
(12) United States Patent
Hinchey et al.

(54) SYSTEM AND METHOD FOR DERIVING A
PROCESS-BASED SPECIFICATION

(75) Inventors: Michael Gerard Hinchey, Bowie, MD
(US); James Larry Rash, Davidsonville,
MD (US); Christopher A. Rouff,
Beltsville, MD (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 552 days.

(21) Appl. No.: 10/789,028

(22) Filed:	 Feb. 25, 2004

(65)
	

Prior Publication Data

US 2005/0138602 Al	 Jun. 23, 2005

Related U.S. Application Data

(60) Provisional application No. 60/533,376, filed on Dec.
22, 2003.

(51) Int. Cl.
G06F 9144	 (2006.01)

(52) U.S. Cl . .. 	 717/123
(58) Field of Classification Search 717/100-109,

717/169-170, 123
See application file for complete search history.

(56)
	

References Cited

U.S. PATENT DOCUMENTS

5,163,016 A 11/1992 Har'Eletal.
5,353,371 A 10/1994 Honiden et al.
5,495,567 A * 2/1996 Iizawa et al 	 715/762
5,535,322 A * 7/1996 Hecht	 	 705/1
5,623,499 A 4/1997 Koetal.
5,799,193 A 8/1998 Sherman et al.

(1o) Patent No.:	 US 7,543,274 B2
(45) Date of Patent:	 Jun. 2, 2009

6,275,976 B1 8/2001 Scandura
6,289,502 B1 9/2001 Garland et al.
6,314,555 B1 11/2001 Ndumu et al.
6,343,372 B1 1/2002 Felty et al.
6,353,896 B1 3/2002 Holzmann et al.
6,405,364 131* 6/2002 Bowman-Amuah 717/101
6,662,357 131* 12/2003 Bowman-Amuah 717/120
6,804,686 131* 10/2004 Stone et al 707/104.1
6,907,546 131* 6/2005 Haswell et al 714/38

(Continued)

OTHER PUBLICATIONS

C.J. Fidge, "A Formal Definition of Prority in CSP", Sep. 1993, ACM
Press vol. 15 Issue 4, pp. 681-705.*

(Continued)

Primary Examiner Wei Y Zhen
Assistant Examiner Anna Deng
(74) Attorney, Agent, or Firm Heather Goo

(57)	 ABSTRACT

A system and method for deriving a process-based specifica-
tion for a system is disclosed. The process-based specification
is mathematically inferred from a trace-based specification.
The trace-based specification is derived from a non-empty set
of traces or natural language scenarios. The process-based
specification is mathematically equivalent to the trace-based
specification. Code is generated, if applicable, from the pro-
cess-based specification. A process, or phases of a process,
using the features disclosed can be reversed and repeated to
allow for an interactive development and modification of
legacy systems. The process is applicable to any class of
system, including, but not limited to, biological and physical
systems, electrical and electro -mechanical systems in addi-
tion to software, hardware and hybrid hardware-software sys-
tems.

26 Claims, 2 Drawing Sheets

115 145

110
PARAMETERS

130	
OF

130	 CONCURRENCY

1RACES/NANRAL	 120 150 L 170
UAOE ESS-
ARIOS

CONIIXf SPEC

SFNSRNE INFERENCE
ENGINE SPECIFMADON

ED80R

i
ANALYZER

REUSED	 175
185

SPECIFICATION SPECIFICATION
X96

FORNk
SPECIE60N	 CODE VERIFMATpN

CODE	 ^`.195
CONVERTER GENERATOR

MODEL CNECNING_:F 1` 197
180 190

100
1RANSlATOR

200

https://ntrs.nasa.gov/search.jsp?R=20090043141 2019-08-30T08:37:31+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10551833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 7,543,274 B2
Page 2

U.S. PATENT DOCUMENTS

7,047,518 B2 * 5/2006 Little et al 717/108
7,051,317 B2 * 5/2006 Vazquez et al 717/104
7,086,009 B2 * 8/2006 Resnick et al 715/771
7,114,149 B2 * 9/2006 Aptus et al 717/123
7,472,374 B1 * 12/2008 Dillman et al 717/102

2001/0052108 Al* 12/2001 Bowman-Amuah 717/1
2 00 2/00 2923 1 Al* 3/2002 Aptus et al 707/513
2002/0032900 Al* 3/2002 Charisius et al 717/2
2 00 2/009 1990 Al* 7/2002 Little et al 717/105
2002/0100015 Al 7/2002 Harel et al.
2002/0104071 Al* 8/2002 Charisius et al 717/109
2002/0116702 Al * 8/2002 Aptus et al 717/170
2003/0067481 Al* 4/2003 Chedgey et al 345/738

2005/0022155 Al * 	 1/2005 Broberg et al 717/101
2005/0193269 Al * 	 9/2005 Haswell et al 714/38

OTHER PUBLICATIONS

Mattew Hennessy, et al. "Algebraic Laws for Nondeterminism
andconcurrency", Jan. 1985, ACM Press, Journal of the ACM
(JACM), vol. 32 Issue 1, pp. 137-161.*
B-Core Limited., "The B-Toolkit", pp. 1-9, 02/22.
Michael Butler, "csp2B: A Practical Approach To Combining CSP
and B"; Declarative Systems and Software Engineering Group, Tech-
nical Report DSSE-TR-99-2, Department of Electronics and Com-
puter Science, University of Southampton, Feb. 1999, pp. 1-16,
Highfield, Southampton SO 17 1BJ, United Kingdom.

* cited by examiner

115 145

+

PARAMETERS lAWS OF 1 30 CONCURRENCY 1 60
i 150 170

$ PROCESS-
CONTEXT BASED SPEC
SENSmVE - INFERENCE

FORMAL

EDITOR ENGINE I
SPEClflCATlON -

I
I

ANALYZER
I

_I --- CODE .-- [FEATION - 195 , , MODEL CHECKING

\ 197

FIG. 1

U.S. Patent	 ,Tun. 2, 2009	 Sheet 2 of 2	 US 7,543,274 B2

INPUT SCENARIOS IN NATURAL LANGUAGE	 202

INPUT PARAMETERS FROM DATABASE 	 I - - 204

GENERATE TRACE SPECIFICATION 	 k`, 206

PRODUCE PROCESS-BASED SPECIFICATION [-`. 208

GENERATE CODE 	 k--,. 210

CODE	 F--- 212

FIG.2

US 7,543,274 B2
1	 2

SYSTEM AND METHOD FOR DERIVING A	 resulting code represents the customer's requirements) also
PROCESS-BASED SPECIFICATION 	 apply to these other conventional approaches.

This application for patent hereby claims priority to U.S.
Provisional Patent Application Ser. No. 60/533,376 entitled
"System and Method for deriving a Process-Based Specifi-
cation" by Hinchey et al., which was filed on Dec. 22, 2003.
This provisional patent application is hereby incorporated by
reference.

ORIGIN OF THE INVENTION

The invention described herein was made by employees of
the United States Government, and may be implemented or
manufactured and used by or for the Government for govern-
mental purposes without the payment of any royalties thereon
or therefor.

FIELD OF THE INVENTION

The present invention relates to computer and software
engineering environments, and more particularly, the present
invention relates to software development, requirements defi-
nition, formal methods, system validation and verification,
and code generation, both automatic and manual. Addition-
ally, the herein disclosed invention relates to the fields of
chemical or biological process design or mechanical system
design, and, generally to any field where the behaviors exhib-
itedby a process to be designed is described by means of a set
of scenarios expressed in natural language, or some appro-
priate graphical notation.

BACKGROUND OF THE INVENTION

Complex (software and hardware) systems are developed
for numerous applications and processes, including the auto-
mated control of spacecraft operations and ground systems.
Complex software and hardware systems, however, may
encounter problems. The cause of potential faults and defects,
such as redundancies, deadlocks, and omissions, may be dif-
ficult to determine, especially when the system is distributed
and has parallel execution paths. Formal specification meth-
ods provide a means for avoiding or discovering such defects.
Currently available techniques to formally specify software
and hardware, however, can be difficult and time consuming
to use.

Conventional processes for (hardware and software) sys-
tem development include code generation (either automated
or manual) from a specification that includes a specification
language along with a tool kit. These processes enable model
checking, verification, and automatic code generation. Dis-
advantages with these approaches include the user specifying
every low-level detail of the system in advance. Thus, a sys-
tem specification might be difficult to develop, understand,
and modify. Further, difficulties may exist in establishing that
the resulting code represents the customer's requirements,
because the requirements are in natural language, and not in a
specification language that is amenable to analysis.

Other conventional approaches include state-based
approaches, employing, for example, statecharts or use-
cases. These approaches may not offer the capability to check
for errors, deadlocks, omissions, and the like, which formal
specification languages provide, unless additional constraints
are added. These constraints can be unwieldy or introduce
inefficiencies into the development process, or indeed result
in the incorrect system being developed. The same difficulties
described above (i.e., the difficulty of establishing that the

SUMMARY OF THE INVENTION

Accordingly, the disclosed embodiments of the present
invention are directed toward system and methods for deriv-
ing a process-based specification that solves or reduces the
problems within the conventional art. According to the dis-

co closed embodiments of the present invention, a method for
deriving a process-based specification for a system is dis-
closed. The method includes deriving a trace-based specifi-
cation from a non-empty set of traces. The method includes
mathematically inferring that the process-based specification

15 is mathematically equivalent to the trace-based specification.
Accordingly, the disclosed embodiments of the present
invention are directed toward said methods for deriving a
process-based specification that solves or reduces the prob-
lems within the conventional art.

20 Additional features or advantages of the disclosed embodi-
ments are set forth in the description that follows, and in part
will be implied from the description, or may be learned by
practice of the invention. The objectives and other advantages
of the invention are realized and obtained by the structure and

25 methods particularly pointed out in the written description
and the claims as well as the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

30 The accompanying drawings, which are included to pro-
vide further understanding of the disclosed invention, illus-
trate embodiments of the invention, and together with the
descriptions serve to explain the principles of the invention.
In the drawings:

35	 FIG. 1 illustrates a software development system accord-
ing to the disclosed embodiments.

FIG. 2 illustrates a flowchart for deriving formal specifi-
cations and code from scenarios according to the disclosed

40 embodiments.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

45 Aspects ofthe inventionare disclosedinthe accompanying
description. Alternate embodiments of the present invention
may be derived without parting from the spirit or scope of the
present invention. It should be noted that like elements in the
figures are indicated by like reference numbers.

50 FIG. 1 illustrates a software development system 100
according to the disclosed embodiments. Software develop-
ment system 100 includes a data flow and processing points
for the data. Software development system 100 is represen-
tative of (i) computer applications and electrical engineering

55 applications such as chip design and other electrical circuit
design, (ii) business management applications in areas such
as workflow analysis, (iii) artificial intelligence applications
in areas such as knowledge-based systems and agent-based
systems, (iv) highly parallel and highly-distributed applica-

60 tions involving computer command and control and com-
puter-based monitoring, and (v) any other area involving
process, sequence or algorithm design. According to the dis-
closed embodiments, software development system 100
mechanically converts different types of specifications (either

65 natural language scenarios or descriptions, or trace specifica-
tions, which are effectively pre-processed scenarios) into pro-
cess-based formal specifications on which model checking

US 7,543,274 B2
3
	

4
and other mathematics-based verifications are performed, 	 actions in a sequential manner. In other words, the traces of
and then optionally converts the formal specification into 	 trace specification 130 may not include conditional state-
code.	 ments or actions. Conditions in the input scenarios 110 are

Software development system 100 receives natural lan-	 maintained in the set of traces 130 by introducing multiple
guage scenarios 110. A scenario is natural language text that 5 traces describing alternate execution patterns. As a result, the
describes the software's actions in response to incoming data 	 number of traces in the set of traces 130 is likely to exceed the
and the internal goals of the software. Scenarios also may	 number of scenarios in the set of natural language scenarios
describe communication protocols between systems and

	
110. Traces also may be known as sequences, events, or

between the components within the systems. Scenarios also	 event-traces.
may be known as use-cases. A scenario describes one or more 10	 Traces also may be known as a sequence of steps. Trace
potential executions of a system, describing what happens in 	 specification, or set of traces, 130 incorporates a mathemati-
a particular situation, and what range of behaviors is expected

	
cal language that is behavioral. The set of traces 130 describes

from or omitted by the system under various conditions.	 all possible behavior patterns of the system as described by
The set of natural language scenarios 110 is constructed in 	 the developers and/or users in the natural language scenarios

terms of individual scenarios written in a structured natural 15 110. From this behavioral description, the disclosed embodi-
language. Different scenarios may be written by different 	 ments can mathematically infer a more general description
stakeholders of the system, corresponding to the different

	
from specific descriptions. Specific execution paths within

views they have of how the system will perform. Natural
	

natural language scenarios 110 may be input, and generalized
language scenarios 110 may be generated by a user with or	 executions generated from the specific executions. The more
without mechanical or computer aid. The set of natural lan- 20 generalized description is amenable to analysis and enables
guage scenarios 110 provides the descriptions of actions that

	
the highlighting of erroneous or problematic execution paths.

occur as the software executes. Some of these actions will be
	

Inference Engine 150 is a theorem prover, also known as an
explicit and required, while others may be due to errors aris- 	 automatice theorem prover, in which laws of concurrency 145
ing, or as a result of adapting to changing conditions as the

	
have been embedded. Laws of concurrency 145 are rules

system executes. 	 25 detailing equivalences between sets of processes combined in
For example, if the system involves commanding space 	 various ways, and/or relating process-based descriptions of

satellites, scenarios for that system may include sending com- 	 systems or system components to equivalent sets of traces.
mands to the satellites and processing data received in

	
The embedding may be "shallow" in which case the theorem

response to the commands. Natural language scenarios 110
	

prover operates on syntactic equivalences. The embedding
should be specific to the technology or application domain to 30 may be "deep", in which case the theorem prover operates at
which it is applied. A fully automated general purpose 	 the level of semantic equivalence. The latter is preferred, but
approach covering all domains is technically prohibitive to	 the disclosed embodiments also may operate at a shallow
implement in a way that is both complete and consistent. To

	
level.

ensure consistency, the domain of application must be spe- 	 The embedding of laws of concurrency 145 in inference
cific-purpose. For example, scenarios for satellite systems 35 engine 150 may be validated by using the embedding to prove
may not be applicable as scenarios for systems that manufac-	 the laws of concurrency, which are known to be correct. An
ture agricultural chemicals. 	 example of the laws of concurrency 145 are given in "Con-

Natural language scenarios 110 are input to a context sen-	 current Systems: Formal Development in CSP" by M. G.
sitive editor 120. Context sensitive editor 120 also has access

	
Hinchey and S. A. Jarvis, McGraw-Hill International Series

to a database of domain parameters 115. Domain parameters 40 in Software Engineering, Newyork and London, 1995, herein
reside in a database of parameters 115 that describes the terms

	
incorporated by reference.

usable and allowable in natural language scenarios 110, that
	

Laws of concurrency 145 may be expressed in any suitable
is, the "context". The parameters allow for a wide range of

	
language for describing concurrency. These languages

domains and applications to be used with specialized terms in
	

include, but are not limited to, CSP (Communicating Sequen-
the scenarios. Different vocabulary applies to different areas 45 tial Processes), CCS (Calculus of Communicating Systems),
of technology, and the vocabulary may change for different	 and variants of these languages. The theorem prover forming
applications and different domains. Database of domain 	 the basis of inference engine 150 may be any available con-
parameters 115 may comprise any terms or language that may 	 ventional commercial or academic theorem prover, or a
be defined using grammar. Database of parameters 115 also

	
bespoke theorem prover.

will contain a dictionary of application-related events and 50	 Inference engine 150 involves a deep embedding of the
actions.	 laws of concurrency expressed in CSP in the freely-available

Context sensitive editor 120 takes natural language sce- 	 theorem prover ACL2. Other embeddings of laws of concur-
narios 110 and database of domain parameters 115, and pro- 	 rency (or equivalence of combinations of processes)
duces a trace specification 130 based on the inputted sce- 	 expressed in other languages and implemented in other theo-
narios. Trace specification 130 correlates to natural language 55 rem provers also embody the disclosures described herein,
scenarios 110. In formal methods, and other areas of software 	 and may be substituted for inference engine 150 and are
engineering, a trace is a sequence of events that a process has 	 equivalent to the disclosed embodiments of the present inven-
engaged in up to a given point in time. The set of all possible 	 tion.
behavior patterns of a process is represented by the set of

	
Inference engine 150 takes as input trace specification 130,

traces of that process. Context sensitive editor 120 produces 6o and combined with its embedding of the laws of concurrency
trace specification 130 from natural language scenarios 110. 	 145, reverses the laws of concurrency 145 to infer a process-
Context sensitive editor 120 may perform these actions auto- 	 based specification 160. The process-based specification 160
matically.	 is mathematically and provably equivalent to the trace-based

Trace specification 130 includes traces that are a list of all
	

specification 130. Mathematically equivalent does not neces-
possible orderings of actions as described by the developers 65 sarily mean mathematically equal. Mathematical equivalence
that are taking place within the scenarios. More specifically, 	 ofA and B means thatA implies Band B implies A. Note that
traces are lists of computational actions. Traces list the 	 applying the laws of concurrency 145 to the process-based

US 7,543,274 B2
5

specification 160 would allow for the retrieval of a trace-
based specification that is equivalent to the trace-based speci-
fication 130. Note that the process-based specification is
mathematically equivalent to rather than necessarily equal to
the original trace-based specification 130. This feature indi- 5

cates the process may be reversed, allowing for reverse engi-
neering of existing systems, or for iterative development of
more complex systems.

The mechanism by which the inference engine 150 will
infer the process-based specification 160 will vary depending io
on the theorem prover that is used as the basis of the inference
engine 150. This feature generally involves a combination of
rule rewriting and searching a tree of possible rewritings to
determine which process combinations correspond to the
traces in the trace-based specification 130. The choice of 15

theorem prover used as the basis of the inference engine 160
will, combined with the completeness of the embedding of
the laws of concurrency 145, determine the performance of
the system.

Formal specification analyzer 170 receives as input the 20

process-based formal specification 160. Formal specification
analyzer 170 allows the user to manipulate the formal speci-
fication 160 in various ways. Alternate implementations, on
different hardware and software architectures, may be con-
sidered. The formal specification analyzer 170 allows the user 25

to examine the system described by the natural language
scenarios 110, and to manipulate it so as to execute on a
different combination of (local or distributed) processors.
The process-based formal specification 160 may be analyzed
to highlight undesirable behavior, such as race conditions, 30

and equally important, to point out errors of omission in the
original natural language scenarios 110 and/or the trace
specification 130. The formal specification analyzer 170 is an
optional but useful stage in the disclosed embodiments of the
present invention. If the formal specification analyzer 170 is 35

not used, then the process-based specification 160 and the
revised formal specification 175 are identical. Hence, if the
formal specification analyzer 170 is not used then all refer-
ences to the revised formal specification 175 disclosed below
also apply to the process-based specification 160.	 40

Revised formal specification 175 highlights behavior pat-
terns that were previously not considered possible, based on
the description given in the natural language scenarios 110
and/or the trace-based specification 130. In reality, the behav-
ior of the system is much more complex than considered in 45

the natural language scenarios 110 and/or the trace specifica-
tion 130 due to interactions between components, which
users (and often developers) do not consider. As a result, other
behavior patterns prove to be possible and revised formal
specification 175 is easier to examine and highlights error 50

conditions to be addressed.
Revised Formal specification 175 allows model checking

that is performed to detect omissions and race conditions.
Revised Formal specification 175 also allows verification of
the requirements established by natural language scenarios 55

110. Revised formal specification 175 provides for the formal
analysis of interactions between processes and the proofs of
properties, such as the presence or absence of livelock or
deadlock. A deadlock condition is defined as one where noth-
ing happens after an action is taken. A livelock condition is 60

defined as one where unpredictable results occur after an
action. These conditions can be fatal in the software develop-
ment process. Many other behaviors, such as avoidance of
particular conditions, or recovery from particular conditions,
can also be proven. 	 65

Formal specification converter 180 is a converter for for-
mal specification 175. Formal specification converter 180

6
takes the higher level formal specification 170 and converts it
to a lower-level specification 185 (possibly written in a dif-
ferent formal specification language or notation) that is suit-
able for input into a code generator 190. Preferably, low level
specification 185 is in the B specification language, or some
other specification language or notation. Further, code gen-
erator 190, preferably, is (part of) a B specification language
toolkit. Code generator 190 generates code 195.

Code 195 preferably comprises a sequence of instructions
to be executed as a software system. Code 195 is an accurate
description of the system defined by natural language sce-
narios 110 that is mathematically provable. Code 195 is used
for verification 196 of the natural language scenarios 110 as
well as trace specification 130. Further, code 195 may be used
as a basis for model checking 197. Code 195 comprises
executable computer code, which may be translated before
execution. Translator 200 receives code 195. Translator 200 is
a compiler, interpreter, translator, transformer, and the like
that generates instructions at a low level, such as machine
code.

Either at the point of generating code 195, or ideally at the
time of generating a revised formal specification 175, errors
and problems are likely to arise, especially during the first
iteration, as in all development situations. Incompatible sce-
narios are likely to raise the need for adjustments, improve-
ments, and corrections. Natural language scenarios 110 may
have to be corrected or changed. In these instances, software
development system 100 allows for the modification of (or
accepts the user's modifications to) the natural language sce-
narios 110 and re-executes the actions disclosed above. More-
over, if the requirements change, natural language scenarios
110 may be modified accordingly. Thus, natural language
scenarios 110 are adaptable. Advanced users may wish to
make amendments at the level of the traces specification 130
or the process-based specification 160 or even at the level of
the revised formal specification 175. This action is permitted,
but means that changes only take effect from that point on,
and the mathematically provable equivalence to the natural
language scenarios 110 is not maintained.

According to the disclosed embodiments of the present
invention, software development system 100 provides math-
ematical traceability in that it allows for mathematical logic to
demonstrate what was produced as code 195 matches what
was defined by natural language scenarios 110. Thus, code
195 is provably correct with respect to natural language sce-
narios 110. Further, executable code 195 may be mechani-
cally regenerated when requirements dictate a change in the
high level specifications. Any change in the system defined by
natural language scenarios 110 introduces the risk of new
errors that necessitate re-testing and re-validation. This risk is
reduced according to the disclosed embodiments.

The use of natural language scenarios 110 is effective in
specifying a wide range of types of software. Automating the
translation from natural language scenarios 110 to formal
specification 185 reduces the need for testing yet produces
high quality software systems. The need for testing is impor-
tant, especially in those classes of systems where all possible
executionpaths cannot be tested. Any reduction in this need is
desirable. The benefits of formal specification and develop-
ment provide assurance that the software is operating cor-
rectly. Due to the high assurance techniques the amount of
testing is reduced and less time is spent on coding and devel-
oping test cases. The result is reduced development time,
higher quality systems, and less expense.

The disclosed embodiments provide for full automatic
code generation that is efficient, that reduces the opportunity
for programming errors, and that supports the whole system

US 7,543,274 B2
7

development life cycle. The disclosed embodiments also fit
with existing processes. Specifically, through formal meth-
ods, the disclosed embodiments augment an informal case-
based approach based on scenarios, thus bringing the benefits
of correctness, precision, concision, accuracy, proof, and
automatic code generation. The disclosed embodiments
accept scenario-level specifications as input and convert them
into a mathematics-based formal specification language.
From the formal specification language, model checking and
proofs of correctness are undertaken.

Once the specification is checked and corrections are made
(involving a re-iteration of the development described above),
the formal specification is converted into executable com-
puter code. The formal specification provides means to check
the scenarios for potential errors that would be difficult or
nearly impossible to detect if those specifications had no
underlying formal mathematical foundation. Thus, an end-to-
end tool is provided that allows the creation of the high level
specification for a software, or other, system, the conversion
into a formal specification language, a verification of the
formal specification for errors, and the production of execut-
able computer code correctly representing the original high
level specification. Thus, the disclosed invention realizes the
long-sought goal in computer science of a tractable, auto-
mated means to obtain executable code that is provably
equivalent to the application requirements (that is, the high
level specification of the application).

In resolving conflicts between the behaviors described in
natural language scenarios 110, an acceptable set of behav-
iors is determined and used in deriving the requirements
specification of the system. Natural language scenarios 110
are expressed stating the actions that the system performs in
response to various stimuli, external or internal. The actions
and stimuli are chosen from a dictionary (representing the
application domain context) of previously determinedparam-
eters for given processes and the proposed system.

In formal methods, a trace is the sequence of the events that
a process is engaged in up to any given point in time. The set
of traces of a process represents the set of all possible behav-
ior patterns of that process. In many cases, the set of traces is
an infinite set of finite sequences of events. The set of traces of
a system is calculated from the sets of traces of its constituent
processes, using the rules of a suitable formal specification
language. In essence, a scenario is a constrained natural lan-
guage description of some subset of the set of traces of the
system.

Moreover, the use of the trace semantics is highly tractable.
It is not necessary, however, to be able to list all of the traces
of the system. Rather, the set of traces is given in intention;
that is, a formula for calculating the set of traces is given, and
manipulated, again using rules given in the formal specifica-
tion language. Given a sequence of events, it is possible to
determine whether it denotes acceptable execution of the
system by determining whether or not it is a valid member of
the set of traces of that system.

Therefore, from natural language scenarios 110, using a
dictionary of events and actions written in a constrained way
embodying domain parameters 115, it is possible to go to
trace specification 130 of the system behavior. The disclosed
embodiments then devise a mechanism for extracting a more
useful process-based formal specification from trace specifi-
cation 130.

FIG. 2 is a flowchart for deriving formal specifications and
code from scenarios according to the disclosed embodiments.
FIG. 1, however, is not limited by the embodiments disclosed
by FIG. 2.

8
Step 202 executes by inputting scenarios written according

to proposed system natural language text. Example I of the
disclosed embodiments below, is a natural language scenario
for a software system of an autonomous, agent-based ground

5 system for satellite control.

EXAMPLE I OF THE DISCLOSED
EMBODIMENTS

10	 If the Spacecraft Monitoring Agent receives a "fault' advi-
sory from the spacecraft

The agent sends the fault to the Fault Resolution Agent
OR
If the Spacecraft Monitoring Agent receives engineering

15 data from the spacecraft
The agent will send the data to the Trending Agent
The software system uses agents as surrogates for human

spacecraft controllers. In Example 1, the natural language
scenario specifies that, when the agent receives a spacecraft

20 fault, it will then send it on to a fault resolution agent that will
analyze it for possible actions to take. The natural language
scenario also states that if the agent receives engineering data
from the spacecraft, it will send it to a trending agent.

Step 204 executes by inputting domain parameters from a
25 database. The database of parameters includes domain spe-

cific terms to help define the scenarios. Such databases are
developed for specific domains and inputted into the software
development process, such as software development system
100 of FIG. 1.

30 Step 206 executes by generating traces for the natural
language scenarios. Example 2 of the disclosed embodiments
below discloses the equivalent structured text of a trace that
the natural language scenario disclosed in Example I would
be converted into.

35
EXAMPLE 2 OF THE DISCLOSED

EMBODIMENTS

inSCMA?fault from Spacecraft
40 then outSCMA! to FRA

else
inengSCMA!data from Spacecraft
then outengSCMA!data to TREND
Example 3 of the disclosed embodiments below discloses

45 the traces of the specification derived from the structured text.

EXAMPLE 3 OF THE DISCLOSED
EMBODIMENTS

50 1. tSCMA- {<>, <inSCMAfault, outSCMAfault>}
2. +{<>,<inengSCMAdata><inengSCMAdata, outSC-

MAdata>}
Step 208 executes by producing the process-based formal

specification from the traces. Example 4 of the disclosed
55 embodiments discloses the formal specification produced

from the traces. Also, following Step 208, error checking and
trouble-shooting may occur.

EXAMPLE 4 OF THE DISCLOSED
60	 EMBODIMENTS

SCMA=in SCMA?fault—(outSCMA!fault—STOP)
I (inengSCMA?data—outengSCMA! data—STOP)
Step 210 executes by generating code from the lower level

65 specification. The derived code is executable computer code
that is a sequence of instructions in a suitable notation for
execution within a software system. The generated code

US 7,543,274 B2
9

includes commands for the domain specified earlier. The
derived code is an accurate description of the desired software
system that exactly and mathematically provably corre-
sponds to the natural language scenarios given as input in step
202. Step 212 executes by translating the code into machine
code or other low level instructions for use in the subject
satellite system.

The flowchart of FIG. 2 allows for verification and valida-
tion between Step 202 and Step 212. As indicated on the
flowchart, the disclosed process may be repeated at any time
to correct mistakes, change requirements, and the like. In
other words, at any step in the disclosed process, the disclosed
embodiments may repeat a step or a series of steps, or may be
interrupted by the user, if an error is found, or if the user
wishes simply to repeat the step, or steps, or to make a change
that may not represent an error but rather a desired change or
enhancement. Further, the process may be revisited at a later
time to modify the software requirements or specifications.
Thus, the disclosed embodiments provide flexibility over
conventional systems by allowing testing and validation to
occur, and to easily modify the system.

Further, according to the disclosed embodiments of the
present invention, the disclosure of FIG. 2 allows for the
reverse process to be implemented. In other words, generated
code may be "reverse engineered" to derive formal specifica-
tions, which may be analyzed more easily and often may be
understood more easily. This approach may even be used to
derive traces and natural language scenarios as a means of
explaining (or paraphrasing) the operation of existing sys-
tems. This feature is desirable for legacy systems or those
systems where the original specifications or requirements are
not available. Once the natural language scenarios are
derived, they can bemodifiedto update, correct, or change the
requirements of the software system. Further, the disclosed
embodiments are not just applicable to software systems. The
disclosed embodiments are applicable to any system, device,
or process that uses instructions to perform an action. For
example, the disclosed embodiments are applicable to sys-
tems that describe or generate instructions for systems that
result in the manufacture of products or items.

It will be apparent to those skilled in the art that various
modifications and variations can be made in the present
invention without departing form the spirit or scope of the
invention. Thus, it is intended that the present invention cov-
ers the modifications and variations of this invention provided
that they come within the scope of any claims and their
equivalents.

What is claimed is:
1. A method for deriving a process-based specification for

a system, comprising:
deriving a trace-based specification from a non-empty set

of traces by a processor, wherein a trace is a sequence of
actions expressed as strings representing a history of an
execution of a process;

mathematically inferring the process-based specification
from the trace-based specification, wherein mathemati-
cally inferring includes applying Laws of Concurrency
in reverse to a set of system traces to determine the
process-based specification, wherein the process-based
specification is mathematically equivalent to the trace-
based specification, and whereby the Laws of Concur-
rency are algebraic laws that (a) allow at least one pro-
cess to be manipulated and analyzed, (b) permit formal
reasoning about equivalences between processes, and
(c) determine traces from the at least one process;

generating the process-based specification using an infer-
ence engine, wherein the inference engine iteratively

10
applies a set of rules to a set of data representing a
problem to determine a solution to the problem by logi-
cal manipulation and analysis of the set of data; and

analyzing the process-based specification to examine pos-
s sible implementations of the process-based specifica-

tion in different configurations, whereby analyzing
includes identifying at least one equivalent alternative
process-based specification and characterizing differ-
ences between the process-based specification and the at

10 least one alternative process-based specification,
wherein differences include number of processes, deter-
ministic behavior, and competition for resources.

2. The method of claim 1, wherein the process-based speci-
fication is provably equivalent to the trace-based specifica-

15 tion.
3. The method of claim 1, wherein the Laws of Concur-

rency are used by the inference engine to generate the pro-
cess-based specification.

4. The method of claim 3, wherein the laws of concurrency
20 are reversed by embedding the Laws of Concurrency in the

inference engine.
5. The method of claim 4, wherein the embedding is syn-

tactic or shallow.
6. The method of claim 4, wherein the embedding is

25 semantic or deep.
7. The method of claim 3, wherein the Laws of Concur-

rency are reversed so that an equivalent process expression is
output in response to a given input of at least one trace.

8. The method of claim 7, wherein multiple process expres-
30 sions are given as output in response to inputs of the at least

one trace.
9. The method of claim 1, wherein the various possible

implementations of the process-based specification are based
on transformations of the process-based specification by

35 applying the Law of Concurrency to derive various imple-
mentations.

10. The method of claim 9, wherein the various equivalent
implementations are mathematically equivalent to the pro-

40
cess-based specification.

11. The method of claim 10, wherein the various equivalent
implementations are provable equivalent to the process -based
specification.

12. The method of claim 11, wherein multiple correct
45 process-based specifications are possible.

13. The method of claim 12, further comprising:
deciding which of the multiple correct process-based

specifications are most appropriate.
14. The method of claim 13, wherein the process-based

50 specification is used as a basis for generation of alternate
representations.

15. The method of claim 14, wherein the alternate repre-
sentations are sets of instructions.

16. The method of claim 1, wherein the set of traces is a set
55 of sequences of events or activities specific to an application

domain.
17. The method of claim 1, wherein the set of traces is

derived by pre-processing a set of scenarios given as input by
a user to a context sensitive editor.

60 18. The method of claim 17, wherein the set of scenarios is
natural language text describing intended system behavior,
and the elements of the set of traces are sequences of events or
activities in a given application domain.

19. The method of claim 18, wherein the set of scenarios is
65 represented by various graphical notations.

20. The method of claim 1, wherein the deriving step is
repeated.

US 7,543,274 B2
11

21. The method of claim 1, wherein the inferring step is
repeated.

22. The method of claim 1, further comprising:
reverse engineering an existing system using the deriving

step and the inferring step, whereby reverse engineering
includes analyzing a process-based specification and
applying the Laws of Concurrency using an inference
engine having domain knowledge to infer a set of traces
equivalent to the process-based specification and to
derive a set of scenarios for the system equivalent to the
process-based specification, wherein the scenarios are
natural language text that describes the system's actions
in response to incoming data and the internal goals of the
system.

23. The method of claim 1, further comprising:
reverse engineering an existing system back to a set of

traces using the deriving step and the inferring step,
whereby reverse engineering includes analyzing a pro-
cess-based specification and applying the Laws of Con-
currency using an inference engine having domain
knowledge to infer a set of traces equivalent to the pro-
cess-based specification and to derive a set of scenarios
for the system equivalent to the process-based specifi-
cation, wherein the scenarios are natural language text
that describes the system's actions in response to incom-
ing data and the internal goals of the system.

24. a system adapted for deriving a process-based specifi-
cation, comprising:

at least one natural language scenario;
a computer-readable medium having instructions stored

thereon for deriving a trace-based specification from the
at least one natural language scenario;

an inference engine for mathematically inferring the pro-
cess-based specification from the trace-based specifica-
tion, wherein mathematically inferring includes apply-
ing Laws of Concurrency in reverse to a set of system
traces to determine the process-based specification,
wherein the process-based specification is mathemati-
cally equivalent to the trace-based specification, and
whereby the Laws of Concurrency are algebraic laws
that (a) allow at least one process to be manipulated and
analyzed, (b) permit formal reasoning about equiva-
lences between processes, and (c) determine traces from
the at least one process;

a generating engine for generating the process-based speci-
fication using an inference engine, wherein the inference
engine iteratively applies a set of rules to a set of data
representing a problem to determine a solution to the
problem by logical manipulation and analysis of the set
of data; and

an analyzing engine for analyzing the process-based speci-
fication to examine possible implementations of the pro-
cess-based specification in different configurations,
whereby analyzing includes identifying at least one
equivalent alternative process-based specification and
characterizing differences between the process-based
specification and the at least one alternative process-
based specification, wherein differences include number
of processes, deterministic behavior, and competition
for resources.

25. A system adapted for deriving a process-based speci-
fication, comprising:

• non-empty set of traces;
• computer-readable medium having instructions stored

thereon for deriving a trace-based specification from the

12
set of traces, wherein a trace is a sequence of actions
expressed as strings representing a history of an execu-
tion of a process;

an inference engine for mathematically inferring the pro-
s cess-based specification from the trace-based specifica-

tion, wherein mathematically inferring includes apply-
ing Laws of Concurrency in reverse to a set of system
traces to determine the process-based specification,
wherein the process-based specification is mathemati-

10 cally equivalent to the trace-based specification, and
whereby the Laws of Concurrency are algebraic laws
that (a) allow at least one process to be manipulated and
analyzed, (b) permit formal reasoning about equiva-
lences between processes, and (c) determine traces from

15	 the at least one process;
a generating engine for generating the process-based speci-

fication using an inference engine, wherein the inference
engine iteratively applies a set of rules to a set of data
representing a problem to determine a solution to the

20	 problem by logical manipulation and analysis of the set
of data; and

an analyzing engine for analyzing the process-based speci-
fication to examine possible implementations of the pro-
cess-based specification in different configurations,

25 whereby analyzing includes identifying at least one
equivalent alternative process-based specification and
characterizing differences between the process-based
specification and the at least one alternative process-
based specification, wherein differences include number

30	 of processes, deterministic behavior, and competition
for resources.

26.A method for deriving a process-based specification for
a system, wherein the system performs actions, comprising:

35	 receiving at least one natural language scenario describing
the actions;

generating a trace-based specification from the at least one
natural language scenario by a processor;

mathematically inferring the process-based specification

40 from the trace-based specification, wherein mathemati-
cally inferring includes applying Laws of Concurrency
in reverse to a set of system traces to determine the
process-based specification, wherein the process-based
specification is mathematically equivalent to the actions

45 defined above, whereby the Laws of Concurrency are
algebraic laws that (a) allow at least one process to be
manipulated and analyzed, (b) permit formal reasoning
about equivalences between processes, and (c) deter-
mine traces from the at least one process;

50 generating the process-based specification using an infer-
ence engine, wherein the inference engine iteratively
applies a set of rules to a set of data representing a
problem to determine a solution to the problem by logi-
cal manipulation and analysis of the set of data; and

55 analyzing the process-based specification to examine pos-
sible implementations of the process-based specifica-
tion in different configurations, whereby analyzing
includes identifying at least one equivalent alternative
process-based specification and characterizing differ-

60 ences between the process-based specification and the at
least one alternative process-based specification,
wherein differences include number of processes, deter-
ministic behavior, and competition for resources.

	7543274-p0001.pdf
	7543274-p0002.pdf
	7543274-p0003.pdf
	7543274-p0004.pdf
	7543274-p0005.pdf
	7543274-p0006.pdf
	7543274-p0007.pdf
	7543274-p0008.pdf
	7543274-p0009.pdf
	7543274-p0010.pdf

