rapidly growing LHD
mode. It has the order of magnitude of k ~ 1/ae. Then, in

Equation (186), the product k2a Z
2
 becomes on the order of

m Z/me >> 1. Hence, the numerator in Equation (186) is
somewhat smaller than 1, and the denominator is very large.

It appears, therefore, that Wfl 
ave 

<< Wfl , so that the ion-

trapping level of electric field fluctuations is not energetically
possible in the regime of low drifts and broad gradients.
Moreover, even in the opposite limit of a sharp gradient,
Vd >> Vth Z, ion trapping according to Equation (186) is again
not possible. It may be that energy-based ion trapping
becomes marginally competitive in a narrow velocity inter-
val centered at Vd = Vth Z. It is clear that this energy-based
model of ion trapping requires a single dominant wave.

There also is a different and simpler criterion for ion trap-
ping, which will be aluded to below. It is based upon a time
scale argument rather than an energy argument. The idea is
that if a linearly small growing wave exists with growth rate
y that is dominant over all other waves, then wave saturation
occurs when the bounce frequency of an ion in the dominant
wave potential cobnce exceeds the linear-phase growth rate;

thus, cobnce > y is the criterion. From Newton’s equation of
motion (F = ma) of an ion in the dominant wave potential,

one easily estimates (^nce = (qZ / mZ )k{SE} , where k is the

wave number for the azimuthal direction and { SE} is the
fluctuating electric field in the azimuthal direction. The
critical level for ion trapping then is { SE} = y

2 
m Z/gk, where y

is the dominant linear-phase growth rate as given, for exam-
ple, in the collisionless case by Equation (144). A narrow
wave spectrum is again required for this form of ion trap-
ping. The anomalous resistivity discussed in the present
report will not be related to this particular criterion, as
the latter may require a critical damping condition made
possible by frequent electron collisions with ions (see dis-
cussion below regarding Refs. 25 to 27). Nevertheless, the
time-scale-based mechanism of ion trapping cannot be defi-
nitively ruled out.

Gary invoked electron resonance broadening as a second-
order mechanism of LHD-mode saturation. See the discus-
sion in Reference 24, and references therein where it is
believed that, nonlinearly, a large fraction of the electron
distribution function is brought into near-resonance with the
waves and extracts energy from them. In the same paper, he
also applied that technique to several other kinds of micro-
instabilities that could be expected in magnetoplasma gra-
dients confined by magnetic pressure, notably including the
“universal instability,” an oblique mode. His calculations are
carried out analytically, and his result for electron resistivity
from LHD microinstabilities proves to be practically the
same as that obtained from the wave-energy bound in
Reference 23.

Gary’s calculations on the LHD instability in Refer-
ence 24 are restricted within the local approximation, the
electrostatic approximation, and the unmagnetized ion
approximation. Also, those calculations ignore wave-wave
coupling, as does Reference 23. Gary’s employment of
electron resonance broadening to calculate saturation of
turbulence and anomalous resistivity has been criticized by
Drake et al. (Ref. 26) on the grounds that the model is
restricted to being electrostatic.

Gary actually finds that anomalous resistivity from the
oblique “universal mode” (in which the wave vector is not
perpendicular to the magnetic field) exceeds that from the
LHD instability. However, Gary’s theory is electrostatic and
therefore is restricted to zero 0. Other work on the universal
mode has shown that this mode is stable when 0 exceeds a
few percent (possibly 14 percent). Electromagnetic theory of
the universal instability was addressed in References 28
to 30. We infer that the universal mode should not be of
principal importance in the edge layer of the propellant
wherein 0 is not small compared to 1 and moreover in which
0 has a large range of values. Whether the universal mode
would be of some secondary importance in a low-density
plasma halo extending out into the magnetic nozzle field is
an open question.
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Drake et al. (Ref. 26) followed the progression of “nearest
neighbor” wave-wave couplings by means of numerical
computation. Nearest neighbor modes are separated by the
wave vector of the fastest growing linearized instability,
known as the “pump” wave. The LHD waves were driven by
resonant ions. Saturation of the resulting turbulence (k ⋅ B =
0) was ultimately obtained by electron damping at short
wavelengths, either by ∇B drift-resonant electrons or by
electron collisions (electron viscosity and electron-ion colli-
sions).

Unlike the simulation in Reference 14 that is described
below, that in Reference 26 is not a first-principles simula-
tion. Rather, it is based upon reduced-model equations
obtained from prior physical reasoning. Thus, there are two
simplifying restrictions: to Te = 0 and to unmagnetized ions.
There is also a simplification to nonlinear coupling of just
nearest neighbor modes, which ultimately requires justifica-
tion (in their appendix) by the presence of electron damping.
Finally, the model features the spreading of energy in mode-
space, implying the generation of a broad spectrum of modes
that is not suitable for the phenomenon of ion trapping. On
the other hand, the model in Reference 26 is electromagnetic;
hence, it is valid for nonzero β. Furthermore, the authors do
simulate examples in which Vd < Vth i, unlike the examples
presented in Reference 14, which are restricted to

Vd ≈ Vth i.

From their electromagnetic standpoint in Reference 26,
Drake et al. criticize the electrostatic electron-resonance
broadening theory of Gary (Ref. 24) by claiming that such a
process in an electrostatic model can only shuffle energy
back and forth between modes without producing true dissi-
pation and concomitant saturation of turbulence. They claim
that to produce saturation, an electromagnetic model is
required with specific wave-particle resonances. They also
point out that, within the electromagnetic model, magnetic
energy effectively constitutes a very large reservoir of free
energy, thereby invalidating the wave-energy-bound concept
invoked in quasi-linear theory that the wave energy is
limited by the available electron-drift kinetic energy. (Thus,
it is implied in Ref. 26 that a resistively broadened plasma
edge gradient can be steepened anew by the continual appli-
cation of external magnetic pressure.)

In view of this remark, it is most interesting that the ano-
malous resistivity implied in Reference 26 has the same
parameter dependencies obtained by Davidson (Ref. 23),
albeit with a larger numerical factor. This result of Drake
et al., which is not explicitly provided by them, will be
derived now, based upon Equation (48) in Reference 26.

The crossfield particle diffusivity D⊥ can be set within the
context of the usual density-gradient-driven diffusion equa-
tion, namely

nV⊥ = −D⊥∇n 	 (187)

At the same time, one has radial force balance within the
plasma gradient, neglecting inertia (hence, slow diffusion).
This can be written as

∇Ptot = c− 1 J × B 	 (188)

wherein Ptot is the total plasma pressure. (It is expeditious to
use cgs units here, with c the speed of light in vacuum.)
Invoking the simple form of Ohm’s law, the azimuthal cur-
rent density is related to the azimuthal motional electric field
by

J = σ(c
−1 V⊥ ×B) 	 (189)

These three macroscopic equations above may be easily
combined to yield the relation between the particle diffusion
coefficient D ⊥ and the resistivity η = 1/σ. For uniform
temperatures of electrons and ions, that relation is

D⊥ = D
1 βi l 1 + Te

J

	 (190)
2  Ti

where the resistive diffusivity (in cgs units) is

 c2 
Dη = 	 (191)

4π 
 

Now, Drake et al. (Ref. 26) extract the following expres-
sion for the crossfield particle diffusivity from their simula-
tions, notably including the value of the numerical factor

CDrake:

2

D⊥ = CDrakea  es ωLH Vd 
(where CDrake = 2.4) (192)

^
Vth i 

Here, from their Equation (48) (in Ref. 26) as extracted from
the simulations, CDrake = 2.4. The “strange” gyroradius aes

(“es” represents “electron-sound”) is defined by

aes = ai m e 2mi , where ai is the thermal ion gyroradius,

ai = Vth i/ωc i. Although the Drake et al. model is electro-

magnetic, they claim no explicit β dependence for this D⊥ .

One can directly solve Equation (190) for the resistivity,
using Equations (191) and (192) and the definition of aes . In
turn, that result can be manipulated further, using the follow-
ing identities:
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Also, in cgs units, we have to use the following defini-
tions (with Ptot = nTe + nTi):

	87CPi	194aPi = 	 ( 	 )
B 2

	

V
th i 

= 
2Ti 	 (194b)
mi

2

VA = 
B	

(194c)
47C n m i

CO2 = 
47C n q 2	

(194d)p
ms

	

COc = qB 	 (194e)
msc

Here, T is the temperature in ergs.
The final result for the resistivity, now noted as the

anomalous resistivity, i1 = i1a, can then be written exactly as
follows:

2 2
47CCDrake 

COce me 1	 Vdi1a =

	

	 (195)
(1 + Te / T CO p e mi COLH Vth i

Drake et al. (Ref. 26) sets Te = 0 in their model, as does
Davidson in Reference 23. Except for the numerical factor,
this expression is then identical to the zero- P expression of
Davidson, Equation (179). After converting Equation (179)
in terms of the current drift velocity Vd, the numerical factor
in Equation (179) is about 7. In Equation (195) above, for
CDrake = 2.4, the numerical factor 47C CDrake is ~30.

The anomalous resistivity inferred in the Brackbill et al.
paper (Ref. 14) discussed below again proves to be given by
the identical expression to the above except for the numeri-
cal coefficient, provided that the ion-P factor is neglected. In
the Brackbill et al. paper, the largest value of the numerical
coefficient in i1 a , as extracted from the simulations, is stated
to be 0.4. Thus, the numerical coefficient in Drake et al. is
almost 2 orders of magnitude larger than that in Brackbill
et al. This is a significant discrepancy in view of the fact that
the results of Drake et al. compare somewhat favorably with
measurements on a theta pinch implosion, as will be dis-
cussed next.

The output of Drake et al. is compared with measurements
on theta pinch implosions performed by Fahrbach et al.
(Ref. 27). In so doing, Drake et al. remark that it is important
to include electron-ion collisions in the theory, which they
do. At the same time, they emphatically maintain that their
Equation (48) (in Ref. 26) should still be interpreted as the
collisionless expression for Dl because their simulations
show that crossfield particle transport is very insensitive to
the magnitude of electron dissipation.

The actual comparisons made with the experiments of
Fahrbach et al. are not the particle diffusion coefficient Dl

or the resistively broadened theta pinch profiles; rather, they
are the shape and position of the mode spectrum and the
amplitude of the plasma density fluctuations. The spectral
comparisons agree very well; for example, the predicted
down-shift in the peak of the wave number spectrum differ
by only about a factor of 2. The fractional amplitude of the
density fluctuations differ more, but still within an order of
magnitude: 0.034 versus 0.014 at the lowest filling pressure
and 0.014 versus 0.0023 at the intermediate filling pressure
(where the greater values represent the theoreticals). (Note
that anomalous resistivity depends on the squares of those
fluctuation values.) At the highest filling pressure in the
experiments, the theoretical model finds that the system is
very close to marginal stability for LHD modes because of
electron collisions with ions; hence it should be dominated
by a single mode, and ion trapping should probably be
responsible for the saturated amplitude. In fact, the experi-
mentalists invoke the time-scale-based ion trapping mechan-
ism to explain their results at all three filling pressures.

In view of the several competing mechanisms proposed
for nonlinear saturation, recourse to first-principles simula-
tions of the evolution of magnetoplasma gradients is useful.
Such simulations are unbiased as to mechanisms. Brackbill
et al. (Ref. 14) developed full-particle (both electron and ion)
electromagnetic simulations (hence, capable of addressing
nonzero P). The considered equilibria had Te/Ti < 1, corres-
ponding to our Equation (144) and Davidson’s case
(Ref. 23), but the electron and ion temperatures were
allowed to evolve self-consistently with the microturbulence.
As in Reference 26, a major restrictive assumption was that
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only modes with wave vectors perpendicular to the magnetic
field were allowed. Unlike Reference 26, however, only
examples with Vd = Vth i were simulated, although this
restriction was not required in principle.

In Reference 14, the microturbulent behavior was simu-
lated in a self-consistent manner over the entire width of the
plasma density gradient, so there was no local approxima-
tion. Particle orbits were self-consistently calculated in the
ambient zero-order magnetic and electric fields as well as in
the nonlinearly fluctuating fields produced by the particle
motions themselves. Fluid equations were utilized in an
intermediate time step to advance the fields. There was no
“unmagnetized ion” approximation. The magnetic field
profile ranged from a large external value to zero deep in the
plasma, at the center of the current layer.

To our knowledge, this is the only published first-
principles electromagnetic full-particle simulation of LHD-
related microturbulence in a global-configuration magnetop-
lasma gradient, from which a practical formula for the inter-
nal anomalous resistivity Tl, has been extracted. A paper was
recently published that included oblique modes, but the
principal interest there was three-dimensional magnetic
reconnection across the current layer; see Reference 31. The
configuration addressed in the Brackbill et al. paper
(Ref. 14) is relevant to the magnetic nozzle device because
the internal plasma is confined by external magnetic pres-
sure. If no such practical formula for Tl, were forthcoming,
then simulations of microturbulence in the magnetic nozzle
would have to be carried out in an iterative manner at many
locations along the propellant’s flow field within a resistive
MHD simulation, which seems impractical within normally
available resources.

A note of caution, however, is that the paper of Brackbill
et al., as in related work dealing with theta-pinch implosions,
differs in a fundamental way from the magnetic nozzle. As
emphasized by Turchi, in virtue of the longitudinal flow of
propellant the magnetic nozzle has “new” plasma coming
from upstream, which is continually entering previously
disturbed regions of the plasma gradient. Thus, broadening
of the plasma-field interface region in the magnetic nozzle
may differ from the results of Reference 14.

Since Vd/ Vth i = 1 in the initial equilibria in Reference 14,
it is somewhat surprising that the same parameter dependen-
cies (except for the 0 dependence) are inferred for the ano-
malous resistivity as are found in References 23 (Davidson)
and 26 (Drake). However, both Davidson’s and Drake’s
numerical coefficients in Tl, are substantially larger than
observed in the Brackbill et al. simulations.

Data from the simulations in Reference 14 is somewhat
sparse and exhibits significant scatter. Nevertheless, the
overall trends of the data points from Reference 14 (which
also include the results of earlier simulations) are consistent
with the Tl, expressions in the papers of Davidson (Ref. 23),
Gary (Ref. 24), and Drake et al. (Ref. 26). In fact, the prac-
tical formula for anomalous resistivity in the Brackbill paper

was inferred (with an adjustable constant) by comparing the
parameter dependencies of the particle heating rates in the
simulation with the second-order heating rates obtained
analytically by Gary. (Note, however, that Gary employed an
electrostatic zero-0 model.)

We shall write down the simulation-based formula for Tl a
as set forth in the Brackbill paper (Ref. 14), except that a
factor 1/0i shall be suppressed. We believe that this inverse-
0 factor is not well founded. The ion 0 is defined by 0i =
87cPi/B

2
. The reasons for our reluctance to accept this 0

factor, besides its absence in equation (48) of Drake et al.
(Ref. 26), is that the Brackbill simulation results are com-
pared with a template based upon a zero-beta electrostatic
model, so that an inference about the beta dependence is not
logically possible. In any event, the ion 0 would be of order
1 within the magnetically confined plasma gradient.

The formula suggested in Reference 14 for the effective
anomalous resistivity then can be written without 0i as

2
Wc e me 1 Vd e

Tl, = CBrack 2
Wp e mi WLH 

Vth i

where 0.1 < CBrack < 0.4 (196)

This symbol CBrack corresponds to 47c CDrake in the Drake

et al. discussion above. The largest value of CBrack obtained
in the Brackbill et al. simulations was CBrack = 0.4, and the
smallest was CBrack = 0.1. The range of CBrack was related to
the stage of evolution of the microturbulence and concomi-
tantly of the evolving plasma gradient. When comparing this

Tl, to classical resistivity Tlcl, we shall refer to the largest value
of CBrack, 0.4. It is an open question as to what stage of evolu-
tion, in terms of Reference 14, is appropriate in the magnetic
nozzle, as a given plasma element travels along the magnetic
nozzle field in a macroscopic state of stationary flow.

Reverting from the velocity ratio to the ratio of ion gyro-
radius to gradient scale length, and in the limit of small Te/Ti,

the simulation result, Equation (196), is compared with
Davidson’s quasi-linear result, Equation (179). Since
(Vd/Vth i)

2 = 1/4(, i/xn)2
 when Te = 0, the constant CBrack in the

first-principles simulation result Equation (196) is about an
order of magnitude smaller than that produced by the quasi-
linear wave-energy-bound model represented in Equa-
tion (179). The simulations in Reference 14 had Ti somewhat
larger than Te (see Table I in Ref. 14), as in Davidson’s
analytical case (Ref. 23), so the temperature ratio probably
cannot account for this discrepancy. The discrepancy might
have been understandable from the expectation that spread-
ing of available energy within wave-vector space by wave
coupling and energy loss to damped modes in the simulation
would lead to a reduced level of fluctuations. However,
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Drake et al. include wave coupling, yet find a much larger
numerical coefficient for anomalous resistivity TI, than does
Brackbill et al.

Drake et al. (Ref. 26) pointed out that if there were a
channel for magnetic energy to be continually converted to
plasma energy, then the wave-energy bound used in quasili-
near theory, as limited by the electron-drift kinetic energy in
the azimuthal current layer, would not be applicable. In
principle, the level of microturbulent fluctuations could then
increase beyond that value from the wave-energy bound, due
to the essentially infinite supply of magnetic energy. In fact,
the simulations in Reference 14 did find that magnetic
energy was being continually converted into plasma energy.
However, it was apparently being converted directly into
thermal energy of the particles, rather than going into an
increased level of microturbulent fluctuations. This result is
understandable from the point of view that continually
applied external magnetic pressure just keeps squeezing and
heating the plasma.

3.5 Comparison of Anomalous and Classical
Resistivities

The simulation result Equation (196) will now be com-
pared with classical resistivity. However, we should be
mindful that this may constitute an underestimate of anomal-
ous resistivity in view of the results of Drake et al., which
have the same parameter dependence but with a significantly
larger numerical coefficient. Moreover, the latter result
compares favorably with some experimental measurements.
It is understood that all calculations are being done in the
local longitudinal reference frame of the edge plasma.

For comparison to classical resistivity, it proves conve-
nient to rewrite the anomalous resistivity simulation result,
Equation (196). The following identities are utilized:

TI, = CBrack VA 1
—^_Ed_

2

(198)
c uTpe Vth i

Here, c is the speed of light in vacuum, in centimeters per
second. Numerical calculations of this anomalous resistivity
shall be performed at a representative position within the
plasma gradient.

To evaluate the factor ( VA/c) in Equation (198), we utilize

the cgs expression, VA = B 4 TT n i m i . Mass mi is assumed

to be that of the hydrogen ion. We wish to evaluate TI, in
Equation (198) at a representative position within the density
gradient that constitutes the plasma-field interface layer.
Midway within the gradient, magnetic pressure ( B

2/8TT ) is set
to half the external magnetic (Bext ) pressure; hence, B2 = 0.5

Bet . Also, ion number density n i is set to half the internal

(core) number density ncore; hence, ni = 0.5ncore. Then pres-

sure equilibrium Bet = 16TT ncoreT is invoked across the
entire layer width for external magnetic confinement of the
internal plasma pressure. A uniform temperature T(ergs)

is assumed, with T = Te = Ti. The result is VA/c = 0.67 · 10-4

T(eV) , with the temperature T(eV) now measured in

electron volts. Similarly, the electron plasma frequency in
Equation (198)	 is	 given in cgs	 units by

uTpe = 4TT npq
2 
/me = 5.6 · 104

 n p , and the plasma

number density np in the gradient is again set to half the core
density. Thus np = 0.5ncore . Then, from Equation (198), the

anomalous resistivity TI, at a representative position within
the magnetically confined plasma gradient reads as follows:

	

 uT 2 T2	 eV V
2

 

	

uT2e 


e

J=

 2i 	 n((1 97a)	 T1. =[I.7CBrackYI0
-

9)  yd  (199)

p  	 p
	 core  th i

 	 

The ratio of current drift velocity Vd to ion thermal
velocity Vth i actually is profile dependent. The treatment of
this quanity is discussed below. Of course, use of Equa-
tions (196) or (198) is preferred for TI, in a resistive MHD
simulation, so as to provide better resolution within the
edge-plasma gradient.

The well-known classical resistivity TIcl across the mag-
netic field (Ref. 9) due to coulomb collisions of electrons
with ions is practically independent of plasma number
density. If we set ln Λ = 10 , which is typical, then TIcl will
read as follows:

1

 2
uTLH = uTci

(-m

i-(197b)
me

c 
= 

VA	 (197c)
uTpi uTci

1


2

uTpi 
:i-


= uTpe (197d)

e

Here, VA is the Alfven velocity. Invoking these identities, s

after some manipulation, Equation (196) can be written as 	 Tlcl =1.1 . 10-13 T(eV)-Y 	 (200)
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Both resistivities ηa and ηcl are measured in seconds in cgs

units. Multiplication by the number 9 · 10 9 converts them
into mks values measured in ohm-meters.

Either classical or anomalous resistivity can be employed
in a simple Ohm’s law, to relate the azimuthal current
density in the edge-plasma gradient layer to the motional
azimuthal electric field V × B (the cross product of quasi-
radial diffusion velocity with longitudinal magnetic field).
Their use in the simple Ohm’s law, however, requires that
the radial Hall voltage does not become shorted out by a
flow of Hall current. As a practical matter, a resistive MHD
simulation such as the MACH2 code can be set to run with
the sum of the two resistivities. Then the dominant one will
automatically be the effective resistivity.

For a more systematic impression of the integrity of the
plasma-field interface, it is of interest to describe conditions
under which microturbulent (anomalous) resistivity is the
larger of the two. From Equations (200) and (199), the ratio
of classical to anomalous resistivity, where temperature T is
in electron volts, is

ηcl = 	
1	 (10') 

,,co re 	 1	 (201)
ηa 1.5 CBrack	 T2 (Vd 1Vth i )

Classical resistivity clearly dominates at lower temperatures
and higher densities. The two are equal, however (again,
when temperature T is in electron volts), when

1/4

T =-
1
	 (10−2 ) 

,,core	 (202)
1.22 CBrack	 Vd /Vth i

Numerical examples for which ηcl = ηa are tabulated
below for CBrack = 0.4 and T = Te = Ti. Our earlier analysis
of the ion gyroradius relative to the initial interface width

also confirmed the approximate constancy of that ratio (i.e.,
a i/x,,) from breech to throat. Note x,, is the characteristic
density gradient scale length, which is defined in terms of
the ratio of the local ion number density to the local gradient
of the ion number density. A special derivation is needed to
relate that ratio, ai/x,, to the velocity ratio Vd/ Vth i by virtue
of the MHD equilibrium relation in the quasi-radial direction
across the flux surfaces, within the interface layer. In this
derivation it is assumed that the electron and ion tempera-
tures are equal and uniform. Accordingly, we have chosen
the example Vd/ Vth i = ai/x,, = 1/3.

There is a lack of precision, however, because the current
drift velocity Vd (or also ion gyroradius ai) depends upon
location within the plasma-field mixing layer, and also
because its thickness δ (=x,,) as a multiple of (c/ωp i) is not
precisely known (see Appendix I). Hence, a slightly greater
value of Vd/Vth i = ai/x,, = 1/(2.5) is also considered.

Figure 4 presents temperatures (eV) below which η cl

(with ln Λ =10 ) is larger than ηa (Ref. 14 with CBrack = 0.4),

for a given ion number density (cm–3
). The two values for

the ratio Vd/ Vth i are plotted. The critical temperature accord-
ing to Equation (202) is rounded to the nearest 10 eV.

The results in Figure 4 ought to be insensitive to position
along the nozzle between breech and throat. That is because
density n at the throat is still about 2/3 of its breech value
(and ,,

1/4 
is used), and temperature T at the throat is still 3/4 of

its breech value. Thus, at a hydrogen-ion number density

1015 cm−3
, an envisioned stagnation temperature of 50 eV in

the breech would represent a condition of classical resistiv-
ity, whereas 180 to 220 eV would represent a marginal
condition where the two resistivities are about equal. The
220 eV range is, in fact, envisioned in a recent space-mission
systems study (see Ref. 4).

In view of the results of Drake et al. (Ref. 26), the reader
should be warned of the possibility that Figure 4 may
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wrongly downgrade the importance of anomalous resistivity.
The critical temperatures in this figure actually depend on

1 CBrack . If CBrack should have been 2 orders of magni-

tude larger, then the critical temperatures would be smaller
by a factor 10. If such were the case, then the anomalous
resistivity ηa would be totally dominant over the classical
resistivity ηcl for most cases of interest. However, the fluctu-
ation levels predicted by Drake et al. were somewhat too
large compared with the experimental measurements, and it
is the squares of those fluctuation levels that determine the
anomalous resistivity.

4.0 Rayleigh-Taylor- (RT-) Type
Instabilities

In this section, we primarily examine MHD surface insta-
bilities of the flute-mode type, associated with adverse longi-
tudinal curvature of the plasma boundary. To begin with,
however, brief consideration is also accorded the unique
conditions in the injection region associated with the initial
plasma impact with the confining magnetic field.

Two distinct regions involve instabilities of the RT type.
The usual one involves propellant flow along magnetic-field
lines of gradual adverse curvature. An effective gravitational
force field arises from centrifugal deceleration. In the same
region there are separate pressure-driven modes with similar
characteristics, but for which there is no effective gravity
because there is no macroscopic centrifugal force field. The
pressure-driven modes require a separate treatment, which is
supplied below. In magnetic nozzle flow, a combined insta-
bility occurs driven both by centrifugal effects and pressure.
Therefore, growth rates for modes of the combined type will
also be derived. The treatment is based on surveying the
forces acting on a plasma element as it is displaced outwards
in a region of adverse magnetic curvature. Treatments in
the literature appear to be more mathematical and less
accessible.

For these instabilities, the vulnerable regions are where
propellant approaches the throat of the nozzle and also near
the nozzle’s exit, where the diverging flow is redirected
axially by straightening out the diverging magnetic field
lines (Fig. 2). The most dangerous RT-type instabilities in
these two regions are usually considered to be flute modes,
with azimuthal wave vectors, because these modes do not
bend magnetic field lines; hence, they are energetically
easier to destabilize than oblique modes directed partially
along B.

The other region to consider is the nozzle entrance region
where plasma first impacts the magnetic field. That process
involves quasi-radial expansion of injected hot plasma (in

the direction x̂ = 6̂ × (BB) ) across the nozzle magnetic

field. The plasma’s subsequent sudden deceleration and
redirection along B necessarily creates a propellant-flow
streamline with sharp adverse curvature. The problem is first
addressed in the nozzle entrance, to identify the degree of
adverse curvature inherent in the injected edge-plasma
streamlines. After that, the RT-type instabilities occurring
further downstream are addressed.

4.1 RT-Type Instabilities at Initial Impact With
Magnetic Field

Plasma impact at approximately normal incidence to a
surrounding magnetic field has been studied experimentally,
with theoretical validation, by Ripin et al. (Ref. 17). Laser-
produced plasma was generated at an aluminum surface, and
the plasma puff then expanded across an ambient magnetic
field. Fine-scale radial protrusions of plasma were observed
at the plasma radius where deceleration of the plasma front
by the magnetic field began to occur, and they were attri-
buted to RT unstable conditions of deceleration at the
plasma-field interface. Extensions of the MHD model to
include Hall effects (Huba, Ref. 32) improved the relation of
observations to theory. Evolution of RT structures was fol-
lowed into the nonlinear regime, both experimentally and
theoretically. Finite Larmor radius (FLR) effects (Huba,
Ref. 33) were not invoked in Reference 17, possibly because
the plasma temperature was too low for them to be relevant.
Also, early experiments on theta-pinch implosions were
observed in the implosion-onset phase to contain fine-scale
radial protrusions around the circumference (McKenna,
Ref. 34), but no detailed identification was attempted.

In the magnetic nozzle, one might hope to mitigate RT
instabilities by inserting propellant at grazing incidence to
magnetic field lines, thus minimizing adverse curvature of
the edge streamlines in the injection region. This point of
view is adopted below. It will be seen, however, that the
transition from oblique incidence of flow (relative to B) over
to flow approximately along B is so sudden that the usual
MHD model is not adequate. A more detailed model is
needed to describe (and enable a more rigorous investigation
of) propellant flow in the plasma-field interface layer at
the breech region of the nozzle, which would enable RT
instabilities.

From the point of view of the single-fluid MHD model
with Te = Ti, the equation governing crossfield motion of
plasma is, in mks units,

d V
ρ + az = JyBz = −σ VxBZ 	 (203a)

dt
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This can be rewritten schematically as

2	 V 2
	d Vx 

+
VA Vx = 

th i 	
(203b)

dt D	 xn

The negative pressure gradient on the left in Equation (203a)
has reappeared on the right in Equation (203b) as a positive
term, and the negative resistive-drag term on the right has
reappeared as a positive term on the left. The quasi-radial
fluid velocity is Vx, D is resistive diffusivity, VA is Alfven
velocity in the gradient layer, and the reciprocal gradient

length is xn
− 1 = n −1 ∂ x n = δ−1 . When the inertial term,

dVx/dt, is neglected, one recovers the quasi-radial resistive
diffusion velocity that was identified near the
beginning of Section 2.0. The magnetic flux is assumed to
have no give because it has already been squeezed against
the metallic wall (coil) by the plasma, and a state of
stationary flow has already been reached. Equation (203b) is
to be interpreted in a Lagrangian sense of following a given
plasma element.

The solution of Equation (203b) is

Vx = Vx core e 
t
/
ttrans + Vx ∞ (1 − e 

t/ttrans) 	 (204)

The subscript “core” now refers to the initial value of the
crossfield velocity when the considered element of plasma
first encounters the magnetic field at the nominal plasma-
field interface. The subscript “∞” signifies the eventual
crossfield resistive-diffusion velocity attained at large times
after the inertial transient has dissipated. Vx ∞ is realistically
assumed to be very small compared with Vx core . The time
interval over which the inertial transient lasts, ttrans, is the
time during which there is appreciable crossfield velocity, in
terms of the incident velocity of the plasma element.

ttrans = 
D

V2	
(205)

A

For parameters of interest, this transient lasts only a fraction
of a nanosecond, which signifies that the macroscopic
single-fluid MHD model is intruding into the purview of
microphysical processes. This cautionary conclusion is
further verified when one considers the radius of curvature
of the trajectory of the considered edge-plasma element,
which ordinarily would provide information relevant to
growth rates of RT instabilities. Pursuant to calculating the
longitudinal radius of curvature R, the distance the consi-
dered plasma element travels along B during time ttrans is
approximately

	

_ VcoreD
	( )ztrans ≈ Vcore ttrans —	 2062

VA

valid for a shallow (i.e., grazing) angle of incidence.
Let φB V(rad) denote the incident angle between B and V

at the nominal plasma-field interface. Then, sin φB V ≈ φB V
≈ Vx core/ Vcore << 1. Simple geometrical considerations show
that the radius of curvature R of the trajectory can be
expressed approximately as

R ztrans = 
Vcore 1VA D	 (207)

φB V	 φB V VA

Equation (207) shows that R is very small for parameters of
interest in this report, although the angle φB V is
moderately small (for grazing incidence). For example,
R ~ 0.01 – 0.001 cm. This follows from typical values of the
resistive diffusivity D (~104 cm2/s), and of the Alfven veloc-

ity VA (~107 cm/s), jointly producing a very small length
D/VA . (The impacting velocity Vcore is only smaller than Vth i

by a moderate area ratio, and Vth i ~ VA upstream of the
throat. Hence, Vcore/ VA is only moderately small.) In reality,
“microscopic” lengths properly incorporated into a more
complete plasma model, such as the ion gyroradius ai or the
ion skin depth c/ωp i, both ~1 cm, would provide lower
bounds to R.

The single-fluid MHD model has proven inappropriate for
a quantitative description of the initial trajectory of an edge-
plasma fluid element at “magnetic impact,” although it is
incident at a shallow angle with magnetic flux at the inter-
face. Nevertheless, the message is clear. From a macroscopic
point of view, the plasma element’s incident trajectory onto
the external magnetic flux undergoes an instantaneous transi-
tion into motion practically along B, due to eddy current
braking from electron resistivity.

A large RT growth rate, γRT, is implied by the small
radius of curvature of the incident trajectory, at its point of
impact with magnetic field. But the importance of RT insta-
bilities in that region yet depends upon the time tcur during
which the plasma element resides in the highly localized
region of adverse curvature. The product γRTtcur determines
the number of e-folds available for the RT instability in that
region. The RT instabilities in the plasma-field impact region
therefore should be examined with the use of appropriately
detailed plasma models beyond the ordinary MHD fluid-
based model (see, for example, Ref. 35). The incident inter-
nal streamlines that impact the external magnetic flux at the
plasma-field interface in the injection region (breech)
unavoidably acquire a segment of severe adverse curvature
not treatable under ordinary MHD.
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4.2 RT-Type Instabilities Downstream From
Injection Region

We turn now to the topic of RT instabilities downstream
from the injection region but upstream of the throat, where
the cross section of the plasma shrinks to form the throat.
There, the transition to field-aligned flow has already been
made, and the plasma propellant streamlines near the
plasma-field interface closely adhere to the magnetic-field
line shape because of the high electrical conductivity of the
plasma. Section 3.0 addressed gradient-driven microinsta-
bilities localized within the plasma-field interface, which
cause broadening of the interface layer by resistive diffusion.
Here, Section 4.0 addresses macroscopic instabilities that
cause the interface to deform (to wrinkle) as an entity. This
process of macroscopic interface deformation is a conse-
quence of instability wavelengths that are large compared
with the width of the interface layer. The practical conse-
quence is a loss of nozzle-based control of the flow of
propellant.

The usual fluid-based MHD model can be applied to
describe RT flute instabilities, provided thermal excursions
of individual particles are short compared to characteristic
macroscopic lengths in the nozzle. Examples of such
macroscopic lengths are the plasma radius r, the radius of
curvature of field lines and/or streamlines R, and long flute-
mode wavelengths in the azimuthal direction 2 7C/k, with k as
the azimuthal wave number. It is similarly required that
times for those thermal excursions be short compared to
macroscopic times such as longitudinal transit times and
instability growth times (e.g., see Ref. 9).

An example of a thermal excursion length across the
magnetic field is the nominally small ion gyroradius, which
takes place during a nominally short ion gyroperiod. An
example along the field is the mean free path for ion-ion
coulomb collisions, which transpires during a mean free time
between ion-ion collisions. The electron mean free path is
about the same as the ion mean free path. For cases of inter-
est here, mean free paths X along B are several centimeters
(for n – 10 15 cm−3 and T – 50 to 100 eV) and are generally
much smaller than meters.

Within the core plasma, from which the nozzle magnetic
field has been excluded by the azimuthal current layer, the
thermal excursions are governed by just the mean free paths
and mean free times for coulomb collisions of charged par-
ticles. Thermal excursions in the core plasma are unrestricted
by the magnetic field, and so they take place in all directions.
If X is several centimeters, then not only the characteristic
axial dimension should be at least tens of centimeters, but
the radial dimension should be as well.

These restrictions on thermal excursions of individual par-
ticles are meant to ensure that any given fluid element retains
its identity (undergoes very little random thermal dispersal)
over the relevant macroscopic lengths and times of interest
in the device. Then the use of a fluid model makes sense.

Sometimes, though, fluid-MHD simulations are applied to
hot plasma configurations without raising cautions that the
above restrictions on thermal excursions may not always be
well satisfied. At lower densities and higher temperatures
relative to the nominal working values of interest for this
report, a kinetic multispecies model may have to supplant the
basic single-fluid model of MHD. Such models have been
developed in the magnetic confinement fusion (MCF) com-
munity, but for different purposes; nevertheless there is some
expertise in the MCF community in global-kinetic modeling.

In the discussion here of RT instabilities downstream
from the injection region, we shall assume that the condi-
tions for a single-fluid model are fulfilled. An exception is
made in Section 4.4, “Short-Wavelength Gravity-Driven
Instabilities,” where short-wavelength instabilities that are
related to RT physics are discussed.

The present subsection first derives in a heuristic manner
the RT-type instabilities in a static field-free plasma (without
flow), confined by pressure equilibrium with the external
magnetic field and situated within a region of adverse mag-
netic curvature. The derivation is carried out by considering
the forces acting on a plasma element under the region of
adverse curvature. Then the modification of the derivation to
incorporate the longitudinal flow of propellant is presented.
The instantaneous RT growth rate is derived at any point of
adverse curvature along the flow, due to the combined
effects of plasma pressure and propellant flow. Then it is
converted to a practical expression in terms of specific
impulse. In the course of the derivation, it will become evi-
dent that the growth rates from the two effects acting sepa-
rately actually represent two distinct instabilities.

Finally, finite gyroradius stabilization due to collisionless
ion gyroviscosity is used to estimate the shortest azimuthal
wavelengths that are RT unstable. Their growth rates are
compared with axial transit times through hypothetical
regions of adverse curvature. On the basis of these calcula-
tions, it is recommended that the magnetic nozzle be (self-
consistently) shaped so as to have no regions of adverse
magnetic curvature, to the extent possible.

In the following presentation, we do not attempt to con-
sider longitudinal global effects on the structure and growth
rates of flute instabilities, which would be induced by finite-
length regions of adverse curvature. The treatment of such
effects actually constitutes the subject of ballooning modes,
which is sufficiently complicated as to deserve its own spe-
cial presentation. The subject of ballooning modes in longi-
tudinally flowing plasma therefore is beyond the purview of
the present report. However, such work was carried out
within the quest for magnetic fusion energy by Nagornyj,
Ryutov, and Stupakov (Ref. 36) for plasmas confined longi-
tudinally by magnetic mirrors. That configuration is closely
related to the magnetic nozzle concept. They found that
ballooning instabilities originating in regions of adverse
curvature could be stabilized by the presence of nearby
regions of strong good curvature, if such regions were suffi-
ciently loaded with plasma. (The nozzle throat and the mirror
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throat are regions of good curvature.) Even so, they found
that there remained residual instabilities. The results of
Nagornyj, Ryutov, and Stupakov are not easily utilized in a
practical manner for the problem of plasma flow in magnetic
nozzles. That work ought to be revisited within the present
context. Of course the entire problem could be avoided by
eliminating regions of adverse curvature. Due to the self-
consistent modification of the vacuum magnetic nozzle field
by the injection of hot plasma, this approach seems to imply
that the nozzle be rather long and gradual.

4.2.1 Surface Instability of Static Plasma in Region of
Adverse Curvature

We consider a static field-free plasma configuration of uni-
form pressure Ptot and mass density ρ, confined by the pres-

sure of external magnetic field B, B 2 /2µ0 , in a region of

equilibrium adverse curvature of radius Req (the center of
curvature lies within the plasma). This is illustrated in
Figure 5. The plasma pressure and magnetic pressure is
acting on the rim element of width dr (<<Req), subtending a
very small meridian angle dφ. Those radial forces must sum
to zero in equilibrium. The propellant velocity flow vector is
V. Centrifugal force density (not shown) is outward, with
magnitude ρV2/R , and R ≈ Req. Outward radial displacement
ξ of the rim element as a whole (with dR and dφ held fixed)
is monitored for instability growth rate.

The forces are the pressures multiplied by their respective
surface areas. In calculating the various surface areas of the
rim element, the element is assumed to extend an azimuthal
distance dy perpendicular to the plane of Figure 5. For brevity,
dy will be suppressed in the equations. For example, the
surface area associated with the outer arc of the rim element
in equilibrium is just written as Req dφ, instead of Req dφdy .
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The elongated flute mode analyzed here is energetically
favorable because, unlike oblique modes, it does not bend
field lines. Also, it is basically a surface perturbation, which
has only a limited influence beneath the surface. The width
of the rim element in Figure 5, d R , is chosen to encompass
the range of influence under the surface. Farther below the
surface than dR , the fluid remains practically undisturbed by
the presence of the surface perturbation. The specific inter-
pretation of dR will be made clear below.

In terms of Figure 5, radial forces are also vertical forces,
to lowest order in small do. Therefore, in equilibrium, the
total radial force dFR acting vertically on the element as a
whole (see Fig. 5), to lowest order in d o, then reads

2

dFR = Ptot (Req – dR )dO + Ptot dRdO – Beq Req dO (208)2go

=0

in mks units. The first term in Equation (208) is the outward
radial (vertical) force acting on the inner arc (i.e., inner
surface) of the rim element. The second is the radial (ver-
tical) force due to lateral pressure acting on the canted end
surfaces of the element. The effective radial component, or
vertical component, of lateral pressure acting on each end of
the rim element, which is experienced by the rim element as

a whole, is just	 ; the surface area of each end

is dR (see Fig. 5). The third term in Equation (208) is the
inward radial (vertical) force due to external magnetic pres-
sure on the outer arc (outer surface) of the rim element. The
notation used is that B at radius R = Req is denoted as Beq.

After canceling some terms in Equation (208), the equili-
brium condition reduces to

B2
Ptot = 2µo	 (209)

This condition will be utilized in the following discussion of
the dynamical behavior of the rim element as it undergoes a
slight displacement.

Now consider the rim element as being displaced outward
radially by a small distance ^ (see Fig. 5). Both the inner and
outer arcs are displaced outward by distance ^, while keep-
ing a fixed separation dR and holding fixed the angle do . The
plasma fluid both upstream and downstream of the consi-
dered rim element is likewise displaced in the meridional
plane, in the elongated flute mode being discussed. In this
connection, it is important to note that the external magnetic
field in the vacuum region, into which the displaced plasma
will protrude, is completely determined in the local neigh-
borhood. In particular, its R-dependence is determined.

The local dependence of external B on R can be demon-
strated with the aid of a stream function T, with B = V x ( T)

= x V , and V2 = 0 from V x B = 0 in vacuum. Here, the

symbol 
V2 

represents the two-dimensional Laplacian opera-
tor in the plane of Figure 5, and 	 is a locally constant unit

azimuthal vector out of that plane. The Laplacian operator is
expressed in local cylindrical coordinates based upon the
local radius of curvature, and the boundary condition on B is
applied at the equilibrium plasma surface. The salient feature
of the vacuum magnetic field just above the plasma surface
is that it depends locally on the radius (for small ^) as 1/R ,
with R = Req + ^. It is important to note that the linearly
small amplitude ^ is much smaller than the flute mode’s
azimuthal wavelength out of the plane of Figure 5.

Concomitantly, the external magnetic flux is not con-
strained to accumulate over the plasma’s outward-moving
conducting protrusion, because the protrusion actually is of
limited extent in azimuth (perpendicular to the plane of
Fig. 5). The external longitudinal magnetic field lines are
shunted azimuthally to either side of the vertically extended
conducting surface instead of piling up on top of it, thereby
maintaining a state of lower magnetic energy. That is why
the external magnetic field magnitude B, just above the crest
of the protrusion, can be taken as being undistorted by the
presence of the flute mode.

Consequently, the field magnitude B just above the crest
of the protrusion is related to the field Beq at the equilibrium
surface by

B = Req
	 (210)

Beq Req +

The local spatial behavior of the longitudinal magnetic
field just outside of the plasma constitutes the principal
reason for the adverse curvature instability. As displayed in
Equation (210), the field strength becomes locally weaker
going away from the plasma, in the region of adverse curva-
ture. Consequently, a plasma element that is displaced out-
wards is subjected to a smaller magnetic backpressure. Thus,
the plasma displacement continues to grow outwards.

This critical behavior of the spatial variation of the longi-
tudinal magnetic nozzle field can be directly exhibited by
utilizing Ampere's law, which is 	 in mks units.

By means of Stokes's theorem, Ampere's law can be con-
verted to an integral representation, which reads

. Here, the indicated loop integral is taken

around a closed contour, with I being the net current through
the contour. In the case being considered, the contour is
around a wedge-shaped rectangle similar to that shown in
Figure 5. In the present situation, however, the inner leg of
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the rectangle lies just below the perfectly conducting sharp
boundary, where B = 0. The outer leg of the rectangle lies a
displacement distance ^ above the boundary, say at R = Req
+ ^, in the notation of Figure 5. Then the integral form of
Ampere's law reduces exactly to BRdo = µ0KReqdo, where K
is the azimuthal surface current density on the boundary.
Thus, the field strength just beyond the boundary is B =
µ0KReq/R , which is exactly equivalent to Equation (210).

Although an equilibrium boundary was assumed in deriv-
ing Equation (210), the identical result for B(R) is also
obtained when taking into account the presence of flute
deformations of the boundary. This result will be shown
explicitly in Appendix K.

Our simplified physical derivation of the RT type of
instability adapts the viewpoint of a plasma element defined
in the meridional r,Z-plane. The forces operating on the
plasma element are identified and summed within this plane.
This approach highlights the role of adverse longitudinal
curvature, which clearly must influence a mode that is
extended along the magnetic field (flute mode).

On the other hand, we suppress physical effects from
cylindrical geometry associated with curvature the short way
around. This approximate treatment is valid for small azimu-
thal wavelengths. By looking downstream at the r,9-plane,
one sees that a very localized (in azimuth) flute-mode crest
can scarcely be “aware” of the cylindrical curvature. The
only reminder of cylindrical geometry is that there be an
integer number of wavelengths around the circumference, to
avoid discontinuous behavior. This integer is the so-called
azimuthal mode number M 9, and the associated azimuthal
wave number is then

k = M 9/r 	(211)

where r is the cylindrical radius.
Knowing the radial dependence of the external magnetic

field allows us to write the equation of motion of the rim
element in terms of its displacement ^. The equation of
motion reads


(pReq dRdo )  d2 = dFR 	(212)

dt2

Here, pReq dRdo is the mass of the rim element (suppressing
d9), to zero order in ^. Higher order corrections in ^ to this
mass element are not relevant in a linear theory for small ^

because the acceleration in Equation (212), d 2^dt2 , is

already first order in ^. Similarly, on the right side of Equa-
tion (212), the total radial (vertical) force on the displaced
rim element, dFR(^), needs to be computed only to first order
in ^. That force is

dFR W = Ptot (Req + ^ — dR ) do + Ptot dR do

— 
B

e4	
R

eq 2 (Req +^) do 
(213)

2µ0
 (Req +^)

The first term in Equation (213) is the outward force on the
displaced inner arc (surface) of the rim element. The second
term is the outward force on the rim element as a whole due
to the lateral pressure at its canted ends (still of radial width
dR and subtending angle do). The last term is the inward
magnetic force on the displaced outer arc. Equation (210)
has been used.

Actually, the effective lateral pressure (averaged over d R)
is smaller than indicated in Equation (213), second term.
Continuity of pressure at the displaced outer surface (to
avoid unphysically large acceleration of the outer surface)
requires that the internal plasma pressure should spatially
decrease so as to approach the reduced external magnetic
pressure there. Taking this feature into account, however,
only proves to introduce a small correction of order d R/Req .
This remark will be quantified below.

After some cancellations in Equation (213), and expand-
ing to first order in ^ and invoking the equilibrium condition,
Equation (209), the force in Equation (213) becomes simply

dFR (^) = 2Ptot ^ do	 (214)

We substitute the first-order force equation, Equation (214),
into the equation of motion, Equation (212) and look for a
temporally growing displacement d^/dt = yRT^ having RT
growth rate yRT. After further cancellations, the equation of
motion reduces to an expression for yRT:

2yRT = 
R

egt

dR
	 (215)

At this point, it is important to recognize that the most
energetically favorable motions of plasma in producing the
flute instability are those that do no compressive work; that
is, the internal fluid motions in the plane perpendicular to B
are incompressible. For such incompressible motions, a flute
mode at the plasma surface with the azimuthal dependence
e` ky has only a limited influence beneath the surface, with

the radial dependence e 
kx

,
 where x (>0) is the distance

beneath the surface (e.g., Ref. 37). To derive this feature,
write the fluid momentum equation for small perturbations
in the plane perpendicular to B as pyRT { SV} + V {SPtot} = 0.
Then the condition of incompressibility V • {SV} = 0 implies
that V2 {SPtot} = 0. Inserting the azimuthal mode dependence

e` ky into Laplace’s equation for the pressure perturbation
SPtot confirms the stated result.
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Therefore, the effective depth of the rim element influ-
enced by the surface mode is dR = 1/k, with k being the
azimuthal wave number. Plasma fluid at lower depths is
practically undisturbed by flute-mode perturbations at the
plasma surface. Thus, we interpret d R as 1/k in Equa-
tion (215). The RT-type growth rate then becomes

of curvature of the magnetic nozzle field. Consequently, in
this limit, the error in continuity of pressure at the displaced
interface is negligible.

4.2.2 Surface Instability of Flowing Propellant in Region
of Adverse Curvature

TRT = 
2Ptotg p 

k
	

(216)

Note that 2Ptot/p = S2
, where S is the speed of sound in the

plasma. Equation (216) thereby has the form of a gravita-

tional instability of the RT type; namely TRT = gk , in

which g = S2/Req. The effective gravitational acceleration g
might therefore be interpreted as the centrifugal force of
charged particles (of small gyroradius) that move approx-
imately with thermal velocity in either direction along the
curved magnetic field at the plasma surface. Nevertheless,
this flute mode is not a true gravitational instability because
no effective gravitational field permeates the plasma.

To check the assumption of incompressible motion, note
that the plasma’s velocity d^dt = TRT ^ , as well as the

effective wave velocity TRT k , should both be small com-

pared to the speed of sound S. The first condition is satisfied
because ^ is arbitrarily small. The second condition reduces
to kReq >> 1. The azimuthal wave number is k = Me/r

(Eq. (211)), where r (distinct from Req) is the cylindrical

radius of the propellant, and Me is the azimuthal mode num-

ber (i.e., e` ky = e`Me e ). Therefore, the second condition for
incompressible motion is satisfied whenever the radius of
curvature Req is large compared with r, the propellant’s

radius, or when Me >> 1.
Finally, we return to the requirement of continuity of

pressure at the outer displaced surface of the rim element.
The above model, taken literally, yields the following
expression for the fractional discontinuity of pressure there
(we omit the details):


Pot _ (B

2/
2µ'

0 )

	 dR

IR_ J	
« 1 (217)

Ptot

	

	 ) Req
JR=Req +^

expanded to first order in ^ and using the equilibrium rela-
tion, Equation (209). Since dR is comparable to an azimuthal
wavelength, linear theory for small amplitude motions
requires that ^ << dR. Hence, the first factor on the right has
to be small in the linearized dynamical model. The second
factor is also small, assuming that azimuthal wavelengths of
the considered flute modes are small compared to the radius

The previous example serves to illustrate the methods to
be applied to flowing propellant in the magnetic nozzle. It
will be assumed in this section that the external magnetic
field diffuses only a small distance into the plasma compared
with the thickness of the rim element. The previously
derived pressure-driven contribution to the growth rate
persists, but proves to be augmented by the centrifugal force
effect of the curved flow. The practical expression for the
growth rate, derived below, would be useful offline, in post-
processing of axially symmetric resistive MHD simulations
of magnetic nozzle flow. In this manner one could follow the
flow and the self-consistent nozzle geometry and thereby
estimate the extent of e-folding of flute instabilities within
regions of adverse curvature, without the necessity of run-
ning three-dimensional simulations.

The centrifugal force density due to propellant flow with
velocity V// is here denoted by Fg and is locally defined as

2

Fg = pR̂ / 	 (218)

where p is propellant mass density, and radius R (= Req) lies
within the rim element depicted in Figure 5. This is equiva-

lent to gravitational force density pg with g = V// IR .

In this case, there are two relevant equilibrium conditions:
a local one and a global one. Local internal equilibrium
becomes nonuniform, due to the effective gravitational field
that now permeates the plasma. The condition of internal
equilibrium is

D RPtot = Fg	 (219)

Here, as usual, Ptot is the local, total plasma pressure due
to both electrons and ions.

The condition Equation (219) holds not only for the equi-
librium configuration, but also for the time-dependent per-
turbed state with growing displacement ^. As long as the
radial transit time for sound propagation through depth d R is
short compared to the growth time of the mode, Equation
(219) holds. The latter condition ultimately can be expressed
as TRT/k << S, which is the same as the condition for incom-
pressible motion mentioned in the previous example.

We turn now to the condition of global equilibrium, which
applies to the rim element as a whole. The notation P0 refers
to plasma pressure at the inner arc of the element, and
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P1 ≈ P0 + Y dR ∂R Ptot represents pressure halfway up on
2

the width dR and is representative of the average lateral
pressure on dR. The centrifugal force density Fg will be
regarded as an average value within the volume of the rim
element. Then, equilibrium force balance on the rim element
of Figure 5, radially (or vertically), reads

P0 (Req − dR) dφ+ P
Y2 

dR dφ

 	  


	

1
2 	(220)

+Fg  Req −
2 

dR 1dR dφ -!-q-2µo Reqdφ
 	  	

 R=Req

The first term in Equation (220) is the outward force acting
on the lower surface of the rim element, and the second term
is the outward force on the element due to lateral pressure
acting on its canted ends. The third term, analogous to the
effect of gravity on the element, is the outward force due to
the centrifugal force density Fg multiplied by the volume of

the element (Req − /2 
dR) dR dφ . An average (midvalue) has

been used for the arc-length in the volume element. The right
side of Equation (220) constitutes the inward force acting on
the element due to the external magnetic pressure acting on
its outer surface. Dividing through by Req dφ using

Py = P0 + /2 
dR ∂RPtot and using Equation (219), Equa-

l

tion (220) then can be written exactly as

	

 	 B2
P0 + Fg dR =  eq  (221)

2 μ 0

Equation (221) is the consequence of global equilibrium of
the rim element in Figure 5. It is as if (Fg dR) = ∂R Ptot dR is

the pressure increment to be added to the inner pressure P0

to ensure pressure continuity across the outer surface of the
rim element.

The linear extrapolation of pressure within dR,

PY
= P0 + ^ dR ∂R Ptot, assumes that the first two terms in

2

the Taylor series for the pressure profile are sufficient; that
is, the pressure gradient term is assumed to constitute a small
correction. This formula, used to obtain Equation (221),
proves to require the strong inequality (dR/Req) V

2
 << S2

(refer to Eq. (219)). Because a large radius of curvature is
assumed in the sense dR << Req, it follows that the equili-
brium model allows transonic and supersonic flows within d R.

Let us define dR = 1/k for the flute-mode wave number.
Since k = Mθ/r (Eq. (211)), the above inequality then can be

put in the form ( V
2/S2

) << MθReq/r. In this form, transonic
and supersonic flows can be handled within the dynamical
model. The required geometric conditions are that the radius

of curvature Req be large compared with the cylindrical

radius r or that the azimuthal mode number Mθ is large
compared to 1. The same linear extrapolation of the pressure
profile (with its same consequence) is relevant to the next
problem.

We turn now to the dynamical problem, which is to calcu-
late the net force on the plasma element as it is displaced
outwards by the amount ξ, as in the previous example. As
before, that force will be inserted into the equation of motion
(Eq. (212)) of the element, so as to obtain the growth rate of
the instability. Superscript ξ will refer to the state of the
superscripted quantity as it exists in the displaced element;

for example, Pξ refers to the pressure on the displaced inner

surface of the rim element, and P4 refers to the pressure
Y2

halfway up on dr in the displaced element.
The force on the rim element is written as

dFR = P0  (Req − dR + ξ) dφ + P4 dR dφ
2

+Fg (Req − 12 dR + ξ) dR dφ	 (222)

 	 
−_

Be
2 q
	 q 2 

(Req + ξ) dφ
2 μ 0  (Req + ξ)

Here, the first term is the outward pressure-force on the
displaced lower surface, and the second term is the outward
force on the element from lateral pressures at the canted ends
(still of width dR and subtending angle dφ). The third term is
the outward gravitational force density multiplied by the
displaced volume using its average arc length. Finally, the
last term is the inward magnetic-pressure force on the dis-
placed outer surface of the element. The 1/R dependence of
the external magnetic field, with R = Req + ξ, has been
invoked.

The above-mentioned linear extrapolation within d R for

P4 , and the local equilibrium relation Equation (219) are

used, as well as the global equilibrium Equation (221) as it

regards B q . Expanding expressions to first order in ξ,

Equation (222) then becomes

 (PO − P0 )+ (Fξ
g − Fg )dR

	

 	 
(	d FR = Req dφ 	

(ξ
	 ξ 	 223)

+ Req P0 + Fg dR + P0 + Fg dR)



To first order in ξ, the final square bracket in Equation (223)
may as well be written 2(P0 + Fg dR).

The first term on the right in Equation (223) can be writ-
ten as ξ∂RPtot (= ξFg). The physical reason for being able to
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γ2 
T = 

Fg + 2Ptot / Req = 
(V/? / Req) + (2Ptot / ρReq )

ρ dR 	dR
(225)

write it this way is that the displaced fluid element climbs up
the preexisting equilibrium pressure profile, because rising
fluid at the displaced lower surface of the element is replaced
at that level by azimuthal inflow of fluid from either side.
The replacement fluid brings with it the original equilibrium
pressure-profile at that level. (Note that the fluid below dR
remains practically undisturbed.)

The second term on the right of Equation (223), due to the
rising fluid, involves spatial variation of density ρ and posi-
tion R (supposing zero-order flow velocity V// is constant). It

can be written as ξ∂RFg dR (= Vg dR(LP
1 − R−1 )) . Here,

LP 1 = ρ− 1
 ∂R ρ is the inverse scale length for radial variation

of propellant density in the core plasma (not in the edge
layer). The core plasma is assumed to be fairly uniform, with
L ρ ~ R >> dR. Then the entire second term, on the order of
ξFg dRR , can be neglected compared with the first term, ξFg.

The third term is 2 (P0 + Fg dR ) (ξ Req ) . The gravitational

contribution (from Fg) is again small compared with the first
term in Equation (223) because dR << Req.

Therefore, neglecting terms on the order of d R/Req in
Equation (223) compared to the first term, Equation (223)
can be written simply as

  	 ξ
dFR = Req dφ F g + 2P0	 ^	 (224)

 	 q 

Using this force in the equation of motion (Eq. (212)) of the
rim element together with the temporally growing represen-
tation dξ/dt = γRTξ yields the following result for γRT:

Here, V// refers to the velocity of propellant flow parallel to
the magnetic field B. It does not really matter in Equa-
tion (225) whether P0 or Ptot is used anywhere in dR, since the
difference is small, on the order of d R/R compared with Fg.

The previous discussion about incompressible perturba-
tion flow in flute-mode dynamics (in the plane perpendicular
to B as before) provided that the plasma properties ( ρ, Ptot,

and V//) vary only weakly within dR. Then, the periodic

azimuthal mode structure ei ky again implies that the radial

mode structure e
−kx 

decreases exponentially beneath the

surface. Thus, we again have the relation d R = k− 
1 in terms

of the azimuthal wave number k. The growth rate, which

now includes the effects of both flow and pressure in the
adverse-curvature region, finally can be written as follows:

 V/? + 2Ptot / ργRT = 	 k 	 (226)
 	 Req

The effective gravitational accelerations in regions of
adverse curvature, which arise both from thermal motions of
particles and from propellant flow, just appear in an additive
manner within the growth rate. This is what would be
expected intuitively. Bidirectional diffusion of plasma and
magnetic field across the fluted surface will then create a
plasma-field mixing layer.

As before in the pressure-driven case, the model used to
derive this growth rate suffers from a pressure discontinuity
at the outer displaced surface of the plasma. Nevertheless, it
can again be demonstrated that the fractional pressure dis-
continuity reduces to (ξ/dR)(dR/Req), which is very small for
the two conditions: linearly small amplitudes ξ << dr, and
dr << Req . We shall omit the details of the demonstration.

The purpose of this section is to provide rough guidance
as to whether the idealized RT instability has a chance to
grow. Larc is the complete length of arc in the adverse curva-
ture region at the plasma edge (convex outwards), and is not
necessarily small. Concomitantly the subtended longitudinal
angle in radians is δφ = Larc Req . This finite longitudinal

angle is to be distinguished from the “small” longitudinal
angle used in the simplified model, dφ. Nevertheless, as a
simplification, we shall assume that the growth rate, Equa-
tion (226), is still valid. Part of this growth rate contains the
expression 2P ρ , but the speed of sound is S2 = ƔP / ρ, and

we shall take Y = 5/3. Then, 2P / p= 5 S2  . The condition for

growth is yRT tc
2
ur. > 1 , with tcur denoting the time the edge

plasma spends in the adverse curvature region. This time is
tcur = Larc / V// . We use Equation (226) in the growth condi-

tion yRT tc
2
ur. > 1, but with the azimuthal wave number k

replaced by Mθ/r, where Mθ is the number of azimuthal wave-
lengths that fit into the circumference, 2 πr, the short way
around. Then, the condition for growth can be expressed as

(δφ) 
Mθ Larc > [1 + 

s 
S2 22

] −
 
1 	 (227)

V//

The quantities S 2 and 2

V// 
should be taken as average val-

ues along Larc, which can be determined from axi-symmetric
ideal MHD simulations. Ion magneto-viscosity sets an upper
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limit to Me (see Eq. (234)). Except for a complete treat-

ment, the Hall effect (which is destabilizing) should also be
included. This is examined in Section 4.3, “Finite Larmor
Radius (FLR) Stabilization of RT-Type Flute Modes,” and in
Section 4.3.1, “Example: Estimate of Hall Term in Coaxial
MHD Thruster.”

Equation (226) can be converted to a practical formula for
the growth rate that is characterized by Vex, the velocity of
propellant at the nozzle’s exit plane (the specific impulse is
given by Vex m/s _ 9.8 m/s 

2
). The practical formula could be

utilized as a postprocessing tool with axially symmetric
MHD simulations of propellant flow in magnetic nozzles.

To derive the practical formula, note that the local speed

of sound, squared, is given by S2 = ƔPtot/P. Then, by means
of the Bernoulli equation with the choking condition at the
throat, using the adiabatic relations along the longitudinal
flow, and using Equation (211), Equation (226) can be
written as

 2/3 
YRT = Vex 1— — 

3 P	 Me  (228)
5  Pb  Reqr

The adiabatic index (ratio of specific heats) is taken to be

Y = 5/3 (i.e., there are occasional collisions), and relations
based upon infinite contraction and expansion ratios in the
nozzle geometry are utilized. However, the Bernoulli flow
solutions are such that the results are hardly changed by
using realistic values such as 2 for radius contraction and 3
for radius expansion.

Mass density P varies along the flow, starting with its
breech value Pb and finally vanishing at the exit plane. After
taking the square root in Equation (228), the numerical factor
due to this density variation ranges from 0.63 in the breech
to 1.0 at the exit. Therefore, the density expression can be
omitted by instead inserting an average numerical factor of
0.8, which is within -30 percent of the exact numerical value
at any point along the flow. Then Equation (228) reads

YRT - 0.8Vex  Req
	(229)
Y

The radius of curvature Req and the cylindrical radius of
propellant r also vary along the flow, as could be monitored
in MHD simulations. The Req is interpreted as positive in
regions of adverse curvature and negative in regions of good
curvature. In the latter case, the RT-type flute mode is a
gravity wave that just oscillates without growing. The azimuthal
mode number Me remains to be discussed.

The final issue of interest here, for macroscopic RT-type
instabilities, involves the maximum azimuthal mode number

Me to be used in the expression for the growth rate in Equa-
tions (228) or (229). Arbitrarily large mode numbers would
produce arbitrarily large growth rates, within the context of
the present sharp-boundary model of the propellant. The
question as to the maximum effective mode number can be
answered in terms of FLR stabilization of the RT-type flute
modes. For the hot plasmas (~100 eV) contemplated for
magnetic nozzle applications in space vehicle propulsion,
FLR stabilization can be a noticeable effect.

4.3 Finite Larmor Radius (FLR) Stabilization of
RT-Type Flute Modes

In the preceding section, we explored plasma particle tra-
jectories at their initial impact with the confining magnetic
field. The concern was brought up that their sharp adverse
longitudinal curvatures could potentially be a source of
instabilities in the injection region. In the following sections,
on the other hand, we shall look at adverse longitudinal
curvature instabilities further downstream, wherein a steady
flow along the confining magnetic field has already been
established at the plasma boundary.

In the plane perpendicular to magnetic field B, it is well
known from plasma transport theory that ions within the
plasma-field mixing layer would possess a collisionless
gyroviscosity when the plasma is of sufficiently high tem-
perature that ion collisions are infrequent (see Refs. 9 and 32).
Even though there is no collisional dissipation as is usually
connected to viscosity, the ion gyroviscosity can exert a
stabilizing influence on RT flute instabilities by modifying
the dynamical processes that have enabled the modes to
grow. Moreover, the flute-mode amplitude is largest at the
plasma-field interface with the magnetic field, decaying
exponentially into the plasma. Therefore, the gyroviscosity is
effective just where the mode amplitude is the largest.

Viscous diffusivity for ion gyroviscosity can be
represented approximately as (Ref. 9)

Dvis i = aiVth i 	 (230)

where ai is the thermal ion gyroradius. This expression is

analogous to the ordinary kinematic viscosity, ki Vth i,

wherein ki is the mean free path for ion-ion coulomb colli-
sions. Kinematic viscosity is the viscosity coefficient divided
by nmi. A numerical coefficient of order 1 in Equation (230)
proves to be almost irrelevant since it only enters the final
expression for the growth rate as raised to the one-third power.

In Equation (230) ai = Vth i Ȧ c i , the ion thermal velocity

is Vth i = 2Tmi , and coci = gBmi is the ion gyrofre-

quency within the plasma-field interface (using mks units,
with T in joules). The gyroviscosity obviously vanishes for
very small ai, which is associated with very large magnetic
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fields. It is important to realize that the flute perturbation
possesses an inverse time scale associated with this gyrodif-
fusivity, which is k

2
Dvis i, where k = Mθ I r is the azimuthal

wave number. In the case of ordinary diffusivity, k2Dvis i

would signify a dissipative decay rate of a macroscopic
dynamical mode, due to ion-ion collisions.

For mode numbers sufficiently large that the gyrodiffusive
inverse-time becomes comparable to the RT growth rate,
those modes would be influenced by FLR stabilization.

k2Dvis i ≈ γRT	 (231)

The azimuthal mode number corresponding to the condition
in Equation (231) will be calculated and regarded as approx-
imating the maximum mode number for viable growth of
RT-type flute instabilities associated with adverse curvature
of magnetic field lines.

For Te = Ti = T, and Y = 5/3, the square of the speed
of sound in the breech can be expressed as

Sb = γ Pb / ρb = 5 3 Vbth i . The propellant’s exit velocity can

then be written

Vex = 3 Sb = 5 Vb  th i	 (232)

Although this relation strictly is for infinite contraction and
expansion, it also is a good approximation for realistic
converging-diverging nozzle shapes. Use of Equation (232)
in Equation (228) for γRT allows the solution to Equa-
tion (231) for the upper azimuthal mode number with the
following result:

(Lb

132 3 ^

Mθ ≈ 5Y 	
a2 	

1 − 5 
(_ρ _ 	

(233)
(Req i)	 

b


Since this expression is nondimensional, any consistent set
of units can now be used.

Increasing the radius of adverse curvature Req decreases
the driving force for the flute instability and hence decreases
the upper mode number that can go unstable in the presence
of ion gyroviscosity. Increasing the ion gyroradius ai also
enhances the spatial phase mixing of the mode, spoiling the
growth dynamics, which likewise acts to decrease the upper
mode number that can go unstable.

A lower bound for this upper limit on mode number is
obtained by raising the temperature T up to its breech value
in Equation (233) and by raising the mass density ρ up to its
breech value. These approximations actually are fairly harm-
less between breech and throat because T at the throat only
drops to three-fourths of its breech value, and ρ at the throat
only drops to about two-thirds of its breech value. Then
Equation (233) becomes approximately

Mθ ≈ 1.5 ( 
r	

(234)

1Reqa i

Equation (234) may also be written in terms of the azimuthal
wave number k = Mθ r as

1

 	  3

ka i ≈ 1.5 R' 	 (235)
Req 

For parameters of interest here, relevant examples are
ai ≈ 1 cm and Req ≈ 30 cm, in which case kai ≈ 0.5. In other
words, in ordinary MHD kai << 1, but in gyroviscous MHD
FLR stabilization sets in about when kai is on the order of 1.

Returning to Equation (234), the gyroradius within the

plasma-field mixing layer is expressed as a i2 = 12
βc2 ω2pi .

Here, β is the local ratio of total plasma pressure of electrons
and ions to magnetic pressure at a representative position
within the plasma-field interface, and ωp i is the ion plasma
frequency at that representative position within the interface.
Then setting the average density in the interface to half the
density in the core plasma and reverting to the ion plasma
frequency expressed in terms of the core density, Equa-
tion (234) becomes

 	 
Mș
	 1.5  r 	

1^ 	 (236)

 β/3 	( 2/ p
i)

J/3

I
Req c ω

Since the value of β is not precisely known, but is near 1
within the interface and appears only to the one-third power,
the prefactor in this expression is ignored.

For hydrogen ion number density 10 15 cm−3 , c/ωp i = 1 cm.
Examples of other relevant parameters are r = 15 cm and Req

= 30 cm. From Equation (236) one sees that Mθ ≈ 5 is about
the upper limit of flute-mode azimuthal numbers that can
be unstable, with respect to avoiding FLR stabilization.

In any event, the RT growth rate only depends on Mθ .

Moreover, to the extent that the prefactor in Equation (236)
can be ignored, the upper limit on flute-mode number is
independent of temperature, depending just on local plasma
number density in the core, local cylindrical radius of plasma,
and local radius of curvature at the plasma-field interface.

From Equation (229) with Vex = 2 · 107
 cm/s (specific impulse

is 20 000 s), the growth rate for Mθ = 5: γRT ≈ 1.6 · 106 s
−1 .

For example, suppose that the longitudinal extent of the
region of adverse curvature is only 10 cm, and V// ≈ 107 cm/s
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within the nozzle. Then the transit time through that adverse-

curvature region would be about 10-6 s. From the product of
growth rate and transit time, we then infer that there would
occur only one or two e-foldings of the most unstable
RT mode. In this particular example, the RT flute instability
therefore appears to be harmless.

An expression for the growth rate of the most-unstable
mode, as determined by the presence of ion gyroviscosity,
can be obtained without the above-mentioned approxima-
tions (i.e., replacing density and temperature by their breech
values). The resulting expression is valid anywhere along the
nozzle. The procedure employed is that the maximum k or
Me allowed by ion gyroviscosity according to Equa-
tion (231) is used in the RT growth rate, Equation (228). As
before, the ion gyroradius at a representative point within the
plasma-field interface is expressed in terms of the ion inertia

length of the neighboring core plasma, by ai _ 0(c2l .P i ) .

Here, 0 ( 1) is the local total 0 at a representative point
within the plasma-field mixing layer, but .p i is the ion
plasma frequency evaluated within the core plasma. The
average ion number density within the interface has been set
to half the core density.

Taking the maximum wave number k from Equation (231)
into the growth rate Equation (228) and using the explicit
expression for the ion plasma frequency, one then finds that
the growth rate of the most unstable mode, as limited by ion
gyroviscosity, can be written as follows:


 	 Vexex

RT
 	 

2
R

eg (
c / .pi)b

3

	


	 (237)
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Subscript “b” refers to the value of the quantity in the
breech or beginning of the nozzle. This result is valid at any
longitudinal position along the nozzle, provided that ion
gyroviscosity constitutes the dominant modification to the
high-conductivity plasma fluid model.

It is clear from Equation (237) that the principal depen-
dence of the RT growth rate, as limited by ion gyroviscosity,
occurs just in the first bracketed quantity. That quantity
contains the propellant’s exit velocity (specific impulse) in
the numerator, the breech value of the ion inertia length in
the denominator, and the local adverse radius of curvature
(Req > 0) in the denominator.

YRT 	
( Vex	 (238)

Req l c
/

. pi )b

The Req varies along the flow at the self-consistent plasma-
field interface. In regions of good curvature, Req is negative
and there is no instability. The other two factors in Equa-
tion (238) have their positions fixed at the exit and breech.

The quantity in braces in Equation (237) is of order unity
and is insensitive to temperature and density along the flow
field. Using the adiabatic relation between T and n along the
flow, the product of the density ratio and the inverse temper-
ature ratio in Equation (237) reduces just to (n/nb)1/18 , which
is essentially just 1.0. In Equation (237), the braced quantity
also is very insensitive to the value of local 0 within the
plasma-field interface. Even the last internal factor in brack-
ets is always between 0.5 and 1.0, but it can be explicitly
taken into account if desired.

The one quantity in Equation (237) whose variation with
longitudinal position along the flow is certainly needed is the
self-consistent radius of curvature Req of the magnetic field
at the edge of the plasma. This quantity can be extracted
from axisymmetric MHD simulations of flow through mag-
netic nozzles. The cylindrical radius r of the propellant is
notably absent from the growth rate in Equation (237).

Thus, for design purposes the reduced version—
Equation (238)—is probably sufficient. One could try to
apply it to design the self-consistent magnetic nozzle field to
be such that, in a region of adverse curvature, the product of
growth rate and transit time of propellant flow through that
region is less than 1. A fallback position is to totally avoid
the presence of adverse magnetic curvature. However,
achievment of that goal may be hindered by adverse self-
consistent deformation of the original vacuum magnetic
field. Such adverse deformation may be difficult to avoid in
the injection of hot plasma into a premagnetized nozzle tube
that is burdened by constrained dimensions or by the dis-
creteness and separation of magnetic source coils.

Equation (238) constitutes a simple practical formula for
the RT growth rate at any longitudinal position in the
magnetic nozzle. It should nevertheless be regarded as
provisional. For example, one might be concerned that
downstream of the nozzle throat the propellant temperature
eventually decays to the point that ion-ion collisions become
significant, implying that ion gyroviscosity should be
replaced by ion collisional viscosity. However, almost the
opposite proves to be the case. The ion-ion collision fre-
quency u i changes as n/T 

3/2
,
 
so is constant along the propel-

lant’s flow, since adiabatically, T ~ n2/3. The ion-ion mean
free path, however, varies as Xi ~ Vth i/ui ~ n

1/3. Thus, the
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kinematic viscosity varies as Xi Vth i – n2/3 , which decreases
towards the exit plane. In contrast, taking magnetic pressure
balance into account, the gyroviscous diffusivity ai Vth i

varies as n 
1/6

, slightly increasing towards the exit plane.
Thus, gyroviscosity remains the dominant viscous effect as
long as co, i > vi. While the condition co, i > vi remains in
force within the plasma-field interface, flute-mode dynamics
in the plane perpendicular to B are governed by ion gyrovis-
cosity rather than collisional viscosity. Furthermore, for
relevant injected-plasma parameters, the collisional situation
co, i < vi would require plasma density to decrease substan-
tially from its injected value, by at least an order of magni-
tude. The vi is practically constant along the adiabatic flow,

whereas co, i decreases as n5/6. But, at that point, the propel-
lant has practically reached the nozzle exit anyway. In a
more detailed model, there would also be an additional
intermediate viscous diffusivity (Ref. 9) of the form

Dvis iv i/co, i, but this amount of detail lies beyond the present
purview.

On the other hand, the Hall effect has been neglected in
this modeling of the RT instability. Huba (Ref. 33) has pur-
sued the subject of Hall MHD, and has found that at shorter
wavelengths –c/cop i, the Hall effect, taken alone, increases
the growth rates of those flute modes, and changes their
nonlinear structure as well. Actually, there is a competition
between enhancement of growth by the Hall effect and mode
stabilization by ion gyroviscosity, a subject addressed later
by Huba and Winske (Ref. 38). The Hall effect should be
dominant in cold plasmas, such as in the beginning phase of
theta-pinch implosions exemplified by Reference 34 and
in the expansion of laser-produced plasmas, Reference 17.
Ripin et al. experimentally confirmed the features of the Hall-
MHD model (Ref. 17). MHD modeling of flow through mag-
netic nozzles should be revisited in this regard, so that Hall
effects, together with ion gyroviscosity, can be applied in a
knowledgeable manner to “adverse curvature” instabilities in
propellant flow through magnetic nozzles.

That Hall effects can occur in a cold plasma is correct and
can be understood by considering that the generalized Ohm's
law (mks units) does not explicitly contain thermal effects;
yet, it contains the Hall term (as the second term on the
right-hand side) as a contribution to the Hall electric field
(see Eq. (37b)). Nevertheless, in specific applications to
plasma-nozzle flow, thermal effects can sometimes creep in
when estimating the importance of the Hall term.

E +(V x B )=i1J +
J x B 	

(239)
nq

The first term on the right in Ohm's law is the resistive
term. Here, i1 is the resistivity. Equation (239) is just the
electron-fluid momentum equation without the electron
inertia and without the electron pressure gradient. The

absence of the latter emphasizes the circumstance that here
we are considering “cold plasma.”

A necessary condition for the Hall term to be important is
that it not be dominated by the resistive term. This require-
ment is easily shown to be equivalent to having the electron
gyrofrequency be large compared to the electron collision
frequency with the ions (or with plasma fluctuations in the
case of microturbulence). Such a large gyrofrequency and
relatively small collision frequency is to be expected in the
plasma-field interface of the magnetic nozzle for the parame-
ters of interest. The size of the system in the RT problem is
represented by the azimuthal wavelength of modes.

If the above requirement is satisfied (small enough elec-
tron collision frequency), then the next step in estimating the
importance of the Hall term is to compare it with the
motional electric field term, V x B. Here, V is the local fluid
velocity of the plasma, which is the same as the ion-fluid
velocity. Also, B is the local magnetic field vector. This
particular comparison will be made in the following example
of the coaxial MHD thruster, where it will be shown that the
Hall effect is important when the ion gyroradius is not too
small compared with the size of the system.

4.3.1 Example: Estimate of Hall Term in Coaxial MHD
Thruster

The salient feature of the following example is that the
Hall effect becomes important when the ion gyroradius
becomes comparable to the macroscopic size of the system.
In the RT problem, the size of the system is represented by
the azimuthal wavelength of modes.

In the coaxial plasma thruster, there are inner and outer
coaxial electrodes, which form an annular nozzle; plasma
flow velocity V is in the longitudinal direction, magnetic
field B is azimuthal, and current density J is radial between
the electrodes. Hence the strength of B decreases in the
longitudinal direction, as required by Ampere's law
V x B = 90J .

From Equation (239) we want to compare the magnitudes
(mks units) of the motional electric field term VB and the
Hall term JB/nq:

VB versus JB/nq

Suppose that V is about the same as the ion thermal velocity,
Vth i, which, at any rate, is a desired feature of nozzle flow.
When the electric field term is comparable to the Hall term,
then the Hall effect becomes significant.

The following relationships are used:

copi = nq2 lE0 mi , where cop i is the ion plasma frequency

E 090 = 1/, 2 , where , is the speed of light
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VA coci = ccopi , where VA is the Alfven speed and coc i is

the ion gyrofrequency

Vth i l VA =Ri

Then the above comparison can be reduced as follows:

VB versus	 JB / nq

I	 I

Ri versus (c / cop i ) / Lcoax

Here, the quantity Ri signifies the local ratio of ion pressure
to magnetic pressure, and Lcoax is the coaxial longitudinal
distance over which the azimuthal magnetic field becomes
depleted by pushing the plasma downstream. Thus Lcoax is
the length of the annular nozzle.

The thermal ion gyroradius ai is related to the ion inertia

length c/cop i by ai = Ri (c copi ) , so the above comparison

finally reads

VB versus	 JB / nq

I I

Ri versus	 (c / copi ) / Lcoax

I I

Ri 	 versus	 ai / Lcoax

In realistic situations in the coaxial thruster, Ri can be of
order 1. As the ions flow downstream they make gyrations in
the r,Z-plane, around the azimuthal magnetic field lines.
Thus, if the ion gyroradius a i is not too small compared with
Lcoax, so that the ions undergo only a few magnetogyrations
as they flow through the coaxial nozzle, the term on the right
can be important, and concomitantly, the Hall effect is
important. In the case of flute modes, the azimuthal wave-
length is the “size of the system.”

4.3.2 Concluding Thoughts

In the flute-mode discussion of the RT instability of this
report (in Sec. 4.2.2, “Surface Instability of Flowing Propel-
lant in a Region of Adverse Curvature”), a similar effect is
noted in the literature, since the ion skin depth (c/cop i) is nearly
the same as the thermal ion gyroradius when R is near 1. A
paper by Huba and Winske (Ref. 38) contains a detailed
account of the RT instability when both Hall effects and ion
gyroviscosity (FLR or FLR stabilization) are active. Linear
stability analyses and nonlinear numerical simulations based
on both fluid and kinetic models were carried out in that
paper. It is instructive to consider why this pioneering paper is
not yet applicable to the magnetic nozzle configuration.

First, in Reference 38, the disparate light and heavy fluids,
which constitute the RT configuration, are separated by a
planar interface in the presence of an artificial gravitational
force. Thus, geometric effects are missing. There is the effect
of lateral pressure forcing a wedge-shaped element radially
outwards (see Fig. 5). A concomitant effect is the outward
spatial decay of external field strength in the region of
adverse curvature. These geometric effects of adverse curva-
ture are essential for the derivation that produces the pres-
sure contribution to the growth rate in Equation (226). They
are especially required since artificial gravity is not invoked
in our model.

Second, the models used in Reference 38 are “low R”
models. This assumption has two consequences. The mag-
netic field changes only slightly in traversing the interface, in
contrast to the magnetic field profile in the interface of the
magnetic nozzle. Moreover, the ion gyroradius ai, important
for FLR stabilization, is small against the ion inertia length,
c/cop i, in Reference 38. The latter is important for Hall des-
tabilization. In contrast, both of these lengths are comparable
in the magnetic nozzle interface, because R is of order 1
there. Thus, short azimuthal wavelengths would be simulta-
neously influenced to roughly equal extents by both
processes in the magnetic nozzle. In Reference 38, however,
the Hall effect was dominant because the ion inertia length
was much larger than the ion gyroradius.

Since Equation (238) is based only upon FLR stabiliza-
tion, one may question whether it provides meaningful
engineering guidance. It does so by eliminating from consid-
eration those plasma profiles that are RT unstable. That is, if
a configuration were found to be RT unstable in spite of
including FLR stabilization effects in the model, then surely
it would prove to be yet more unstable had Hall destabiliza-
tion effects also been included. On the other hand, if a stable
configuration is found in the sense that YRTt < 1, there is then
no certainty that such a configuration would remain benign if
Hall effects had been present. Thus, further work is needed
in this regard.

Thus, in the flute-mode RT instability, it has been found
by Huba and Winske (Ref. 38) that the Hall effect becomes
important and destabilizing when the macroscopic wave-
length is on the order of the ion gyroradius, but also it is
known that the FLR stabilization effect becomes important
under the same conditions. Thus the two effects work against
one another. This process constitutes a delicate balance that
deserves a careful calculation oriented to the magnetic
nozzle. The paper of Huba and Winske shows that the two
effects are in opposing directions, but those special calcula-
tions are artificial and constructed to clearly show both
effects by turning one on after the other is on. That paper is
not directly applicable to the magnetic nozzle, however; a
special calculation focussed on the magnetic nozzle problem
is therefore needed.

In conclusion, it is indeed the case that the model of the
flute-mode RT instability in this report, which includes FLR
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stabilization but omits the Hall effect, may be giving incor-
rect results by not including both effects at the same time.
That is to say, a traditional approach was followed, consist-
ing of subjecting the ideal MHD results to FLR stabilization,
without regard to any additional effects. That is exactly why
it is suggested that there exists a need for the more complete
calculation in Section 4.2.2, since if the RT instability
appears threatening even when including FLR stabilization
effects, it would appear even worse if the Hall destabilization
effect were also included. In this sense, the formula Equa-
tion (238) is a meaningful engineering design criterion.

4.4 Short-Wavelength Gravity-Driven Instabilities

In this section, we shall examine ion gyroviscous stabili-
zation of the unstable MHD flute modes associated with
adverse longitudinal curvature. It is also pointed out that the
destabilizing Hall effect should ultimately be included self-
consistently in the model so as to obtain a more complete
picture of the behavior of these modes.

Up to this point, discussion of RT-type instabilities has
been carried out within the fluid description and has been
directed to flute modes of long wavelengths compared with
the thickness of the plasma-field interface. The manifestation
of these long wavelength modes is the azimuthal deforma-
tion of the interface as an entity.

However, it was recognized by Davidson and Gladd in
Reference 18, and by Gary and Thomsen in Reference 35,
that ion inertial force, or effective gravity, can drive insta-
bilities of the LHD type within the interface layer itself.
These unstable flute modes have very short wavelengths,
which range between thermal ion gyroradius ai and thermal
electron gyroradius ae . They are not stabilized by finite ion-
gyroradius effects, except at very small current drift veloci-
ties where the unstable wavelengths become as large as the
ion gyroradius (see Ref. 19).

The salient observation regarding the short-wavelength
LHD flute modes, as connected to the presence of effective
gravitational acceleration, is that the treatment given in
Section 3.0 of this report, “Resistivity From Gradient-Driven
Microinstabilities,” applies without modification (see
Ref. 18). The reason is that the treatment is set in terms of
the current-drift velocity Vd. The reader will recall that the
ratio Vd/ Vth i is the characteristic driving factor for the real
part of the frequency of this drift mode, and its square is the
characteristic driving factor for the growth rate of the
instability (see Eq. (144)). Moreover, the square of this
velocity ratio also is a principal feature of the anomalous
resistivity arising from LHD microturbulence, as was dis-
cussed in Section 3.0. Thus, the theory in terms of Vd/ Vth i

remains intact.
The role of gravity in the LHD modes only becomes

apparent when the expression for the current drift-velocity
itself is examined. This expression will now be developed
within the context of propellant flow in the magnetic nozzle.

For simplicity of discussion electron temperature will be
neglected, but this is not an essential restriction. The ion
macroscopic momentum equation is written in a frame of
reference that is instantaneously at rest in the ion fluid;
nevertheless, ion inertial effects (ion-fluid acceleration) can
appear in this frame.

	

∂x Pi −ρgx eff = nqEx 	 (240)

The x-direction is the quasi-radial direction, outwards across
the external magnetic flux. The effective gravitational field

is gx eff = V//
2
 /Req , with V// the propellant flow

velocity along B and Req the local equilibrium radius of
adverse curvature. The magnetic field vector defines the
local z-direction. The electron drift velocity Vd y e =
[(E×B)/B2 ]y in the y- (azimuthal) direction is obtained by
dividing Equation (240) by nqB. The result is (in mks units)

T 1	 Vj?	 ( )
Vyde =--+	 241

qB xn ωc i Req

Here, we have assumed uniform ion temperature and have
defined the density gradient length within the interface by
(1/xn) = n

−1 ∂xn  . Earlier in this report, the interface width

was described as δ, so xn = δ.
Now, throughout most of the nozzle, the flow velocity is

somewhat comparable to the local sound speed, which, in
turn, is comparable to the ion thermal velocity. Therefore,
Equation (241) says that, in general, the gravitational term is
not important unless Req is small enough to be comparable to
xn. Such is clearly not the case throughout most of the
nozzle: Req is likely several tens of centimeters, whereas xn

is on the order of just a few centimeters. We conclude that
gravitational acceleration due to adverse curvature generally
should constitute only a minor modification to the edge-
layer gradient that drives the short-wavelength LHD flute
instabilities.

The exception to this conclusion occurs at the point of
impact of injected plasma with magnetic flux. It was seen
earlier that even at near-grazing incidence of injected flow
streamlines with the ambient magnetic field, the local radius
of curvature at the point of impact would be so small as to lie
beyond the purview of a fluid model. Its scale of smallness
would probably be set by “microscopic” lengths, such as ai,

or by c/ωp i. Only then would the two contributions to Vd

become comparable in Equation (241). Thus, it is indicated
that the initial point of impact of plasma with field in the
injection region be scrutinized with respect to modification
of LHD flute modes by gravitational effects.

Near the exit plane, the second (gravitational) term in

Equation (241) would increase (as n−5/6) 
faster than the first
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term (as n
-1/6 ), 

unless the adverse radius of curvature Req is
maintained at a large value by judicious arrangement of
downstream magnetic coils.

5.0 Summary and Conclusions

The principal objective of this report was to ascertain the
degree of attachment of propellant plasma to magnetic noz-
zle flux, as represented by the spatially evolving width of the
plasma-field mixing layer, and to explore ways of mitigating
that attachment. However, it was emphasized at the outset
that even attached plasma undergoes converging-diverging
nozzle acceleration along with core plasma. Moreover,
reference was made to extant calculations showing that
attached plasma can be resistively detached downstream
with little loss of efficiency. This is provided that the neces-
sary weak divergence of the nozzle in a long detachment
region supported by trim coils is compatible with the overall
mission design of the vehicle.

The four principal results from this report are as follows:

(1) The initial thickness S of the plasma-magnetic field
interface in the nozzle breech b (where the hot plasma is
injected) is derived. It is Sb = 2c/cop Z, which serves as the
initial condition for resistive broadening of the interface
along the flow. Here, c is the speed of light in vacuum and
cop Z, the ion plasma frequency in the breech. For the parame-
ters of interest here, Sb is a few centimeters.

(2) The subject of gradient-driven Lower Hybrid Drift
(LHD) microturbulent (anomalous) resistivity Ala is reviewed
and compared with the classical resistivity Alcl that arises
from electron coulomb scattering on the ions. The results
from the smaller of two predictions for Ala are summarized.
This subject bears on the spatial rate of resistive broadening
of the interface, for which a simple algorithm is derived in
terms of a general resistivity. The parameter dependencies of

Ala appear to be agreed upon in various models, but the large
discrepancies in the numerical coefficient need to be
resolved.

(3) The subject of flute instabilities of the magnetically
confined interface in regions of adverse magnetic curvature
is addressed. A physical derivation of the growth rate is
performed for curved geometry without artificial gravity,
which includes the effects of both pressure and flow. A
practical formula for the growth rate is obtained that takes
into account flute-mode stabilization by ion gyroviscosity
(finite Larmor radius (FLR) stabilization). The formula can
be used in magnetic nozzle design, by monitoring the
self-consistent plasma-nozzle shape and flow velocity in
axisymmetric simulations of propellant flow through mag-
netic nozzles. In this manner, one can estimate the extent of
e-folding of flute instabilities in regions of adverse
curvature.

(4) The relevance of the Hall effect to Ohm’s law is clari-
fied. The simple Ohm’s law used to connect azimuthal cur-
rent density with azimuthal motional electric field in
calculating resistive interface broadening depends on the
Hall voltage not being shorted out by a flow of Hall current.
This subject is important because the electron gyrofrequency
coc e far exceeds the electron collision frequency ve within
the plasma-magnetic field interface. A complementary
example is provided whereby the full Hall current is allowed
to flow; and concomitantly the plasma is allowed to rotate. A
critical nozzle length is identified below which the interface
thickness is limited to about one ion gyroradius aZ. The

critical length is X e m Z / me , where Xe is a representative

electron mean free path and mZ and me are the ion and elec-
tron masses, respectively.

In this study, the basic features of converging-diverging
nozzle flow were reviewed. An algorithm was identified to
represent resistive broadening along the flow, of the plasma-
field mixing layer. The results for the evolving width of the
mixing layer proved to be essentially the same for two dis-
tinct models: diffusion of plasma into magnetic field and
diffusion of magnetic field into plasma. Assuming a zero-
width starting condition for the mixing layer, so as to com-
pare with some reported resistive magnetohydrodynamics
(MHD) simulations, the simulations were found to be rather
more effectively diffusive than would be predicted by clas-
sical resistivity.

Resistive MHD simulations sometimes take for granted
the simple form of Ohm’s law, despite the presence of a
strong longitudinal magnetic field in the mixing layer. Thus,
the magnetic field produces the condition, coc e >> ve. Invok-
ing the simple form of a local Ohm’s law that incorporates
unmagnetized electrical conductivity, to relate azimuthal
current density to azimuthal motional electric field, actually
requires that the Hall voltage is not shorted out. In other
words, it is required that no Hall current be allowed to flow.
Therefore, global electrophysical boundary conditions in the
device ought to be kept in mind when assessing the validity
of this local Ohm’s law. In order to suppress the Hall cur-
rent, resistive MHD simulations (and experiments) should
have an insulating wall layer inserted between the metallic
field coils and the plasma. Such a wall layer also aids in
protecting the field coils. (However, plasma near the wall
might longitudinally short out the insulating wall layer and
thereby enhance a closure path for the Hall current.)

The opposite condition, zero Hall voltage, therefore was
also explored in this report. If the Hall current were indeed
allowed to flow, as well as to self-consistently spinup the
plasma propellant, then it might be possible to limit plasma
attachment to magnetic nozzle flux. Specifically, we found
that if the nozzle’s length were held smaller than a critical

length X e mZ me , then the width of the plasma-field inter-

face layer could be held to about one ion gyroradius (here,
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the initial interface-layer thickness was neglected, except in
one previously discussed exception). If Hall current could be
maximized in a magnetic nozzle of subcritical length, then
the detachment problem at the nozzle’s exit would be
reduced to a secondary issue. It was also pointed out that the
associated rotational spinup energy would be recovered in
the diverging portion of the flow field.

It is necessary to specify a spatial initial condition in the
injection region, for calculating the downstream evolution of
the width of the plasma-field mixing layer. Moreover, its
width characterizes the anomalous resistivity that influences
that very evolution. Therefore, special attention was given to
the mixing-layer’s width S = xn in the injection (breech)
region of the magnetic nozzle. From first-principles physics
considerations, it was inferred that it would be somewhat
more than twice the ion inertia length, c/wp i (in terms of the
internal ion number density). Concomitantly, it was estimated
that the ion gyroradius ai would be only about one-half to one-
third of S. In addition, it was shown that the ratio ai/S is insen-
sitive to position between breech and throat of the nozzle.

This result for ai/S determines the ratio of electron current
drift-velocity to ion thermal velocity. That velocity ratio, in turn,
is a principal factor in the growth rate of LHD modes as well
as their subsequent evolution into microturbulent resistivity.

The LHD instability was singled out for explaining the
evolution of edge gradients of magnetically confined plas-
mas, because it is an instability that is easier to excite than
other possible microinstabilities. For example, in comparison
to the ion-acoustic instability, the current drift-velocity need
not be large, and the electron-ion temperature ratio also need
not be large. The ion-acoustic instability and an associated
empirical resistivity had been previously invoked to explain
the structure of magnetically imploded theta-pinches. More-
over, because the LHD mode is basically a non-cyclotron-
resonant mode in regards to the ions, it is robust enough to
saturate at a significant level of fluctuations. This behavior
presents a contrast with the well-studied electron-cyclotron
drift instability, which has a very high growth rate but is
basically a cyclotron-resonant electron mode easily
destroyed by nonlinearity.

The derivation of the small-amplitude linear LHD mode
was outlined and its properties at maximal growth rate were
summarized. The properties show a drift-wave behavior,
with a wave phase velocity Vph = Real(w)/k, proportional to
current-drift velocity Vd. The characteristic wave number k is
on the order of the reciprocal electron gyroradius ae. The
wave’s temporal growth rate is a fraction of the lower hybrid

gyrofrequency wcewci . Moreover, the growth rate is

proportional to ( Vd/ Vth i)2. In the ion-cyclotron drift regime,
with magnetized ions and very small Vd, the growth rate is
so small as to have little relevance to the transit time in the
magnetic nozzle application.

The linear characteristics of the LHD wave were then
invoked in a derivation of the quasi-linear theory of wave
saturation. The saturated level of electric field fluctuations is
a principal factor in the size of the anomalous resistivity
produced by the wave. Use of the wave-energy bound,
in which the total wave-fluctuation energy (not just
electric-field-fluctuation energy) is obtained from electron
drift inetic energy, produced a much smaller resistivity than
did the Fowler bound. The resistivity from the wave-energy
bound has parameter dependence identical to some alterna-
tive models of wave saturation and is notably similar to a
first-principles electromagnetic particle simulation (Ref. 14)
by Brackbill et al. The latter, however, produced a numerical
factor in the resistivity that is about one order of magnitude
smaller than in the quasi-linear model with the wave-energy
bound. The explanation may lie in wave-wave coupling to
damped modes in the simulation, except that Drake et al.
(Ref. 26) also consider wave-wave coupling and yet find a
much larger numerical coefficient.

One principal observation of this report is that several
alternative models of the anomalous resistivity in the inter-
face layer do agree on the multiparameter dependencies of
Il a. The second principal observation is that there are large
discrepancies in the numerical value of the coefficient Ila
predicted by these models. For example, the model of Drake
et al. (Ref. 26) has a numerical coefficient almost 2 orders of
magnitude larger than the largest value from the simulations
of Brackbill et al. (Ref. 14). This disagreement in the numer-
ical coefficient needs to be resolved in order for the subject
of anomalous resistivity to be applied with confidence to
engineering design of the magnetic nozzle.

The anomalous resistivity Ila extracted from the simula-
tion runs of Brackbill et al. was expressed in terms relevant
to the plasma-field interface in the magnetic nozzle concept,
facilitating a comparison to classical resistivity Ilcl arising
from coulomb collisions of electrons with ions. The results
are displayed in Figure 4. For example, at hydrogen-ion

densities near 1015 cm-3 , Ila is dominant over Ilcl at injected-
plasma temperatures exceeding about 200 eV. However, if
the results of Drake et al. are correct, then a breech tempera-
ture exceeding only 20 eV would be sufficient for anomalous
resistivity to become dominant.

Also, an open question remains as to the correctness of the
0 dependence of Ila, which purportedly was extracted from
the Brackbill et al. simulations by comparison with the
plasma heating results of Gary (Ref. 24). This is a very
important question because the local 0 of the magnetically
confined plasma varies from zero outside the plasma to >> 1
inside the plasma, in traversing the edge-plasma gradient.
Thus, resolution of this question affects the ability of resis-
tive MHD simulations to properly represent the internal
evolution of the plasma’s edge gradient, hence to represent
the evolution of the width of the plasma-field interface. The
difficulty with the 0 dependence proposed in Reference 14 is
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outside the scope of this report. We note the contrasting result
of Drake et al., in which no 0 dependence is claimed even
though their simulations employ an electromagnetic model.

We conclude this summary with a few remarks on the
Rayleigh-Taylor- (RT-) type instability. The presence of
RT-type flute modes in regions of adverse curvature
represents a loss of axisymmetric nozzle-based control of the
flow of propellant. This loss of control can be mitigated by
having the growth of the mode with the maximum mode
number be limited by the available transit time of propellant
through the adverse region.

A physical derivation was given of the growth rate of
RT-type flute modes downstream from the injection region
in magnetically confined plasma in regions of adverse
magnetic curvature. As is appropriate to the magnetic
nozzle, the derivation incorporated the joint effects of
propellant pressure and propellant flow (see Eq. (226)). A
practical formula was obtained for the growth rate
(Eq. (238)), which takes into account the stabilization of
RT-type flutes of the higher mode numbers by the effects
of collisionless ion gyroviscosity FLR stabilization).

Within the injection region, the point of initial oblique
impact of propellant with external nozzle magnetic field was
singled out as having a localized region of very severe
adverse curvature in the flow streamline. The extreme curva-
ture there is due to the strong eddy current braking asso-
ciated with the crossfield motion of injected hot plasma of
high electrical conductivity. It was recognized that the struc-
ture of this region and the instabilities therein are inaccessi-
ble to a fluid model. It was suggested that the region of
initial meeting of plasma with excluded flux receive special
consideration regarding gravitational effects on short-
wavelength flute modes that are closely related to the LHD
instability.

Lastly, there are effects of hot-plasma physics not covered
in the fluid-based modeling of Huba on the FLR and Hall
effects. These hot plasma kinetic effects should be taken into
account with regard to modes driven by adverse curvature,
even in modes that are not limited to short wavelengths, and
are, therefore, also additional to the short wavelength effects
existing in the LHD-type modes. Here, we exclude the bal-
looning modes that were already mentioned with regard to
Reference 36.

We were careful to base our physical derivation of elon-
gated flute instabilities on the presence of adverse magnetic
curvature rather than on artificial gravity. It is nevertheless
expeditious for purposes of incorporating more plasma
physics to relinquish the curved geometry in favor of a plane
interface with uniform artificial gravity. With this artifice,
Migliuolo (Ref. 39) generalized the famous FLR-flute mode
theory of Rosenbluth et al. (first reference in Ref. 39) to
extend to more plasma-physical effects. In particular
Migliuolo included electromagnetic effects, nonzero 0 effects,
and the effects of particle drift-resonances azimuthally
across the magnetic field. Thus, Reference 39 shows how to

obtain more accurate and more comprehensive properties of
gravity-driven flute modes. He also explains that the short
wavelength modes treated in Reference 35 do not contain
electromagnetic effects.

Also, Freidberg and Wesson (Ref. 40) used the same arti-
fice to show that conditions could arise wherein flute modes
are essentially stabilized by FLR, but at the same time, gravity-
driven oblique modes are unstable. The latter are driven by
resonant ion motion along the magnetic field, which is some-
times able to supply the extra energy needed to bend
magnetic field lines. In magnetic nozzles containing regions
of self-consistent adverse curvature traversed by hot plasma,
it therefore would be important to apply appropriately
detailed plasma-physical models to accurately describe and
deal with the resulting instabilities.

It is possible to include more detailed plasma-physical
models in the analysis of surface perturbations of curved
plasma boundaries by neglecting the surface curvature and
instead introducing an artificial gravity. The relevance,
however, of these artificial models to the integrity of the
magnetic nozzle has not yet been demonstrated.

In 2005, Arefiev and Breizman published a paper
(Arefiev, A.V.; and Breizman, B.N.: Magnetohydrodynamic
Scenario of Plasma Detachment in a Magnetic Nozzle. Phys.
Plasmas, vol. 12, 2005.) in which they show that in a highly
conductive plasma—where the flow kinetic energy density
exceeds the ambient magnetic energy density—the plasma
can stretch the magnetic field lines to infinity and thereby
escape. (A follow-on paper published in 2008 (Breizman,
B.N.; Tushentsov, M.R.; and Arefiev, A.V.: Magnetic Noz-
zle and Plasma Detachment Model for a Steady-State Flow.
Phys. Plasmas, vol. 15, 2008.) presents a model that includes
kinetic ions, but not electron-ion collisions, so resistivity was
still absent.) However, here in the present report, it is found
that the temperature of the plasma drops downstream of the
throat of the nozzle. This is also shown by George Marklin’s
numerical calculation in Reference 6 (Gerwin, Richard A.,
et al.: Characterization of Plasma Flow Through Magnetic
Nozzles. AL–TR–89–092 (LA–UR–89–4212), 1989.). Hence,
resistivity becomes important, precluding the stretching of
field lines. Thus we conclude that the detachment of plasma
from magnetic field lines remains an important process.

In summary, there are many fundamental aspects left to be
studied regarding the physics of high-temperature, high-
number-density plasma acceleration by means of the mag-
netic nozzle. The derivations in this report on selected topics,
building on the work of others, can guide further theory
development and experimental research in this emerging
area of study. Only then can fast, piloted interplanetary
travel utilizing magnetic nozzles begin to become viable.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 11, 2009
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Appendix A.—Symbols and Expressions

A plasma cross-sectional area I electric current

a local particle acceleration J current density

a thermal gyroradius { δJ } current density fluctuation

B magnetic field J magnitude of current density J

{ δB } fluctuating magnetic field K azimuthal surface current density

B magnitude of magnetic field B K magnitude of azimuthal surface current density

ˆ
K

b unit vector along B
k azimuthal wave number

C constant
k azimuthal wave vector

c speed of light in vacuum
L length

{ δD } electric displacement
l vector distance along magnetic field line (or

D diffusion coefficient, arising from resistive streamline in field-free region of core plasma)
diffusivity

l magnitude of distance l
Dy

(1)
(k , ω) Fourier-mode amplitude of { δD } M mode number

E electric field (or generalized electric field) m mass

{ δE } electric field fluctuation m mass flow rate

E magnitude of electric field E n number density

Ey (1) (k, ω) Fourier-mode amplitude of azimuthal compo- ne(1) (k, ω) Fourier-mode amplitude of electron density

nent of electric field E fluctuation

e base of natural logarithm, (2.7183) { δn} number density fluctuation

F force density P pressure

f(u) generic function of a similarity variable in { δP} pressure perturbation
Appendix C Q degrees of freedom

f function q fundamental electric charge (1.6 × 10–19
 C)

{ δf} perturbed distribution function
R local longitudinal radius of curvature of field

fi
(0) 

(k, ω) ion phase-space distribution function in the line

equilibrium situation Re Reynolds number

fi 
(1) 

(k, ω) Fourier-mode amplitude corresponding to ion’s r particle position

{ δf} r̂ unit vector in radial r-direction

G(x) resistively diffused magnetic field’s r radial coordinate (positive toward wall); origin

x-dependence within plasma at throat on nozzle centerline

g gravitational field S speed of sound

g(u) first derivative of f(u) with respect to u in T temperature
Appendix C t time

H 6-dimensional phase space [r, v] u similarity variable
h fraction of radial fluid velocity lost by decele- V macroscopic (fluid) velocity

ration (h ≤ 1)
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{SV }	 velocity perturbation

V magnitude of fluid velocity V

v particle velocity

v magnitude of particle velocity v

W energy density

X inward radial distance from plasma edge

x̂ unit vector in quasi-radial x-direction

x quasi-radial coordinate (positive toward wall);
origin at plasma edge in plasma-field mixing
layer

ŷ unit vector in azimuthal y-direction

y azimuthal coordinate (positive clockwise,
facing downstream); origin at plasma edge in
plasma-field mixing layer

Zˆ unit vector in axial Z-direction

Z axial coordinate (positive downstream); origin
at throat on nozzle centerline

Z(ζ) plasma dispersion function

ẑ unit vector in longitudinal z-direction

z longitudinal coordinate (positive downstream,
along magnetic field); origin at plasma edge in
plasma-field mixing layer

a polarizability

β local ratio of thermal to magnetic pressure
within the interface

Y adiabatic index

Y wave growth rate

A penetration depth of ions into confining mag-
netic field in breech

S characteristic resistive diffusive width of
plasma-field mixing layer

E(k, CO) dielectric function

E0 permittivity of empty space

ζ independent variable of plasma dispersion
function

rl plasma resistivity

O longitudinal magnetic flux enclosed by path
integral of electric field taken around moving
(expanding) plasma boundary

θ̂ unit vector in azimuthal 9-direction

9 	 azimuthal coordinate (positive clockwise,
facing downstream); origin at throat on nozzle
centerline

A	 length from breech to throat L divided by ion
gyroradius ai.

λ	 mean free path

90 magnetic permeability of empty space

Ξ atomic number

ξ (small outward virtual) displacement of rim
element

P mass density of plasma

6 electrical conductivity

S longitudinal distance measured from throat

ti gyroperiod

v collision frequency

(D ratio of wave phase velocity to ion thermal
velocity

φ angle

cp electrostatic potential

{&p } fluctuation of electrostatic potential

X electric susceptibility

T stream function

Q conventional Hall parameter

CO frequency

to vorticity

Subscripts

A	 Alfven

a	 anomalous

app	 applied

area	 area

arc complete length of arc in region of adverse
curvature

B magnetic field

B magnitude of magnetic field

b breech

back backwards

bnce bounce
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Brack	 Brackbill

c cyclotron

char characteristic

cl classical

coax coaxial

core core

crit critical

cur (adverse) curvature

D diffusion

d drift

Drake Drake

e electron

eff effective

eq equilibrium

es electron sound

ex exit

ext external

fl fluctuating

G global

g effective gravitational field due to centrifugal
force

Hall Hall

i ion

in incoming

kin kinetic

LH Lower Hybrid

long longitudinal

mag magnetic

max1 maximum bound

max2 maximum bound (even larger)

mid middle of transition layer

n number density

norm normalized

out outgoing

p plasma

proj projection

pe plasma edge

ph wave phase

R longitudinal radius of curvature

r radial vector component

ran random

RT Rayleigh-Taylor

rot rotating

s species

t throat

tot total

th thermal

trans transient

V velocity

vis viscous

wave wave

X quasi-radial coordinate (positive toward wall);
origin at plasma edge in plasma-field mixing
layer

y azimuthal coordinate (positive clockwise,
facing downstream); origin at plasma edge in
plasma-field mixing layer

Z axial coordinate (positive downstream); origin
at throat on nozzle centerline

z longitudinal coordinate (positive downstream,
along magnetic field); origin at plasma edge in
plasma-field mixing layer

1/4 one quarter

1/2 radial location halfway through width d R

I constant from Section 2.3.3, Equation (96a)

II constant from Section 3.4, Equation (186)

III denoting constant of integration from
Equation (C4)

IV denoting constant of integration from
Equation (C7)

V denoting constant from Equation (G8b)

VI denoting constant from Equation (G14)

VII denoting constant from Equation (G14)

0 pertaining to global beta

A maximum radial extent

rl resistive

S just beyond diffusive mixing layer
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µ mobility ran random

P density wave wave-energy bound

e azimuthal x quasi-radial coordinate (positive toward wall);
origin at plasma edge in plasma-field mixing

ti time layer

0 vorticity y azimuthal coordinate (positive clockwise,

1 perpendicular to local flux surfaces facing downstream); origin at plasma edge in
plasma-field mixing layer

// parallel to local longitudinal field
O variation radially outward

∞ asymptotic
ξ state of quantity as it exists in displaced

element

Superscripts
W phase factor exponent

E electric field
(0) Fourier-mode amplitude corresponding to a

zero-order small perturbation (equilibrium)
it ion trapping (1) Fourier-mode amplitude corresponding to a
k azimuthal wave number first-order small perturbation

Me azimuthal mode number ′ moving reference frame of plasma
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Appendix B.—Influence of Dwell Time on Plasma-Field Mixing Layer Width

Starting from Equation (99), and within the context of a
quasi-one-dimensional model, it can be shown without fur-
ther approximation that the square of the interface width,
undergoing resistive diffusion along the flow, can be
expressed as follows:

	

2
St  = Pb DtLback 

Lback D (S) P(S) A (S) dS
	(B1)

Pt 	 Vt	 0	 A Pb At Lback

It has been assumed that the initial interface width is zero. If

not, one can add Sb to the right-hand side of the above
equation. In this equation, subscript t refers to the position of
the throat, and the integration proceeds back a distance,

Lback, to the breech of the nozzle. The breech position is
represented by subscript b. The symbols D, P, V, and A
represent, respectively, the resistive diffusivity, plasma mass
density, plasma flow velocity, and core plasma cross-
sectional area at position S measured upstream from the
throat at the position S = 0.

If the resistivity were classical, then the quasi-one-
dimensional temperature dependence of D on position S
would be known along the flow. Likewise, the quasi-one-
dimensional density dependence P(S) is known along the
flow. For a given nozzle shape (actually the shape of the
confined plasma), the area dependence A (S) is known as
well. All of these quantities can be obtained from an ideal
magnetohydrodynamic (MHD) simulation or a quasi-one-
dimensional model. Their numerical representations can then
be inserted into the above integral, which can subsequently
be performed numerically to provide an estimate of the
resistively broadened interface width at the position of the
throat. Thus, an ideal MHD simulation or quasi-one-
dimensional model can be employed to make a preliminary
estimate of the resistive interface broadening, by numerically
evaluating a single integral.

In this appendix, however, we want to show that fairly
close upper bounds to the above expression can be obtained
in a simple manner, without having to perform the numerical
integration.

It is assumed here that the relative-area variation of an
annular ring containing the plasma-field mixing layer is the
same as that of the main nozzle shape, a function of longitu-
dinal distance along the flow. Conservation of mass flow is
assumed (P(S) V(S)A (S) = a constant), where A (S) is the cross-
sectional area at position S and velocity V(S) is primarily
parallel to the core plasma Z-axis. From Equation (99), we
see that if the resistive diffusivity is replaced by its larger
value Dt in the throat (since temperature drops along the
flow and there is classical resistivity), the square of the

maximum value of the mixing layer 82 
1 can be bound atmax

the throat by

r t	 r 0	 r L	 1
Smax 1 = Dt J 0b r 

dt =–Dt J t dt = Dt J 0 

back 

V 
dS (B2)

bt	 ( S)

Here, we integrate backwards from the throat t to the breech

Lback using a quasi-one-dimensional model. The longitudinal

coordinate S runs from 0 in the throat to Lback in the breech.
The outgoing longitudinal velocity V(S) > 0 is assumed to be
essentially the same in the plasma-field mixing layer as in
the core plasma, in virtue of the above statement about rela-
tive area variation in the annulus containing the plasma-field
mixing layer.

Now, by quasi-one-dimensional mass conservation,
V(S) = Pt Vt At  [P(S)A ( S)]. A still larger bound on δmax2

can be obtained by replacing V in the above integral by a
lower bound. This is obtained by replacing P(S) by the larger
density in the breech Pb in the above expression for the
longitudinal flow velocity V(S). Then the expression in
Equation (D2) is bounded above by

S2 	 D 
(P

btt 

Lback ±()f 	dS 	(B3)max 2 = t	
V J 0  A t

For the relative area variation, we take the following
generic model. The radius of the nozzle as a function of
longitudinal position measured from the throat at position

S = 0 is taken as

1

 2 ,2

	

r( S) = rt 1 + 
r

 J	

(B4)
Sarea J J

where Sarea is a characteristic axial length over which signif-
icant radial variation of the nozzle area occurs. (The length
Sarea is not exactly the same as the distance Lback from throat
to breech.) Obviously, dr/dS = 0 at S = 0, which is appropri-
ate for the shape of the throat. Therefore, the relative area
variation is

2
A(S) = 1 +( S 

J	
(B5)

At	 Sarea J

Use of Equation (B5) in Equation (B3) yields
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3

s
2
max = Dt

Pb
  Sarea 

Lback 
 + 

1  Lback 

	 6

( Pt Vt  	( Sarea  3  Sarea 
)

 

A radius contraction by a factor 2 from breech to throat is
reasonable, producing density and velocity functions of S up
to the throat that differ only by a few percent from what
would be produced by an infinite contraction ratio. From
Equation (B5), an area contraction of 4 implies that

Lback/Sarea = 3 . Then Equation (B6) becomes

	

s
	 D2

	 (—Lb— )(
Lback )23 )max 2 = t JI\ -,r

3-
J

Pt Vt

Dt
 ( Pt

b

t )
2Lback

V

Now, Pb/Pt = 3/2 constitutes a very good approximation to
the nozzle flow results (see Eq. (10)). Then the upper bound
becomes

2
	

(-3
smax2 ' Dt 

V 
Lback	 (B8)

t

Thus, for a radius-contraction ratio of 2, the resistive layer
width at the throat is bounded above by a quantity that is

larger than the original estimate, [DtLback Vt , by only a

factor of about 3 = 1.7. For a radius-contraction ratio of 3,
the numerical factor proves to be 2.3.

(B7)
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Appendix C.—Planar Similarity Solution for Resistive Diffusion of Field Into Plasma

When cylindrical effects are not important (thin plasma-
field mixing layer), Equation (90c) can be written as follows:

∂ 2
X B = ∂τB 	 (C1)

Here, B = Bz; X is the inward radial distance from the plasma
edge; and τ = [(zD)Vz ] , where z is the local axial coordi-

nate, D is the uniform resistive diffusivity of plasma, and Vz

is the uniform axial velocity of plasma. Note that Equa-
tions (90) and (C1) take the point of view of describing the
process of magnetic-field diffusion into the plasma within
the lab frame, in which a steady state (with flow) exists.
Boundary conditions on the system are envisioned to be
applied at the breech end and will be discussed below.

One-dimensional diffusion equations of this type permit
similarity solutions having the form B(X,τ) = f(u), wherein u

is the similarity variable, u = X 2A
 A. The equation for f(u)

reads

f ′(u) = −
 4 

^
′(u N 1 + u 

J
	 (C2 )

where prime symbols denote derivatives with respect to the
argument of the function.

Defining g(u) = f ′(u), the equation for g(u) is

The solution of Equation (C3) for g( u) is immediate. One
then has

f ′ (u ) = CIII
(

1
 )e

−
u14
	

(C4)
u

where CIII is a constant of integration. Integrating Equa-
tion (C4) from u = ∞ to u, one has

f (u) − f H = CIII



u e 4 du
− 

∞ e 4du
 (C5)

0 'uu0 -

4




though f(∞) corresponds to a field in the plasma at z = 0. A
boundary condition is that the fields have not yet diffused
into the plasma at the breech of the nozzle. Thus, f(∞) = 0. It
is also observed that

	

r u e−
^ du 

= 2 π  erf (0.5 u )	 (C6)J 0	 u

Then Equation (C5) becomes the following:


f (u) = B = CI,  1 − erf 0.5

X 
	

(C7) 	 


 	  	 

 uτ 


W u + ln

u  Here, CI, is just another modified constant of integration,

d[ln g (u )]  4 	 VVV 4  	 and the original variables have been reinserted. Also, recall

u	
+= 0 	 (C3)	 that uτ = zDlVz . Note that the latest constant CI, represents

4)	 v
u 4)
	 the uniform value of B at the edge of the plasma, where

X = 0.
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Appendix D.—Azimuthal Magnetic Field When Hall Voltage Is Shorted Out

This appendix constitutes an estimate of the azimuthal
magnetic field that is necessitated by the incoming longitu-
dinal return current, which must balance the outgoing trans-
verse Hall current if the Hall current circuit is fully closed.
The estimate is admittedly non-self-consistent in the sense
that results obtained by neglecting the azimuthal magnetic
field are used to estimate the size of that field. The effects of
plasma rotation and electron pressure are included here.

From Equations (62) and (67) the Hall current density can
be written as

JHall = −Λ−1 ngVθ = −Λ− 1B 1∂xPi 	 (D1)

All quantities herein are, in principle, functions of the dis-
tance along a given field line. In practice, they shall signify
representative or average values near or in the throat region
of the nozzle and near or in the plasma-field mixing layer.

Now, let Iin represent the incoming longitudinal current,
which will be presumed to exist inside the plasma core of
radius r(l). The region of the plasma-field mixing layer then
begins at r(l), and extends outwards by a small increment
δ(l).

The total outgoing average Hall current Iout can be roughly
estimated as

Iout ≈ JHall 2πrL 	 (D2)

where r signifies the radius of the plasma core. The right-
hand side of Equation (D2) is intended to signify only aver-
age or representative values.

By setting Iin = Iout, the azimuthal magnetic field in or
near the plasma-field mixing layer then can be estimated as
follows:

Bθ=
μ0I

i = μ0JHallL = −μ 0 LΛ−1 BrZ∂xPi (D3)
2 π r

Here, Br Z represents the original longitudinal magnetic
nozzle field magnitude without any azimuthal component.
This is equivalent to the projection of the total magnetic field
vector into the r,Z-plane, Now, by making the convenient
approximation that ∂xPi ≈ −Pi δ , the ratio Be 1B 

rZ can be

estimated. Also recall the definition of the ion βi, namely

that P i = 2µ0P /B
2 . Dividing Equation (D3) by the mag-

netic field Br Z one then finds

Bθ = L  2 μ 0P  −1 	 (D4)
BrZ 2Λ B2

Z 

Recalling Equation (65) for Λ, this ratio of fields becomes

Bθ = βi [–V // 

	 (D5)

BrZ 2 
ωciδ 

Since the longitudinal flow velocity V// is on the order of the
ion thermal velocity, this result is approximately

Bθ = Pi ai i	 (D6)

BrZ 2  δ 

Suppose δ is scaled by the ion thermal gyroradius ai , as in
Equation (74). For example, suppose that δ is one ion gyro-
diameter. The azimuthal magnetic field ratio is then on the
order of 0.25 βi, whereas with the resistive plasma-field
mixing layer, as in Equation (77), δ could be somewhat
larger, and hence the azimuthal field would be somewhat
smaller.

It is worth noticing that when the azimuthal magnetic field
is somewhat comparable to the magnetic nozzle field, as is
indicated here, then it is possible that substantial magnetic
shear can arise within the plasma-field mixing layer. The
magnetic nozzle field increases from a relatively small value
within the plasma core to its ambient value in a rather short
radial distance, which is the plasma-field mixing layer. It is
well known that magnetic shear has a stabilizing influence
on some microinstabilities as well as on flute-type instabili-
ties driven in regions of adverse curvature of the magnetic
field lines. For this reason among others it appears worth
exploring in some detail whether the full Hall current mode
of operation (including plasma rotation) may enhance the
integrity of the plasma-field mixing layer. This is further
developed in Appendix E.
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Appendix E.—Inward Radial Drift of Propellant

Although the main concern of this report is loss of propel-
lant outward onto the nozzle magnetic field lines, it is worth
pointing out that there also is a mechanism for inward drift,
which is activated by the presence of the azimuthal magnetic
field in a resistive plasma medium. For simplicity we assume
a straight, cylindrical geometry.

The azimuthal magnetic field lines must enclose the core
where, in a steady state, the incoming longitudinal current
balances the transversely outgoing Hall current. The result-
ing small inward drift may be somewhat beneficial in main-
taining the integrity of the core plasma. For simplicity, it was
not included in the model of field diffusion into the plasma.
It must arise, however, from a steady-state balance between
the rate at which magnetic energy is resistively dissipated by
the longitudinal current and the rate at which magnetic
energy is brought into the core. This balance can be
expressed as follows:

 2Be 
Vr 2^r dZ _ i1JZ^r2 dZ	 (E1)

2µ0

Here, it is known that in highly conducting plasma, magnetic
flux can only be brought towards the core by the

inward velocity of plasma; that is, the flux lines move
inwards approximately with the plasma. Equation (E1) is
essentially an integral form of Poynting’s theorem.

Now, from Ampere’s law, Be = (µ0I)/(2^r), where I is the
longitudinal current within the core of radius r. Also, we
have assumed uniform resistivity and uniform density of

longitudinal current, JZ = I17cr
2
 . As a result, one finds

from Equation (E1) that the radial inward velocity at the
edge of the core is

Vr _ 
4D
	(E2)

where D = i1 /µ0 is the resistive diffusivity of plasma.
Consider an example with classical resistivity (Spitzer

resistivity) in hydrogen plasma with the parameters in
Table I. The resistive diffusivity then is Dcl = 3 m2/s. Also,
taking the core radius to be r = 0.1 m, the inward drift
velocity then is 120 m/s, which is 3 orders of magnitude
smaller than the longitudinal flow velocity of propellant.
This inward drift velocity is somewhat comparable to the
outward diffusion velocity found earlier (see the discussion
following Eq. (17)).
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Appendix F.—Derivation of Some Results Noted in Presentation
of Initial Boundary-Layer Width

The results presented below in Sections F.1 and F.2 refer
to the small electron displacement distances treated in the
discussion around Equations (121) and (122) in Section 3.1,
“Interface Width in Breech of Nozzle.” Numerical factors of
order 1 will be suppressed in the derivations represented
here. Section F.3 pertains to small inertial forces on individ-
ual ions (see Eq. (103)). Section F.4 validates the assumption
when only electrons carry azimuthal current.

F.1 Radial Mobility Drift Distance of Electron
Versus c/cOp i

In Equation (122), the first term gives the outward quasi-
radial mobility drift-velocity of the electron fluid in the

electric field Ex in the limit of large S2 = (cOce ve ) . This

quasi-radial velocity term will be multiplied by about one-

fourth of an ion gyroperiod (≈1 cOci ) so as to obtain the

outward quasi-radial distance xµ drifted by electrons during
that time increment.

1 Ex 1 cOce 1 Jy Bz 1 mi
x µ =	 =

S2 Bz cOc  e cOci S2 nqBz cOc e me 	
(F 1)

= 
1 µ0Jy 1 mi

S2 nqµ0 cOce me

Ampere’s law is used in the numerator of the last expression
above, to replace µ0Jy by [V x B]y. Then, the radial length

increment in the definition of [V x B]y is identified as c/cOp i.
After substituting the definition of cOc e = qB/me, a resulting
combination of factors is identified as the square of the

electron plasma frequency (Ape = nq2 /E0 m e  in mks units.

Finally, recall the relation E0µ0 = 1/c2 , where c is the speed

of light. After some cancellation, and using

cOpe = cOpi mi Ime , the above expression reduces to

xµ =S2cO
	 (F2)

pi

Thus the classical outward mobility drift distance traversed
by an electron in the space-charge quasi-radial electric field
is small compared with the initial outward ion penetration
depth.

F.2 Radial Diffusion Distance of Electron Versus
c/cOp i

We consider the quasi-radial diffusion distance xD tra-
versed by an electron undergoing a random walk (of gyrora-
dius steps) across the magnetic field, during one-fourth of an
ion gyroperiod. Recall that the diffusion coefficient of an
electron in a magnetic field is given by the expression

De = ae l tie = aeve , wherein ve is the collision frequency

of an average electron (having cOc e >> ve) and ae is the
electron thermal gyroradius. Then

	

xD 	 D t = a2 
ve cOce	 ae mi 	 = 

ai = 
ai (F3)D = e 	 e

	

cOce cOci	 S2 me S2
^/ S2

but the ion thermal gyroradius ai is comparable to the ion
inertia length c cO p i whenever the ion R is on the order of 1

(as expected according to Appendix H). Hence,

	

xD = S2/2 cI cOp i	 (F4)

Thus the classical outward collisional diffusion traversed by
an electron across the local magnetic field is small compared
with the initial outward ion penetration depth.

F.3 Fluid Deceleration Neglected in Ion Trajectory
Equation

An equivalent gravitational deceleration field was neg-
lected in the trajectory equation of an ion, which was
employed in Section 3.2, “Linear Theory of Lower Hybrid
Drift (LHD) Instability.” This force field is to be compared to
the force on the ion from the radial space-charge electric
field.

From Equation (H1 1) and by recalling that the square of

the Alfven velocity is VA = B2
µ0  p , we estimate that

geffS = hVxVA . Here Vx is the radial fluid expansion velocity
of the plasma during the first one-fourth ion gyroperiod, and
h is the fraction of that velocity that is lost to deceleration
during that time increment. Setting S = c cOpi = VA  cOci (the

second equation is an identity), the effective gravitational
acceleration becomes

	

geff = hVxcOci 	 (F5)
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which is approximately the same as Equation (H1 1). Recall
that c is the speed of light, ωp i is the ion plasma frequency,
and ωc i is the ion gyrofrequency in the plasma-field mixing
layer. Because ωci = qBmi , the equivalent gravitational

force on the ion is

migeff = hq VxB	 (F6)

The radial momentum equation for fluid electrons (neg-
lecting electron pressure for simplicity) is nqEx = JyBz . With
help of Ampere’s law, this becomes

	

_ 1  B 2  _ mi V,g 	
(FqEx

	n 
∂x 

2 	 ~ c cu 	
7)

N 0 	 pi

We have ignored a sign to just get the order of magnitude
and have set the length scale for magnetic pressure change to
c ωpi . Using the identity mentioned above, radial force on

the ion (magnitude only) due to the space-charge field is
found to be

qEx = qVAB	 (F8)

This electric force exceeds migeff when the plasma-fluid’s
radial expansion velocity is sub-Alfvenic.

F.4 Azimuthal Current Carried by the Ions During
One-Fourth of a Gyroperiod

A fundamental assumption in Section 3.1 has been that
only the electrons carry azimuthal current during the short
time (1/ωc i) when a volume element of plasma first runs into
the confining external magnetic field. In this subsection, we
test that assumption. Again neglecting electron pressure for
simplicity, it is seen from the above estimate of the radial
space-charge electric field that the azimuthal E × B drift
velocity of the electrons is just the Alfven velocity. If the
azimuthal fluid velocity of the ions were much smaller than
that in the early-time increment of interest, then the ion
contribution to the azimuthal current also would be small.
The azimuthal electric field from the radial fluid expansion
is Ey = VxBz. The Faraday phase due to time-dependent
interior flux expulsion by the instantaneous electron current
layer is assumed already completed. The azimuthal velocity
acquired by an ion during time τi ≈1ωci is then

Vyi ≈ qEy τi m
i = qEy mi ωci = Ey Bz = Vxi	 (F9)

This is small compared with the electron-current velocity
when the plasma fluid crossfield expansion is sub-Alfvenic.

NASA/TP—2009-213439	 92



Appendix G.—Effect of Electron Pressure on the Initial
Plasma-Field Mixing Layer Width

This appendix examines the effect of electron pressure on
the initial width of the plasma-field mixing layer. The effect
of electron collisions has been sufficiently covered in the
main text. For conciseness, we will ignore electron collisions
here. However, electron (and ion) pressure (Pe ≈ Pi) will be
included in this calculation of the initial width of the plasma-
field mixing layer. Moreover, we attempt to carry out a more
rigorous and detailed evaluation of the radial average electric
field needed in this calculation, yet without invoking specific
shapes for the profiles of density and magnetic field within
the plasma-field mixing layer.

Consider the azimuthal frame of reference in which newly
injected ions carry no macroscopic azimuthal current. This is
presumably the lab frame. In that frame, the quasi-radial
component (i.e., directed across flux surfaces) of the
electron-fluid momentum equation then reads as follows:

	

∂xPe = −nq (Ex + Vy Bz)	 (G1)

A key feature of the model is that, for times less than an ion
gyroperiod the azimuthal current density Jy = −nqVy is car-
ried only by the electrons. As discussed in the main text, we
shall assume that quasi-neutrality has been achieved in an
early transient subphase and is maintained (see Section 3. 1,
“Interface Width in Breech of Nozzle”). We also assume that
the electron and ion temperatures are equal and uniform
within the plasma-field mixing layer.

Solving Equation (G1) for the space-charge electric field
and using Ampere’s law on Jy ,

2

Ex =− 1 ∂x 
B + Ptot  (G2)

n qe  2 μ 0 	 2

Here, Ptot = Pe + Pi = 2Pi is the total plasma pressure. There-
fore, with mass density ρ = min, it is obvious that

2

− 
2qeΔ (Ex )=Δ — ∂ x 

B
 +Ptot 

(G3)
mi \	 ρ  μ 0

where Δ is the penetration depth of ions into confining mag-
netic field in the breech. The brackets ... signify the radial

average of the enclosed quantity over the width of the
plasma-field mixing layer.

Use of azimuthal momentum balance Equation (110) for
the velocity of an individual ion at the farthest radial extent
of the ion’s trajectory, vy i Δ = −1/2ωc iΔ , allows the total
energy balance of that ion, from Equation (111b) to be

expressed as follows (the ion gyrofrequency, ωc i without
brackets, refers to the outer magnetic field beyond the
plasma-field mixing layer):

	

2vx core i =− 
2q (Ex ) + 1 

^Ex >+ 
4 

ωciΔ2 	 (G4)
i

Here, vx core i is the radial velocity with which the ion is
incident upon the edge boundary layer. It has been assumed
that the incident azimuthal velocity vy core i = 0 for a repre-
sentative ion in the midst of a thermal distribution.

The intent is to utilize Equation (G3) in Equation (G4).
Therefore, the two radial averages indicated in Equa-
tion (G4) are evaluated. We begin with the second term
because it entails the most straightforward evaluation. Using

Ptot = 2nT with uniform T, the second term is

Δ ` 1 ∂x Ptot 
1

= Δ( 
2T ∂x n) — 2T 

Δ
(
∂x ln n) (G5)

nmi
	 \ mi

 n // mi

The notation Vthi
2
 = 2Tmi is introduced for the square of

the ion thermal velocity. The radial average of the partial
derivative of the logarithm of number density is evaluated as
follows:

(∂x ln n ) = 1  
Δ 

∂x ln n dx = 1 [ln nΔ − ln ncore ]
Δ core	 Δ

	

Δ 	
(G6)

= 
1 
ln 

n 
= − 1 ln 

ncore

	

Δ ncore 	 Δ 	 nΔ

This is to be multiplied by Δ in Equation (G5). It is reasona-
ble to associate the characteristic width Δ of the plasma-field
mixing layer with the 1/e spatial decay length of the plasma
density (where e ≈ 2.71828, the base of natural logarithms).
The characteristic width Δ originally was associated with the
protrusion of an average ion’s trajectory beyond the core
plasma into the magnetic field region. Its quantitative con-
nection with the density profile’s spatial decay, as well as its
connection with the spatial increase of the magnetic pres-
sure, requires more calculation than can be accommodated
here. This clarification would require following the full
thermal velocity distribution of trajectories of outgoing ions
into the (unknown) nonuniform magnetic field profile. But
using a few Δs for the 1/e spatial decay of the plasma
density, say n = n coreexp(−x/CVΔ), makes little difference, as

shown later. Then ln(ncore/n
Δ

) = 1/CV , where n
Δ
 = ncore/e is
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the variation of number density radially outward and CV is
an unknown free constant. Note, however, that the use of this
specific decaying exponential density profile is only an
example; it is not essential to the argument. Consequently,

(∂x ln n) =− 
1

	
(G7a)

without those subscripts is to be evaluated with the outer B

and the inner ρ. The inner ρ is taken as e multiplied by the
outer ρ. The density’s spatial decay length is taken as the
original Δ.

If the spatial decay length of the density were instead taken
to be CVΔ, then instead of Equation (G10a) one would find

If the spatial decay length of the density were taken as CVΔ ,

then instead of Equation (G7a) one would find

(∂ x ln n ) =− 
C 

1

Δ
	(G7b)

V

Use of Equation (G7a) in Equation (G5) yields

^\1 2 	2T
()Δ xPtot I = −Vth i = −-	 G8a

ρ 	 m i

Retaining the flexibility of CVΔ for the characteristic dis-
tance of spatial decay of the density profile, Equation (G8a)
becomes instead

/1\	 2

Δ ` axPtot 	CV	 (G8b)
ρ

We have assumed that the characteristic length for the
increase of magnetic pressure in the plasma-field mixing

layer B 2
/2µ0 is Δ. The quantitative connection of the

density decay length to Δ has not been established, so a few
values CV ≠ 1 are considered.

Now the second term on the right-hand side in
Equation (G3) has been accounted for. Next, we address the
first term in Equation (G3). A simple calculation in terms of
the local Alfven velocity VA yields

2

Δ(
1

ρ a
x
 μ0 	

Δ/∂x VA2 + VA
2 ∂xn \	 (G9)\	 n /

Recall that the local Alfven speed squared is VA = B 2/μ0 ρ .
The first term of Equation (G9) can be written

Δ
Δ ^∂xVA = Δ 1  ∂x VA dx

Δ core 	 (G10a)
2	 2 	 2 	 2

= VA Δ − VA core ≈ VA Δ = eVA

Subscript “Δ” refers to local evaluation at the outer edge of
the plasma-field mixing layer, and subscript “core” refers to
evaluation at its inner (plasma core) edge. But the final VA

Δ ^∂x VA ) = eŷV VA
2	 (G10b)

Next, the second term of Equation (G9) is evaluated just by

using an intermediate value of the local VA . Since B

increases going outwards and ρ decreases, VA increases

strongly going outwards. Therefore, its intermediate value is
simply taken as half the outer value. For the density decay
scale of Δ, one finds

	

Δ `VA
∂xn \ – _ 1

eVA 	 (G11a)
`\\	 n /	 2

The local 2
VA appears in Equation (G1 1a), and the final VA

in Equation (G10a) has been evaluated at the outer B and the
inner ρ.

If the spatial decay length of the density were CVΔ, one
would find instead

+
A
2∂x

n
 )=−

1
eYCV 1 VA 	 (G1 1b)

n	 2	 CV

Use of Equations (G7a) to (G1 1a) in Equation (G3) yields

− 
2qΔ (

Ex ) = 
2 V

A
2
 [1 
− j	 (G12a)

i

The global beta, βG, is the ratio of core plasma pressure
(electron pressure plus ion pressure) to outer magnetic pres-
sure. Since βG = 1 for pressure balance across a static layer,
the right-hand side is guaranteed to be positive, in agreement
with Ex being negative. In case of radial deceleration of the
macroscopic plasma fluid, it will be shown that βG < 1,
making the right-hand side of Equation (G12a) still more
positive.

Equation (G12a) applies to the case that the density decay
length in the plasma-field mixing layer is only Δ. If instead it
were CVΔ , then Equation (G12a) would be replaced by

2qΔ 
(Ex )

mi



e	

(G12b)

A
2 2CV – 1

=Y V	 I– PGRG 	12CV 	 e CV (2CV − 1) 
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For the negative space-charge field Ex it is clearly necessary
that CV > 1/2, but this is not sufficient because the
expression in brackets in Equation (G12b) also must be
positive. The latter condition amounts to

CV > 
12

[1 +βG e /CV j	 (G13)

It will be shown below that βG ≤ 1. Then this condition is
satisfied for CV ≥ 0.5925. The lower bound 0.5925 for CV is
an artifact of shortening the electron pressure drop for fixed
magnetic pressure gradient. The radial electron momentum
equation reads: negEx = −∂xle − ∂x(B2/2 μ 0). Thus, an artifi-
cially sharp negative electron pressure gradient, for fixed
positive magnetic pressure gradient, annihilates the space-
charge electric field, an unphysical consequence.

Now Equations (G12a) and (G12b) are used to calculate
the plasma-field mixing layer thickness Δ, following the
same procedures as are utilized in the main text. Both Equa-
tions (G12a) and (G12b) can be expressed as

−
2qA/E

x
\

= CVI VA (1− CVII βG ) 	 (G14)
mi

where CVI and CVII are constants:

CVI = e/CV 
2CV  − 1
	 (G15a)

2 CV

CVII = 1
1	

(G15b)

e CV (2CV − 1)

The Δ represents the physical penetration distance of a
representative ion at the edge of the plasma into the confin-
ing magnetic field, when that element of plasma first
encounters the interface region. The nondimensional version
of Δ, Δnorm, is represented as

Δnorm = Δω
pi	

(G16)

in which ω p i is the ion plasma frequency referred to the ion
number density in the core. Using the same procedures as in

the main text, namely Equation (117), Anorm = (Δωpi/c) ,

and the subsequent discussion, one finds

π 2/4Δnorm =
1 −π2 /16 

CVI (1 − CVII βG )	 (G17)

Inserting the constants from Equation (G15) into Equa-
tion (G17), we then find

πΔnorm = 
2/4_ 1 

e CV (2 CV − 1) − βG I (G18)
1 −π2^16 2 CV	 J

Setting the global beta to its upper bound βG = 1 in Equa-
tion (G18), the lower bounds can be found for the numerical
values of Δnorm . We say that these results are “lower
bounds” for the following reason: In Appendix H, we show
that βG = 1 in the absence of radial deceleration of the
plasma by the magnetic field (i.e., no fluid-plasma motion
across magnetic flux), but βG < 1 in the presence of radial
deceleration (“radial” always means “quasi-radial” across the
flux surfaces). Hence, according to Equation (G18), setting
βG = 1 produces a value of Δnorm that constitutes an underes-
timate in the presence of radial deceleration.

Figure 6 illustrates the dependence of nondimensional ion
penetration depth Anorm into the external magnetic field on
the characteristic electron density decay length into that
field, (CVΔ), when CV is regarded as an unknown free para-
meter. Figure 6 indicates that the (underestimated) width of
the initial plasma-field mixing layer, as defined by the radial
protrusion of a representative ion into the magnetic field, is
quite insensitive to the exact numerical decay length
assumed for the density halo. Here, βG has been replaced by
its upper bound. Appendix H relates the numerical value of
βG to the presence or absence of macroscopic radial decele-
ration of newly injected, radially expanding plasma. The
effects of both electron and ion pressure gradients are expli-
citly included in Appendix H.
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Appendix H.—Relation Between Global Beta and Radial Deceleration
Initially, displaced magnetic flux between the plasma and

the metallic wall (behind the insulating layer) builds up
external magnetic pressure to match the radially expanding
internal plasma pressure and slow down the radial expan-
sion. This phase constitutes a dynamical adjustment
described below in more detail. It is to be distinguished from
the subsequent resistive phase that consists of radially
expanding ions attempting to drag reluctant electrons across
magnetic flux. The latter phase may involve either classical
resistivity or anomalous resistivity from microturbulence.

Newly injected high-temperature plasma tries to expand
across the ambient magnetic field, if it is not injected right
along the magnetic field lines. The preexisting nozzle mag-
netic field, however, counters that tendency early on. In the
simplest MHD model, the high-conductivity Ohm’s law is
E + V x B = 0, which has some validity at short times during
the setting-up phase. Here, E is the electric field in the lab
frame of reference. The symbol V is employed for the fluid
(macroscopic) velocity vector of the plasma ions in order to
be clearly distinct from the velocity vector vi of an individual
ion. As the plasma’s lateral boundary crosses outwards
through downstream-directed longitudinal magnetic flux (in
the local z-direction), with quasi-radial fluid velocity Vx (in
the local x-direction, ˆx = 6 x B/B ), an azimuthal electric
field ( VxBz) is generated in the clockwise direction (looking
downstream). Then, by Faraday’s law (or Lenz’s law),

E•dl=– 
dE)	

(H1)

where the closed-line integral is taken around the plasma
circumference in the clockwise direction, and O is the
enclosed longitudinal magnetic flux.

The downstream-directed magnetic flux thereby becomes
diminished within the plasma and displaced to the annular
volume outside of the plasma. Longitudinal magnetic flux
can be laterally repositioned, but once established it cannot
be created or destroyed within the volume defined by the
highly conducting wall, during the short time interval of
interest. The shifted flux, in addition to the original external
flux, is squeezed between the plasma boundary and the
conducting wall or coil, which thereby results in an increased
magnetic field strength in the annulus outside of the plasma.
The reconfigured flux therefore exerts an increased magnetic
backpressure impeding the further radial expansion of
plasma. The squeezed longitudinal magnetic flux acts like a
compressible gas having an adiabatic index of 2. The
expanding plasma therefore experiences a radial deceleration.

Although the above brief description was based upon the
simplest MHD model of a high-conductivity Ohm’s law, it
can be extended to more detailed plasma models. This model
envisions neutral plasma motion across the magnetic field.

The kinetic ion intrusion A in the breech into the confining
magnetic field takes place in a few hundredths of a micro-
second in a field of thousands of Gauss. This takes place in a
very short time span (on the order of one-quarter ion gyro-
period) compared with the transit time from breech to throat
(~10 µs at a velocity of 105 m/s). We assume this kinetic
penetration has already occurred, and so we go to the next
phase, which is described by a fluid model. For example, as
a steady-flow configuration is approached, with axial sym-
metry, the azimuthal electric field in the lab frame tends to
vanish; however, resistive currents are driven so as to con-
tinue to shield the plasma interior from penetration by the
external magnetic field. To see this, use the next level of
plasma model, namely, a resistive medium of resistivity r1. In
this case the perfect conductivity model E + V x B = 0
evolves over time into V x B = r1J, where J is the current
density in the edge plasma (where V represents the resis-
tive leakage of fluid velocity of the plasma in the quasi-
radial direction across the local magnetic field. The
resistive currents generated according to this model are
driven in the counterclockwise direction (looking down-
stream). They generate magnetic fields that have the net
effect of excluding magnetic flux from the interior plasma
but reenforcing it in the exterior annulus. Magnetic shield-
ing by an edge layer of plasma current is according to
Ampere’s law, V x B = g0J.

Still more detailed plasma models can be taken into
account, in which collisions of electrons with ions are rare and
the Hall effect is important. It is then necessary to
include the effects of electric fields due to charge separation
and to employ separate models for the electron and ion
motions (see, for example, the discussion after Equation (101)
in Section 3. 1, “Interface Width in Breech of Nozzle”). Mag-
netic shielding of the interior plasma is again realized.

The purpose of this appendix is to focus on the initial
dynamical adjustment phase, by furnishing an account of the
influence of the radial deceleration of plasma on the PG. We
work in a reference frame that follows a plasma element in
the main longitudinal flow, and a planar model of the
plasma-field interface is employed. Curvature of the
magnetic field lines is neglected for the short time interval of
interest. The ion and electron quasi-radial momentum equa-
tions then can be expressed as follows:

2
p (at Vx +VxaxVx )+ axP = ngEx = –ax µ0

_
 axP, 

(H2)

The first equation is the ion quasiradial momentum balance
equation, wherein the ions carry no azimuthal current at
early times; the second equation, with the help of Ampere’s
law, is the electron quasiradial momentum balance equation.
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With the help of the ion mass conservation equation,
∂ tρ+∂x (ρ Vx )= 0, the equations in Equation (H2) may be

combined as follows:

Now dividing through in Equation (H4) by the external
magnetic pressure, the global beta is

2

∂ t (ρ Vx ) +∂x (ρ Vz ) +∂x (Ptot + 2 μ 0

) = 0 	 (H3)

As mentioned above, Vx is the radial component of the ion-
fluid velocity, and the equations are written in the frame that
tracks the longitudinal flow. In Equation (H3), the total
plasma pressure is Ptot = Pe + Pi. This equation would have
had the same form were the ions to carry some azimuthal
current.

Equation (H3) is integrated across the evolving interface
plasma-field mixing layer of width δ. The integration is
performed from a point at the edge of the core plasma where
the density is large (subscript “core”) and the magnetic field
is small, to just beyond the mixing layer where the density is
small and the magnetic field is large (subscript “ δ”). These
inner and outer points are not fixed, but move radially with
the plasma fluid.

The integral of the first term in Equation (H3) is
rearranged with the time derivative moved in front of the
whole integral. It then is important to note that contributions
to that integral arise that are associated with the time-
dependent limits of integration. These exactly cancel the
contributions to the integration that originate from the
second term in Equation (H3). In view of these cancellations,
the integrated equation then can be written as

 	 B2
(ρ) geffδ=

 2µ0 

− Pcore 
(H4)

In Equation (H4), ρ is the average mass density in the

layer of width δ, and the effective gravitational acceleration

geff is

geff = − d\d
t

 x / 	 (H5)

where Vx is the density-weighted average fluid velocity in

the layer. Specifically,

δ

ρ Vx dx
/ 
Vx)

\ — core	 (H6a)`	 f δJ core ρ 
dx

=
1 S/ \	

ρ 
dx 	(H6b

\ρ/ δ core 	
)

βG =1− (ρ) geffδ	 (H7)
Bδ2 2 μ 0

If there were no radial deceleration (g = 0) or radial
macroscopic expansion ( Vx = 0), then one would have
βG = 1. With radial deceleration geff > 0, one must have
βG < 1. We shall now estimate the deviation (1 − βG ) due to

geff. In order to do so, the following three assumptions are
made:

(1) The average density in the plasma-field mixing layer is
roughly half of the density in the bulk plasma:

(ρ) ≈ ρ 2re
	 (H8)

(2) Consistent with the estimates made earlier, the width
of the edge-plasma boundary layer still is at least roughly
given by

δ ≈ c = 
VA	 (H9)

ωpi ωci

The second part of this equation is an identity. Here, the
inner plasma density and the outer magnetic field are used.

(3) A fraction h of the radial fluid velocity is lost by
deceleration during the short time increment of interest,
dt ≈ 1/ωc i and h ≤ 1. The effective gravitational acceleration

geff = − dVx dt , can then be represented as follows. The

numerator, − d Vx = hVx  , is to be divided by d t, roughly

one-fourth of an ion gyroperiod. Then,

geff ≈ωcihVx 	 (H10)

Using the above three assumptions and referring to Equa-
tion (H7), a simple calculation shows that the deviation of
the βG from 1 is given by

(
ρ)geffδ ≈ h (

Vx
)	 (H1 1)

BS 2 μ 0 	 VA

Our basic model has been based on the concept of a
highly sub-Alfvenic expansion of injected plasma across the
flux surfaces, Vx << VA. This approximation corresponds to a
very strong vacuum magnetic field and/or injection of pro-
pellant at grazing incidence to B, so that the displaced mag-
netic flux very quickly exerts a backpressure that prevents
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the realization of a large radial expansion velocity. As the
plasma expands radially, the plasma pressure falls and the
external magnetic pressure rises, so that the net force on the
edge layer is inwards. After this initial dynamical adjustment,

the plasma may still expand slowly across the magnetic flux,
but only by the ions dragging reluctant electrons across the
flux. This second phase corresponds to resistive diffusion.
Since h ≤ 1, it then follows that PG is very close to 1.
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Appendix I.—Initial Ratio of Ion Gyroradius to Plasma-Field Interface Width

Starting with the basic local identity

a i = r 	 (I1)
c/0)pi yR

we wish to evaluate this quantity first at a representative
position in the middle of the plasma’s edge gradient layer,
the interface region, and then convert that result to the
ratio [ai]mid/S, where S is the width of the interface;

S = 2[c/0)p i]core. Here, “core” means the internal number
density is used to evaluate the ion plasma frequency. In
Section 3.1, “Interface Width in Breech of Nozzle” the
interface width was estimated to have a somewhat larger
value.

When evaluating the local Q i = 87cnTi /B
2
 , the local n in

the numerator is set to half the core density, and the local
magnetic pressure in the denominator is set to half the exter-
nal magnetic pressure. The result is Ri = RG i , where the
subscript “G” refers to the global ion beta, which is defined
by the ratio of core ion pressure to external magnetic pres-
sure. Assuming that the uniform temperatures are equal,
Te = Ti, the total RG must be 1 across a static plasma-field
mixing layer. Therefore, the ion contribution to RG is one-
half; RG i = 1/2. Equation (I1) then reads

 ai
 1

(I2)
  c/0)pi  mid

However, [0)pi ] mid = [0)pi ] core 2, when the mid-density

is taken as half the core density. Then, Equation (I2)
becomes

^	
core

 ri  mid 	 = 
1
	 (I3)

_ 2 [c/0)pi ] 	 N 2

Dividing Equation (I3) by 2 and for S ≈ 2 I c10) i ]p	 ,
core

we then obtain

ai  	
=

mid	 1	
(I4)

S	 2

Because S actually was calculated to have a somewhat
larger value, we chose a somewhat smaller final working
ratio:

ai  	
=mid 1	 (I5)

S	 3

The distinction is not overly significant (see Fig. 4). This
then characterizes the ratio of electron current-drift velocity
to ion thermal velocity at a representative position within the
edge-plasma gradient. Of course, different positions within
the gradient layer will produce different numerical results for
ai/S. We do not attempt to obtain a profile-dependent result
in this report.
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Appendix J.—Generalized Plasma-Field Interface Thickness at the
Throat Calculation and Example

This appendix presents a more generalized derivation of
the plasma-field interface thickness at the throat—where
both the initial interface thickness at the breech and its
growth from breech to throat are taken into account. The
related issue of the ion gyroradius to interface thickness ratio
equation is also discussed.

J.1 Calculation of Plasma-Field Interface Thickness
and Fraction of Attached Plasma Discussion
and Example

Given a desired specific impulse, which is essentially the
desired exit velocity Vex at the effective exit of the thruster’s
nozzle, the velocity of propellant at the throat is, to a good
approximation,

Vt = 0.5Vex 	(J1)

The provisionally estimated travel time tb t of propellant
from breech to throat may be expressed as

L b
tb t = 

V 

t
	 (J2)

Vt

where Lb t is the axial distance from breech to throat. This
time estimate is subject to correction as described later.

If the interface thickness in the breech were zero, it would
thicken with time as

δ= Dt = 
DLbt 	

(J3)
Vt

so as to acquire this value in the throat, provided that we take
beta to be 1 as a representative magnitude within the inter-
face. We provisionally regard this δ as the width of the radial
density profile in the interface, but subject to correction as
described later.

If, instead, the boundary layer thickness in the breech
were δb , then the above formula would generalize to

δ = δb + Dt = δb + 
V

DLb t	
(J4)

t

This result is based upon the solution of a differential equa-
tion in time along the flow.

In this rendering of Equation (J4), a time-integration has
been artificially avoided by regarding D as the average value
of the resistive diffusivity between breech and throat. How-
ever, D does not vary much between breech and throat,

whether classical or anomalous due to Lower Hybrid Drift
(LHD) microturbulence. Using D at the position of the throat
provides a reasonable estimate of the interface thickness for
conditions of interest, because the diffusive contribution to
Equation (J4) generally does not greatly dominate the initial

(breech) contribution 52
b  and moreover, a square root is

taken to get the final result.
When modified as described below, Equation (J4) can be

utilized to estimate the fraction of attached plasma at the
position of the throat.

As shown in Section 3.1, “Interface Width in Breech of
Nozzle,” the interface thickness in the breech, which appears
in Equation (J4), can be estimated as

	

δb = 
2c
	(J5)

ωpi

in which c is the speed of light in free space and ωp i is the
ion plasma frequency.

Equation (J4), moreover, provides the basis for analytic
estimates of the ratio of ion gyroradius to interface thickness,
a i/δ, describing that ratio as it varies along the flow. That
work is presented in Section 3.1. A particular relevance of
that ratio is that it plays a central role in analytic theories of
LHD microturbulence, and especially in the anomalous
magnitude of the associated resistivity. In this regard, it is
important to remark that these analytic theories (for example,
Refs. 18, 23, 24, and 35) are usually limited to the elec-
trostatic (zero-beta) model, in which the gradient under
consideration is only the density gradient. Thus, for the
purpose of referring to the seminal analytic results of these
theories, the equations for a i/δ should be viewed within the
context of a resistively diffused density gradient. The δ
therein thus represents the density gradient width, without
the effect of bidirectional diffusion.

In the application to space vehicle thrusters with magnetic
nozzles, however, we need to estimate the fraction of plasma
that has become attached to the magnetic nozzle field lines.
For that application, inward magnetic diffusion into the
plasma is just as important as outward diffusion of plasma
into the external magnetic field.

In that case, two corrections ought to be made to Equa-
tion (J4). The first is trivial; namely, to expand the travel
time by about a factor 2 in order to allow for the time needed
to accelerate the interface plasma up to speed. Thus,
t = Lb t/ Vt becomes

	

t = 
2

V 	
t
	 (J6)

Vt
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Equation (J6) is the approximate result of an analytic inves-
tigation with realistic nozzle geometry for the plasma edge.
(This modification with the factor 2, in principle, should also
be made to the above-mentioned equations for the ratio ai/δ,
but that will have only a minor effect on the general conclu-
sion that this ratio varies little between breech and throat.)

The second correction is the more subtle, namely, to allow
for simultaneous resistive diffusion of plasma into nozzle
magnetic field and of field into plasma; the so-called bidirec-
tional diffusion. Each of these diffusive processes separately
(in the absence of Hall current and plasma rotation) would
accrue a diffusive distance of about √(D t), starting from
zero thickness in the breech. (For D = 3 m2/s and t = 10 μ s,
this diffusive distance is about 0.5 cm.) Heuristically adding
the two effects, we could reasonably estimate the total inter-
face thickness as

δ = Dt = 4Dt	 (J7)

The estimate that constitutes Equation (J7) is in need of a
careful numerical investigation, within the context of a
slowly convergent breech-to-throat geometry, as mediated by
a continuously distributed and continuously graded magnet
coil. Such a gradual configuration geometry would likely
preclude the anomalous cross-field loss of plasma observed
in a prior resistive MHD simulation, which employed dis-
crete coils and axially limited distances appropriate to an
envisioned lab experiment.

Accounting for both of the above-mentioned corrections,
Equation (J4) now reads

8DLb tδ= δ2+
bV
	 (J8)

t

At sufficiently low temperatures, D would be the classical
resistive diffusivity associated with coulomb scattering of
electrons on ions.

The classical resistivity itself appears in Equation (200) in
CGS units. The coulomb logarithm therein (the logarithm of
the ratio of the maximum-to-minimum impact parameter in
an electron collision with an ion) has been set to 10, which is
sufficient at the present level of development of our investi-
gation. (See Ref. 9.) Multiplication by ( c2/4π) converts this
resistivity to D in CGS units. Multiplication of the CGS
resistivity by 9 ⋅ 10 9 converts the resistivity to MKS units.
Dividing the latter by μ 0, which is the magnetic permeability
of free space, then yields D in MKS units. Alternatively, one
can convert D (CGS) into D (MKS) by just dividing the
former by 104.

At sufficiently high temperatures, D could result from
LHD microturbulence evolving from edge-gradient instabili-
ties. At intermediate temperatures, D would be appropriately
regarded as arising from the sum of both resistivities; that is,

the two types of electron collision frequencies, classical and
anomalous, would be additive.

We shall now present a numerical example of the calcula-
tion of the fraction of attached plasma, based upon Equa-
tion (J8). Of course, the parameters to be assumed here can
be changed as needed, concomitantly with changes of the
resistive diffusivity D, and the interface width in the breech
δb.

J.2 Calculation of the Fraction of Attached
Plasma—An Example

Consider hydrogen propellant, breech temperature 50 eV,

and breech number density 1.0 ⋅ 10 15 cm−3
. The specific

impulse is then about 20 000 s, and Vt = 1.0 ⋅ 107
 cm/s. (Here,

we employ approximate numbers, but they can be made
more accurate in a final calculation. Of course, other para-
meters can also be assumed.)

The interface thickness in the breech is then δb = 1.7 cm.
More to the point,

δ2b 2.9 cm 2 	 (J9)

For the given parameters, classical resistivity by far domi-
nates over anomalous resistivity due to the LHD instability
(see Fig. 4) and one finds approximately

D = 3 ⋅ 10 4 cm/s 	(J10)

which is the value in the throat and which thus allows for the
temperature drop relative to the breech.

With an axial breech to throat distance of one meter, Lb t =
100 cm, then Equation (J8) becomes

δ= 3.0 = 2.4 = 2.3 cm	 (J11)

Because we included bidirectional diffusion, the diffusive
contribution is about the same as that from the initial
(breech) contribution. Without the correction for bidirec-
tional diffusion, the second term would be rather small in
comparison to the breech contribution to the interface thick-
ness. That result for density diffusion alone then would be
relevant to the gyro-radius ratio to the thickness of the densi-
ty gradient, as discussed earlier.

In order to calculate the fraction of attached plasma, one
must already know the rate of mass ejection, m  . This quan-
tity is supposed to be predetermined by the logistics of the
given mission. With a hydrogen plasma radius in the throat,
rt = 10 cm, one has m  = 3.5 g/s, which already accounts for
the drop in density from breech to throat. Different desired
values of the mass ejection rate would lead to different val-
ues of the plasma radius in the throat, at the assumed breech
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density. (Of course, the plasma radius in the throat must be
the result of a self-consistent steady-flow interaction
between the injected plasma and the shaped vacuum
magnetic nozzle field. Prior simulations have already dem-
onstrated the self-consistent formation of a plasma throat,
within the time-dependent resistive MHD model.)

If the core density were to extend throughout the width of
the interface, then the fraction of attached plasma would be,
to sufficient approximation,

2δ 
= 46 percent	 (J12)

rt

However, the average density in the interface will, of course,
be somewhat less than the core density. A reasonable provi-
sional estimate, subject to the results of a future resistive
MHD simulation without ill understood anomalies, is that
the average density in the interface is roughly half of the
core value. (This would be the case for a linear spatial
decrease to zero in the radial edge density profile.) Then one

finds the fraction of attached plasma to be 23 percent. This
is, after all, a significant loss of plasma, which portends that
there will be a significant detachment problem to be solved
downstream, if the idealized thruster results are to be
approached.

At first glance, the above example points to the advantages
of working at higher temperatures to slow down resistive
diffusion. Then, higher mass propellant ions would be
employed to preserve the desired specific impulse. Further-
more, in order to mitigate the initial interface width in the
breech, it would be advantageous as well to work with a
higher number density of ions, so as to increase the ion
plasma frequency there. But note that the higher mass ion
decreases the ion plasma frequency, whereas the higher ion
charge increases it! The presence of a higher ion charge also
tends to increase resistive diffusion due to coulomb scatter-
ing of electrons by ions. Obviously, there are several compet-
ing effects that need scrutiny. A scenario involving higher
stagnation number density and higher stagnation temperature
in a propellant consisting of higher mass (and charge) ions,
becomes of interest for future investigations.
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Appendix K.—Raleigh-Taylor Instability: Further Considerations

In this appendix, we furnish the details leading to the spa-
tial dependence of the external magnetic field when flute
distortions of the surface are present. In the main report, we
presented a derivation of the growth rate of this flute-mode
instability in the magnetic nozzle-propellant interface. The
derivation given suppressed some details; specifically, the
property that the external magnetic field B has a 1/R depen-
dence is crucial, but was not given a full discussion. Here, R
is the local longitudinal radius of curvature of the surface,
which can be extended beyond the equilibrium surface to
signify a spatial variable in the external volume outside of
the propellant.

In the equilibrium situation involving only the unper-
turbed boundary surface of propellant, the above-mentioned
spatial dependence of the external magnetic field can readily
be demonstrated. The integral form of Ampere’s law is
employed, using an Ampere circuit around the highly con-
ducting, sharp-boundary propellant configuration, which is
assumed to diamagnetically exclude the magnetic flux.
Therefore, the integral form of Ampere’s law immediately
yields the result that B = µ0KReq/R, where Req is the equili-
brium radius of local longitudinal curvature and K is the local
transverse surface current per unit longitudinal arc length.

The question remains as to the spatial dependence of the
external magnetic field under the nonequilibrium condition
associated with the distortion of the surface from Req

(denoted by SR) into flutes. Then R = Req + SR represents the
distance of a point on the distorted interface from the local
center of longitudinal curvature of the interface. (The equili-
brium shape of the interface still has longitudinal radius of
curvature Req.)

Figure 7 illustrates a longitudinal local section of a
converging-nozzle surface with “adverse” longitudinal cur-
vature and flutes. The center of longitudinal curvature is at C.
The equilibrium surface possesses a radius of longitudinal
curvature Req. The crests and troughs of the flutes on that
surface are indicated by R = (Req + SR). The flutes are
observed by rotating the r,Z-plane of the figure around the
Z-axis, while C is fixed (in the rotating plane) but the radius
of longitudinal curvature fluctuates. The subtended longitu-
dinal angle is do, and the length of arc shown (solid) is Req do .
In the equilibrium situation, without surface distortions, one
may regard R as a radial position variable in the space out-
side of the unperturbed surface. Since the magnetic field B
only exists in the external volume, one may apply the
integral form of Ampere’s law to the circuit indicated by
(—>), to show that B = µ0 K (Req/R), where K is the surface
current per unit longitudinal arc length.

In this appendix we furnish the details leading to the spa-
tial dependence of the external magnetic field when flute
distortions of the surface are present. The proof will be
carried out primarily verbally and pictorially to facilitate its

accessibility, but we believe that it is nevertheless a rigorous
proof when based upon the following assumptions and their
corollaries:

(1) The propellant core is highly conducting (a “perfect”
conductor) and is bounded by a sharply defined surface (the
interface) separating the internal field-free plasma from the
external longitudinal magnetic nozzle field (Br, BZ). These
are the only components of B after the original axially sym-
metric configuration becomes distorted by flute modes.

(2) According to the integral form of Ampere’s law,
OxB = µ0J, there must necessarily exist a surface current
that separates the null-field interior plasma from the nozzle
magnetic field in the external region. We denote this surface
current density by K.

(3) The longitudinal flute-mode displacement of each
point on the sharp-boundary plasma surface occurs only in
the r,Z-plane corresponding to that equilibrium point and is a
periodic function of the azimuthal angle 0. (The cylindrical
coordinates are (r, 0, Z).) We caution that the flute-distortion
motion of the surface itself is not identical to the motion of
the underlying fluid. Nevertheless, only the surface dis-
placement is relevant to the disposition of the external mag-
netic field.

(4) Our simple model of the flute distortion is that the
local distorted surface remains “parallel” to the equilibrium
surface, in the sense depicted in Figure 7(a). This assumption
is meant to reproduce, as closely as possible, the fluting of a
plane surface, in which the longitudinal generators of the
distortions remain parallel to the original plane. This particu-
lar model of the flute distortions is realized by having the
center of curvature remain fixed in the r,Z-plane as it rotates
around the axis of initial symmetry. Then the longitudinal
radius of curvature of the surface varies as the plane rotates,
thus generating the crests and troughs of the flutes. (Note:
Restriction of the present model to address only a short
longitudinal increment of the surface means that the pheno-
mena of global ballooning modes are neglected. Localized
g-modes are the objects of the present investigation. Even-
tually, however, the ballooning modes should be studied to
provide a more comprehensive picture of processes that
affect regions of adverse curvature. Such regions might exist
throughout the nozzle: either upstream of the nozzle-throat
(where the nozzle narrows down into the throat) or also
downstream of the throat (where the diverging field lines are
turned so as to straighten out the flow).

(5) The magnetic field must remain external to the dis-
torted fluid surface because magnetic field lines cannot
penetrate a perfect conductor if they initially lie outside.
Moreover, the field lines must remain longitudinal ( Bo = 0)
during the flute distortion, because there exists no conducting-
surface motion restricted to longitudinal flutes that can
initiate any transverse magnetic field component. (There is
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no preferred transverse field direction under the given sur-
face displacement.)

(6) The longitudinal field lines just outside the surface
must remain tangential to the distorted surface: first, because
they cannot enter or leave the surface and second, because
any vacated external vacuum volume would become instantly
filled with magnetic field (at the speed of light).

(7) The vector field that describes the current density K
must (of course) lie on the evolving surface during the dis-
tortion, and it also must remain locally perpendicular to the
contiguous longitudinal magnetic field vectors. Otherwise, if
K had acquired a component along B, then B would neces-
sarily acquire a transverse component, but this is impossible
under the conditions restricted to flute distortions of the
surface (see above).

Based upon the above assumptions, we can now show that
the magnetic field at the distorted surface varies as 1/R ,
where R is the local longitudinal radius of curvature on the
distorted surface. This is done by means of the integral form
of Ampere’s law.

It can be inferred from Figure 7(a) that as the r,Z-plane is
rotated to register a sequence of flute distortions, lines of the
vector field K cannot cross the boundaries of the sector do .
For if they did, the surface would then necessarily acquire a
component along longitudinal B, which cannot happen in the
considered flute distortions (see above). Therefore, the total
surface current in do is conserved. That is, KR do is constant.
(R do is the longitudinal arc length crossed by the surface
current.)

Figure 7(b) shows an Ampere circuit of vanishing width,
indicated by (—>). The thin Ampere circuit contains the
propellant’s sharply defined surface. The model considered
here is delimited by a longitudinal angle increment do ,
which is measured from the center of longitudinal curva-
ture C shown in Figure 7(a). The symbol “xxxxx” schemat-
ically indicates the surface current per unit longitudinal
length, denoted as K. The plane of Figure 7(b) (and 7(a)) is
the r,Z-plane, but the plane of the Ampere circuit is per-
pendicular to the distorted (fluted) surface. Hence the
Ampere circuit is in the r,Z-plane only at the crests and
troughs of the distorted surface. Figure 7(c) illustrates this
end-on view of a fluted surface, showing three Ampere
circuit planes.

Considering Figure 7(b), we can apply the integral form
of Ampere’s law to the indicated circuit. The result reads BR

do = ȝ0KR do; also, BR do = constant. Hence, B varies as 1 /R
even when the surface possesses flute distortions. This result
was specifically utilized in Section 4.2.1, “Surface Instability
of Static Plasma in Region of Adverse Curvature,” in the
discussion of the exponential growth rate of the linearized
flute-mode fluctuations.

Aside from the spatial variation of magnetic field B near
the surface of the propellant, there is a concern that B could
suffer an overall shift because of a change in surface current
K as the flutes evolve. However, the large inductance of the
global currents provides very large impedance against shifts
in K on the time scales for growth of the Raleigh-Taylor
instabilities.
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