
240

output
odeword

mu uuuu ui iiui iiui mu mu uui uui mu uui iiuii uu uii mi

(12) United States Patent 	 (1o) Patent No.:	 US 7,499,490 B2
Divsalar et al.	 (45) Date of Patent:	 Mar. 3, 2009

(54) ENCODERS FOR BLOCK -CIRCULANT LDPC 6,014,411 A 1/2000 Wang
CODES 6,023,783 A 2/2000 Divsalar et al.

(75)	 Inventors: Dariush Divsalar, Pacific Palisades, CA
6,473,010 BI 10/2002 Vityaev et al.

(US); Aliazam Abbasfar, Cupertino, CA 6,518,892 132 2/2003 Shen et al.

(US); Christopher R. Jones, Pacific 6,539,367 BI 3/2003 Blanksby et al.

Palisades, CA (US); Samuel J. Dolinar, 6,560,362 BI 5/2003 Piret et al.
Sunland, CA (US); Jeremy C. Thorpe, 6,567,465 132 5/2003 Goldstein et al.
Redlands, CA (US); Kenneth S. 6,633,856 132 10/2003 Richardson et al.
Andrews, Pasadena, CA (US); Kung
Yao, Sherman Oaks, CA (US) 6,686,853 B2 2/2004 Shen et al.

6,715,121 BI 3/2004 Laurent

(73)	 Assignees: California Institute of Technology, 6,718,502 BI 4/2004 Kuznetsov et al.
Pasadena, CA (US); The Regents of the 6,724,327 BI 4/2004 Pope et al.
University of California, Oakland, CA 6,757,122 BI 6/2004 Kuznetsov et al.
(US) 6,769,091 132 7/2004 Classon et al.

(*)	 Notice: Subject to any disclaimer, the term of this 6,771,197 BI 8/2004 Yedidia et al.

patent is extended or adjusted under 35
U.S.C. 154(b) by 729 days.

(21)	 Appl. No.: 11/166,041 (Continued)

(22)	 Filed: Jun. 24, 2005 OTHER PUBLICATIONS

(65)	 Prior Publication Data

US 2006/0291571 Al	 Dec. 28, 2006

(51) Int. Cl.

	

H04B 1166	 (2006.01)
(52) U.S. Cl 375/240; 375/254; 375/271;

375/302; 341/51; 341/74; 714/758; 714/800
(58) Field of Classification Search None

See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS

	

3,542,756 A	 11/1970 Gallager

	

3,655,396 A	 4/1972 Gotoetal.

	

4,295,218 A	 10/1981 Tanner

	

5,023,889 A	 6/1991 Divsalar et al.

	

5,729,560 A	 3/1998 Hagenauer et al.

	

5,734,962 A	 3/1998 Hladik et al.

Yu Kou et al., "On Circulant Low Density Parity Check Codes", IEEE
International Symposium on Information Theory, Jun. 30-Jul. 5, p.
200, 2002.

(Continued)

Primary Examiner Dac V Ha
(74) Attorney, Agent, or Firm Steinfl & Bruno

(57)	 ABSTRACT

Methods and apparatus to encode message input symbols in
accordance with an accumulate-repeat-accumulate code with
repetition three or four are disclosed. Block circulant matrices
are used. A first method and apparatus make use of the block-
circulant structure of the parity check matrix. A second
method and apparatus use block-circulant generator matrices.

28 Claims, 6 Drawing Sheets

190 Circniant nafFprna_ unrlatpd fnr path rnw of r_irr_ulanfc	 4 aft

https://ntrs.nasa.gov/search.jsp?R=20090043094 2019-08-30T08:36:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10551812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 7,499,490 B2
Page 2

U.S. PATENT DOCUMENTS R.M. Tanner, "On Graph Constructions for LDPC Codes by Quasi-

6,785,863 B2 8/2004 Blankenship et al.
Cyclic Extension," in Information, Coding and Mathematics (M.

6,789,227 B2 9/2004 De Souza et al. Blaum, P. Farrell, and H. van Tilborg, eds.) pp. 209-220, Kluwer, Jun.

6,803,787 B1 10/2004 Wicker, Jr. 2002.

6,829,308 B2 12/2004 Eroz et al. A Sridharan, et al., "A Construction for Low Density Parity Check
6,842,872 B2 1/2005 Yedida et al. Convolutional Codes Based on Quasi-Cyclic Block Codes", in IEEE
6,848,069 B1 1/2005 Levy et al. International Symposium on Information Theory p. 481, Jun. 30-Jul.
6,857,097 B2 2/2005 Yedidia et al. 5, 2002.
6,862,552 B2 3/2005 Goldstein et al. O. Milenkovic, "Block-Circulant Low-Density Parity-Check Codes
6,888,897 B1 5/2005 Nazari et al.

for Optical Communication System" IEEE Journal of Selected Top-
6,903,665 B2 6/2005 Akhter et al.
7,089,477 B1 8/2006 Divsalar et al. ics in Quantum Electronics, pp. 294-299, Mar. 2004.

7,093,179 B2 8/2006 Shea J. Thorpe et al. "Methodologies for Designing LDPC Codes Using
7,095,792 B2 8/2006 Doetsch et al. Photographs and Circulants," in IEEE International Symposium on
7,158,589 B2 1/2007 Cameron et al. Information Theory, p. 238, Jun. 27-Jul. 2, 2004.
7,191,376 B2 3/2007 Yedidia Aliazam Abbasfar et al. "Accumulate Repeat Accumulate Coded
7,243,294 B1 7/2007 Divsalar et al. Modulation" IEEE Military Communications Coference, Oct.
7,313,752 B2 * 12/2007 Kyung et al	 714/801 31-Nov. 3, 2004.
7,343,539 B2 3/2008 Divsalar et al.

2005/0149845 Al* 7/2005 Shi et al. Aliazam Abbasfar et al. "Accumulate Repeat Accumulate Codes"

2005/0223305 Al* 10/2005 Kons IEEE Globecom 2004, Nov. 29-Dec. 3, 2004.

2007/0011568 Al* 1/2007 Hocevar Aliazam Abbasfar et al., "Maximum Likelihood Decoding Analysis

OTHER PUBLICATIONS
of Accumulate-repeat-Accumulate Codes" IEEE Globecom 2004,
Nov. 29-Dec. 3, 2004.

S. Lin, "Quasi-Cyclic LDPC Codes" CCSDS working group white
paper, Oct. 2003. * cited by examiner

U.S. Patent Mar. 3, 2009 Sheet 1 of 6 US 7,499,490 B2

1 2 3	 4 5

A	 B	 C

FIG. 1

1	 2	 3	 4	 5

A	 B	 C

FIG. 2

"*N'̂a^
0

20

40

60

80

100

120

140

160

180

U.S. Patent	 Mar. 3, 2009
	

Sheet 2 of 6	 US 7,499,490 B2

So 	 Si
	

Pi	 P2	 PO

0	 50	 100	 150	 200
	

250	 300

FIG. 3

H 1	H4

FIG. 4

0 2
I^II2

3^'
4
5
6
7

016+II7

	

U.S. Patent	 Mar. 3, 2009	 Sheet 3 of 6	 US 7,499,490 B2

	

go 0	 P1 0 P2)E--50)51-1
01 2 34567E C /;`

0

50

m

^a

150(

FIG. 5

	input	 80	 Output
message

	

	 S1	 codeword
Puncture

50	 Accumulate
D

	

+	 Permute 61
+	 p1'p2S O ,S 1	 I13

62

70	 100	 Sparse matrix multiplies
n.,

	

--'-	 --90

a ^
	 II6+II7	 I+II1

	

II4+II5	 i	 II2	
110

100(

I+III	 X	
® `

.^

0	

M	 II3

M=512	 \ \	 I	 \\ .

II4+II5I

I	 \
D	 500	 1000	 1500	 2000	 250C

FIG. 6

U.S. Patent	 Mar. 3, 2009	 Sheet 4 of 6 US 7,499,490 B2

00aN

O
O
co
T

O
CO
O
T

CO
O

T

CO
O
N
T

r
O
O
COT ^

UL

O

co
O

0

CO
CO
qT

O
CON

OO o o a o 0 0 0 0 Cl 0
Q Cl
	 q C> 	 Cl

	 cn °o
V_

•cep•.':
f'^^ - .•: 6r !

i
i	 •.:	 -	 'a.' !•.. - ri.f•}' =

^ :'.r.	 ': i': .s'y:•:r . .
a r	 '.EE :':fi5	 ?^' i?:7'- -	 _ •.:£ii !?:i :i':' - . •: -	 .!°.i{rs:::.rr':

.' 'i!' i	 '. : +4' j^'iur. dr ,,rr
-

.;;.:.:r.?' i
r`3 '.::.ice.'.-r; - -::.%:[: •.!".C]•'. _- _ ..1 •S : •Y: : '1V !'Y.-: _ -	 -	 ^.ttl! ::C

.wT-._::: . - _ _ ..Y ..r' .:Si4i iJ :	 - .:	 '_wr :ii'.y:':. ..l :i:V_:i•: .0441	 .:i;,.

.e%'j•
•'i•'

"'r
a.'•i _ ^^7' r.v^'.;.. . ,^.-i. -: jry. :ie: ^• •..r •'i'•i• _ ::fir - - •'•'':5!

y= = ".r '!	 iS^' r __ 7°rr :c_::' _ _ff_ ; 'r

..:v.:r'

:,':'S8:• ri =̂̀ ^ '^=*::iE r .9^s -: F' r - .':x `.. .E::•_ r.	 -".rpgr :^'

.tr ,i . ••.ir '^'^Ji:v i .—^^.^'• .t!.:wt: .i:: ^.: ^ -__ .E::1 .'.•[-.4^ {^:' :• '	 :::.E:. ^ _ L=i^i'..1:^^ t'' r}..^.+•

-
. ry`

__
-'

Ji:`i '. >tr	 - "^i3' .̀• ^;,rg :-- -t£'''• ::$':: '-se7 "}•:'r' ; •tea
r:•. :%: . i= :'r^` .ar.:_ -r:v s"!^ ^.•r -9 :^^ r"r' ^ :r:<% %̂ '

_ f :.tar.^ .:if 	i .F E E: :.
,^ . ' f:^i^ r'' .:s^::^ •r̂ . jr . ^r -:. ^'e sf': _^ ,̂ t'r. „: •.	 r^•` - :^ ^'°':^:	 .E^ .:c 'x5z ti: :i ::?i = s:'.-: '	 - i^..i@^a	 -- ` ^'ar. ^[^ r' .. ^''a :: :Q .• ;r> _":r"

.: s.r !•!'
l.:. `
.• _^:.

_r .__r .sr
• e:r

'''.•^ •
- r^

• :.r=
..

^_=r:
-

=?_	 d' .^^
l.

_	
_:

_^r5
--:
r•f

-:r.
: { i.:E •'

.r

AAA
y•'-

_	 ^ .>'' •: errr _
rr^r. .n' :. .;.: .^:-.:. • r.:•S' v"e".^	 _r_ ' e, _ - :'r'	 s-:r? r ::.

Fl ... F _.iii i._II:.:::^ _ _ •^•: :_A:^_s -___ _- _ _- _•':':.Q'_^ n_.i'	 i:<: _ __

r• -

_

{ice -	 :. .,! ii ^•	 _:	 ' •'1...'.-ii '_ _ _

U.S. Patent	 Mar. 3, 2009	 Sheet 5 of 6	 US 7,499,490 B2

O
N CD CD
 cc 000 O N

T— 	T-

O

O
to

co

CD d
r LL

O
O
r

O
O
M

O
O
N

O
O
N

240

output
odeword

U.S. Patent	 Mar. 3, 2009	 Sheet 6 of 6	 US 7,499,490 B2

16 shift registers, reloaded with circulant patterns once per row

input T	 k--16T
pccaea^	 1

One conditional addition
per message bit

k	 X k

Sytematic output codeword

FIG. 9
(Prior Art)

190 Circulant natterns _ undated fnr each rnw of r_irruianlc	 4an

FIG. 10

US 7,499,490 B2
1

ENCODERS FOR BLOCK-CIRCULANT LDPC
CODES

GOVERNMENT INTEREST

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
Contractor has elected to retain title.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is filed on the same day of U.S. Pat. App.
Ser. No. 11,166,040, now U.S. Pat. No. 7,343,539, for ARA
Type Protograph Codes", incorporated herein by reference in
its entirety.

BACKGROUND

1. Field
The present disclosure relates to encoders and encoding

methods for block-circulant low-density parity-check
(LDPC) codes. In particular, a first encoder and iterative
encoding method are based on the erasure decoding algo-
rithm. The computations required are well organized due to
the block-circulant structure of the parity check matrix. A
second encoder and method use block-circulant generator
matrices. Some encoders of the second type have been imple-
mented in a small Field Programmable Gate Array (FPGA)
and can operate at 100 Msymbols/second.

2. Related Art
Recently, block-circulant LDPC codes have been found

that provide both excellent error correction performance and
well structured decoder architectures. Constructions have
been presented in the following papers:.
Y. Kou, H. Tang, S. Lin, and K. Abdel-Ghaffar, "On Circulant

Low Density Parity Check Codes," IEEE International
Symposium on Information Theory, p. 200, June 2002;

S. Lin, "Quasi-Cyclic LDPC Codes." CCSDS working group
white paper, Oct. 2003;

R. M. Tanner, "On Graph Constructions for LDPC Codes by
Quasi- Cyclic Extension," in Information, Coding and
Mathematics (M. Blaum, P. Farrell, and H. van Tilborg,
eds.), pp. 209-220, Kluwer, June 2002;

A. Sridharan, D. Costello, and R. M. Tanner, A Construction
for Low Density Parity Check Convolutional Codes Based
on Quasi-Cyclic Block Codes," in IEEE International
Symposium on Information Theory, p. 481, June 2002;

O. Milenkovic, I. Djordjevic, and B. Vasic, "Block-Circulant
Low-Density Parity-Check Codes for Optical Communi-
cation Systems," IEEE Journal of Selected Topics in Quan-
tum Electronics, pp. 294-299, March 2004;

J. Thorpe, K. Andrews, and S. Dolinar, "Methodologies for
Designing LDPC Codes Using Protographs and Circu-
lants," in IEEE International Symposium on Information
Theory, p. 238, June 2004), and others.

All of the above papers are incorporated herein by reference
in their entirety.

Error correcting codes are used to transmit information
reliably over an unreliable channel, such as a radio commu-
nications link or a magnetic recording system. One class of
error correcting codes are binary block codes, where K infor-
mation bits are encoded into a codeword of N symbols (N>K),
the codeword is transmitted over the channel, and a decoder
then attempts to decode the received (and potentially cor-

2
rupted) symbols into the original K information bits. If the
channel symbols are also binary, an encoder that uses the K
information bits as K of the. N channel symbols is known as
a systematic encoder. These K channel symbols are called the

5 systematic symbols, and the remaining N—K symbols are
called parity symbols. Sometimes one uses an encoder that
generates N+P symbols, and then P of them are discarded
while the remaining N are transmitted over the channel. The
discarded symbols are known as punctured symbols.

10 Many different mathematical models are used to describe
physical communications channels. One model is the Binary
Erasure Channel (BEC). The input alphabet is binary (either
0 or 1), and the output alphabet is ternary (0, 1, or e for
erasure). When a 0 is transmitted over the BEC, the received

15 symbol may be either 0 or e; similarly, a transmitted 1 is
received either as a 1 or e. An erasure correcting decoder is
used with a BEC, and its task is to reconstruct the binary
values that were transmitted and corrupted to the value e by
the channel. In particular, puncturing a codeword is equiva-

20 lent to transmitting it over a BEC, where each punctured
symbol is corrupted to the value e.

Erasure correcting decoders for LDPC codes have been
studied at length [see, for example, M. Luby, M. Mitzenma-
cher, A. Shokrollahi, D. Spielman, and V. Stemann, "Practical

25 loss-resilient codes," in Proc. 29th Annual ACM Symp.
Theory of Computing, 1997, pp. 150-159], and the decoding
method described in that paper has become the standard era-
sure correcting algorithm. This erasure correcting algorithm
succeeds if and only if the erased symbol positions do not

30 contain a stopping set [see T. Richardson and R. Urbanke,
"Efficient Encoding of Low-Density Parity-Check Codes,
IEE Trans. on Information Theory, February 2001, pp. 638-
656].

U.S. Pub. App. No. 20040153934 discloses a method and
35 apparatus for encoding LDPC codes.

SUMMARY

In accordance with the present disclosure, novel encoders,
40 encoding methods and a hardware encoder implementation

for block-circulant LDPC codes will be presented.
According to a first aspect, an encoding apparatus to

encode message input symbols in accordance with an accu-
mulate-repeat-accumulate code with repetition four is dis-

45 closed, the apparatus compri sing: a first multiplier to multiply
a first portion of the input symbols with a first matrix, forming
first intermediate symbols; a second multiplier to multiply a
second portion of the input symbols with a second matrix,
forming second intermediate symbols; a first adder to sum the

50 first intermediate symbols with the second intermediate sym-
bols, forming third intermediate symbols; a third multiplier to
multiply the third intermediate symbols with a third matrix,
forming fourth intermediate symbols; a fourth multiplier to
multiply the third intermediate symbols with a fourth matrix,

55 forming a first set of output symbols; a second adder to sum
the fourth intermediate symbols with the second portion of
the input symbols, forming fifth intermediate symbols; a per-
muter to permute the fifth intermediate symbols, forming
permuted symbols; and an accumulator to accumulate the

60 permuted symbols, forming a second set of output symbols.
According to a second aspect, a method for encoding mes-

sage input symbols in accordance with an accumulate-repeat-
accumulate code with repetition four is disclosed, compris-
ing: multiplying a first portion of the input symbols with a first

65 matrix, forming first intermediate symbols; multiplying a
second portion of the input symbols with a second matrix,
forming second intermediate symbols; adding the first inter-

US 7,499,490 B2
3

mediate symbols to the second intermediate symbols, form-
ing third intermediate symbols; multiplying the third inter-
mediate symbols with a third matrix, forming fourth
intermediate symbols; multiplying the third intermediate
symbols with a fourth matrix, forming a first set of output
symbols; adding the fourth intermediate symbols with the
input symbols, forming fifth intermediate symbols; permut-
ing the fifth intermediate symbols, forming permuted sym-
bols; and accumulating the permuted symbols, forming a
second set of output symbols.

According to a third aspect, an encoding apparatus to
encode message input symbols in accordance with an accu-
mulate-repeat-accumulate code with repetition three is dis-
closed, the apparatus comprising: a puncturing device, punc-
turing k input symbols and outputting k/2 input symbols,
forming a first set of output symbols; a first multiplier to
multiply the k input symbols with a first matrix, forming first
intermediate symbols; a second multiplier to multiply the k
input symbols with a second matrix, forming a second set of
output symbols; a permuter to permute the first intermediate
symbols, forming permuted symbols; and an accumulator to
accumulate the permuted symbols, forming a third set of
output symbols.

According to a fourth aspect, a method for encoding mes-
sage input symbols in accordance with an accumulate-repeat-
accumulate code with repetition three is disclosed, compris-
ing: puncturing k input symbols and outputting k/2 input
symbols, forming a first set of output symbols; multiplying
the k input symbols with a first matrix, forming first intenne-
diate symbols; multiplying the k input symbols with a second
matrix, forming a second set of output symbols; permuting
the first intermediate symbols, forming permuted symbols;
and accumulating the permuted symbols, forming a third set
of output symbols.

According to a fifth aspect, an encoding apparatus to
encode input symbols in accordance with a block-circulant
LDPC code is disclosed, the apparatus comprising: a plurality
of recursive convolutional encoders, each recursive convolu-
tional encoder comprising storage units, multipliers and
adders to encode the input symbols; and a plurality of circu-
lant patterns to be fed to the recursive convolutional encoders,
one set of patterns for each recursive convolutional encoder.

According to a sixth aspect, a method for encoding input
symbols in accordance with a block-circulant LDPC code is
disclosed, comprising: providing a plurality of recursive con-
volutional encoders, each recursive convolutional encoder
comprising storage units, multipliers and adders; setting the
storage units to a first binary value; repeating the following
operations: i) computing a set of circulant patterns, ii) pro-
viding each recursive convolutional encoder with a binary
sequence of T message bits, each message bit sent to the
output as a codeword symbol, and each message bit being
multiplied with a circulant pattern, summed to the result of a
previous multiplication, stored in a storage unit and shifted,
until the T message bits have been encoded, until kT message
bits have been encoded; and generating an output codeword
by reading the contents of the storage units of the recursive
convolutional encoders.

4
FIG. 7 shows a systematic block-circulant generator matrix

for the AR3A code.
FIG. 8 shows a systematic block-circulant generator matrix

for the AR4A code.
5	 FIG. 9 shows a hardware implementation of a quasicyclic

encoder.
FIG. 10 shows a hardware implementation of a quasicyclic

encoder using feedback shift registers.

10	 DETAILED DESCRIPTION

1. Introduction
In this section, AR3A and AR4A codes will be introduced,

15 protographs for the AR3A and AR4A codes will be shown,
and block-circulant parity check matrixes for the AR3A and
AR4A codes will be described.

Throughout the present description, a circulant will be
defined as a square binary matrix where each row is con-

20 structed from the previous row by a single right cyclic shift. It
will not be required that each row has Hamming weight 1.

An rTxnT parity check matrix H can be constructed by
concatenating rxn sparse circulants of size TxT. The density
of each circulant matrix is indicated by the corresponding

25 value in an rxn base matrix H,,,,.
The Tanner graph corresponding to this matrix is called a

protograph (see J. Thorpe, "Low-Density Parity-Check
(LDPC) Codes Constructed from Protographs," IPN Progress
Report 42-154, JPL, August 2003). See also the "Related Art"

30 section of U.S. patent application Ser. No. 11/166,040 for
ARA Type Protograph Codes", incorporated herein by ref-
erence in its entirety. Entries greater than 1 in the base matrix
correspond to multiple edges in the protograph. Base matrices
can be expanded into block-circulant LDPC codes by replac-

35 ing each entry in Hb,,e, with circulant containing rows of the
specified Hamming weight. The resulting codes are quasicy-
clic. Alternatively, they can be expanded into less structured
codes by replacing each entry with a sum of arbitrary permu-
tation matrices.

40 AR3A and AR4A codes are described in the applicant's
patent application Ser. No. 11/166,040 for ARA Type Pro-
tograph Codes", filed on the same day of the present applica-
tion and incorporated herein by reference in its entirety. FIGS.
1 and 2 of the present application show protographs forAR3A

45 andAR4A codes and will be used as examples throughout the
present description. Squares represent parity check nodes and
circles represent variable nodes, where the black circles rep-
resent transmitted symbols and the white circles represent
punctured symbols. The designs of FIGS.1 and 2 are derived

50 from a three step encoding procedure: accumulate, repeat-
by-3 (or 4), and accumulate shown by the Applicants in A.
Abbasfar, D. Divsalar, and K. Yao, `Accumulate Repeat
Accumulate Codes," IEEE International Symposium on
Information Theory, (Chicago, Ill.), June 2004, and U.S.

55 patent application Ser. No. 11/166,040 for ARA Type Pro-
tograph Codes", both incorporated herein by reference in
their entirety. Each protograph describes a 3x5 block-circu-
lant parity check matrix, and the number of parallel edges
shows the degree of the corresponding circulant.

60 In practice, these protographs cannot be directly expanded
into block-circulant codes without introducing low weight
codewords, regardless of the choice of circulants. A practical
solution is to expand the protographs twice, first with small
permutation matrices, such as of size 4x4 or 8x8, and then

65 with circulants to build the full code. The result is a parity
check matrix such as the one shown in FIG. 3 for a very small
AR4A code, where each nonzero entry in the matrix is rep-

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a protograph for an AR3A code.
FIG. 2 shows a protograph for an AR4A code.
FIG. 3 shows a parity check matrix for an AR4A code
FIG. 4 shows a block diagram of an AR4A encoder.
FIG. 5 shows a parity check matrix for an AR3A code
FIG. 6 shows a block diagram of an AR3A encoder.

US 7,499,490 B2
5

resented by a dot. This code was constructed by putting the
AR4A protograph variable nodes in the order (4, 2, 1, 5, 3)
and check nodes in order (A, B, C) as demarcated by the solid
lines, expanding with 4x4 permutations, and then expanding
with 16x16 circulants. The resulting 12x20 block-circulant
structure is emphasized by dotted lines.

2. Iterative Encoders
A description of a general method for LDPC encoding can

be found in T. Richardson and R. Urbanke, "Efficient Encod-
ing of Low-Density Parity-Check Codes," IEEE Transactions
on Information Theory, pp. 638-656, February 2001, incor-
porated herein by reference in its entirety. The present section
will describe a related encoding technique, called iterative
encoding, that also take advantage of the block-circulant
structure of the parity check matrix.

An encoder for any (N,K) LDPC code can be built from an
erasure correcting decoder.

In accordance with the present disclosure, a set of K lin-
early independent variable nodes are selected as the system-
atic symbols, and these are initialized with the K information
bits to be encoded. If there are no stopping sets, then the
remaining N—K parity symbols are computed iteratively with
the standard erasure correcting algorithm. Because the erased
symbol positions are known a priori, the existence of stopping
sets is also known. This method is equivalent to Richardson
and Urbanke's low-complexity encoding algorithm when
their variable g-0. However, differently from what shown in
Richardson-Urbanke, the method according to the present
disclosure is applied to block-circulant codes.

If H has full rank R=N—K, and this iterative encoding
method succeeds, then each of the N—K parity check equa-
tions is solved exactly once to determine one of the N—K
unknown parity symbols. For a check equation with d terms,
d-2 exclusive-OR operations are required. Thus, iterative
encoding requires exactly E-2R exclusive-OR operations,
where E is the number of nonzero elements in H. For an
arbitrary LDPC code, the scheduling of these computations
can be complex; for block-circulant codes, they can be per-
formed in well organized groups of T operations. The amount
of memory required in such an encoder varies depending on
the code structure; it is sufficient to store all N code symbols.

The above process will be illustrated with the AR3A and
AR4A code examples. AR3A and AR4A codes are accumu-
late-repeat-accumulate codes with repetition 3 and 4, respec-
tively, as described in Applicants' patent application Ser. No.
11/166,040 for ARA Type Protograph Codes", filed on the
same day of the present application and incorporated herein
by reference in its entirety

2A. Iterative Encoder for AR4A Code
When the rows and columns of the AR4A base matrix are

reordered as (B, A, C) and (4, 2, 3, 1, 5), the following
structure of the parity check matrix H is obtained:

2 3 1 0 0

H=00210

0 1 3 0 2

Iterative encoding begins by applying the kT=2T informa-
tion symbols to the first two columns in the base matrix. The
first row of T check equations can be solved in parallel to
determine the third column of code symbols, and then the
next row can be solved to determine the fourth column. The 2
in the lower right corner means that each remaining check
equation has two unknowns, and iterative encoding is halted

6
by this stopping set. However, note that this parity check
matrix is not full rank: the sum of the first T and last T rows of
H is the all-zero vector, independent of the circulants chosen.
This means that one of the remaining T undetermined code

5 symbols can be assigned an additional information bit, and
iterative encoding now completes successfully, operating (in
a permuted order) as an accumulator of length T.

FIG. 4 shows a block diagram of an AR4A encoder per-
forming the above described process steps. An input message

10 10 comprises 2T input symbols so and s,
Symbols so are multiplied by a circulant matrix H l . Sym-

bols s, are multiplied by matrix H z . The results are summed,
producing the T untransmitted parity symbols, denoted po,
corresponding to the fifth column of H. The untransmitted

15 parity symbols p o are then multiplied by matrix H 3 (upper
right branch of FIG. 4) and matrix H 4 (lower right branch of
FIG. 4). The matrix multiplication in the lower right branch of
FIG. 4 computes the T parity symbols denoted p i , corre-
sponding to the third column of H. The matrix multiply,

20 permute (element 20), and accumulate (elements 31, 32)
steps in the upper right branch of FIG. 4 compute T more
parity symbols pz . Concatenating with the input message 10
gives the systematic output codeword 40.

As shown in FIG. 3, each row and each column of matrices
25 H, and H4 have Hamming weight 2, and each row and each

column of matrices H z and H3 have Hamming weight 3; these
Hamming weights match the corresponding entries in the
AR4A base matrix.

30 2B. Iterative Encoder for AR3A Code
The AR3A code shows somewhat different behavior. With

the same row and column ordering, the AR3A base matrix is

35	 2 2 1 0 0

H= 0 1 2 1 0

01202

40 Foreseeing the problematic 2 in the lower right corner, one
redundant check equation can be constructed by summing the
last T rows of H to get the length N+P=ST vector, h=[O T 1 T OT

O T O T], where Oland 1 Trepresent strings of T zeros andT ones,
respectively. This check equation shows that the first 2T vari-

45 able nodes are not linearly independent, and cannot all be
assigned information bits. Instead, information bits are
assigned to the first 2T-1 and to the very last variable node.
Iterative encoding begins with the constructed check equation
h, which computes the 2T'th code symbol as the parity of the

50 preceding T-1 symbols. Iterative encoding then proceeds to
completion exactly as for the AR4A code.

The iterative encoding algorithm will be described picto-
rially for a variation of the AR3A code. In the AR3A code of
FIG. 1, variable node 4 is connected by two edges to check

55 node B, and variable node 5 is also doubly connected to check
node C. A very similar protograph can be constructed by
crossing two of these edges, so nodes 4 and 5 are each singly
connected to both B and C. When the columns are placed in
order (1, 4, 5, 3, 2) and rows in order (A, B, C), the protograph

60 is expanded first by a factor of 8, and then a second time with
circulants of size 64x64, the result is the parity check matrix
shown in FIG. 5. Key blocks are colored and labeled. By
summing the bottom 2T-2M rows of the parity-check matrix
in FIG. 5, we note that the 2T-2M code symbols s o, s,

65 corresponding to the rightmost 2T-2M columns must have
overall even parity. The encoder for this variation of the
AR3A code assigns k-1-2T-1 input message bits to the first

US 7,499,490 B2
7

2T-1 positions of so , s l , and computes the T-th bit of s, as the
parity of these 2T-1 message bits. The 2T-th message bit is
used to initialize the state of the accumulator in FIG. 6.

FIG. 6 shows the corresponding encoder architecture,
where matrices Hl, H2, H3, U4+H5, and H6+H7 correspond
to those in FIG. 5. I and Hl through H7 are permutation
matrices, so each row and each column of these matrices has
Hamming weight 1. The matrices are chosen so that the sums
I+Hl, H4+H5, and H6+H7 consist entirely of rows and col-
umns of weight 2. In FIG. 6, the last message bit of input
message 50 is replaced by the parity of the remaining message
bits, and the discarded bit is used instead to initialize the
accumulator 61, 62. On the top horizontal path through FIG.
6, the puncture box 80 passes half of the k=2T bits s o, s, to
serve as k/2-1 systematic symbols in the codeword. In other
words, puncture box 80 discards s o and passes only sl.

On the bottom horizontal path, a sparse matrix multiply 90
is performed between the vector 100 of k message bits and a
kxk/2 sparse matrix 110 comprised of matrices Hl and H2 of
FIG. 5, to generate another k/2 codeword symbols p o . On the
middle path, the k message bits 100 are multiplied by the
sparse kxk matrix a of FIG. 5. The resulting k bits are re-
ordered in a manner determined by H3 (see also FIG. 5), and
then accumulated into a running sequence of outputs from an
exclusive-OR gate. This forms the remaining k codeword
Symbols pl, p2•

Very similar algorithms are possible whenever the proto-
graph can be lower triangularized as shown for theAR3A and
AR4A codes, and the main diagonal consists exclusively of
the numbers 1 and 2. Iterative encoders of this nature are not
always possible. The AR347A protograph (described later)
cannot be lower-triangularized, and so iterative encoders of
this style do not exist. Instead, the encoders described in the
next section can be used.

3. Encoders Using Block-Circulant Generator Matrices
In the present section, the construction of systematic block-

circulant generator matrices will be presented.
The LDPC codes discussed here are defined by a block

matrix H composed of circulants, and of size rTxnT, where
r<n. A quasicyclic code is one for which a "quasicyclic shift"
of a codeword is also a codeword. That is, if any codeword c
is partitioned into binary strings of length T and each string is
circularly shifted by the same amount, the resulting vector is
also a codeword. It is immediate that any LDPC code defined
by a block-circulant H matrix is quasicyclic.

In some cases, such a code has a systematic generator
matrix G of size (n-r)TxnT that is entirely composed of
circulants. To construct such a generator matrix, the columns
of H are sorted so that the kT symbols desired to be systematic
appear first, followed by the remaining rT parity symbols.
That is, let H=[Q S], where Q is of size rTxkT, and S is square
and of size rTxrT. In general, if S is not full rank, then G
cannot be quasicyclic. Otherwise, G is computed as

C=11(n-r)AWQ)T]

where I („_,,)T is the identity matrix of size (n-r)Tx(n-r)T. Not
all block-circulant LDPC codes have block-circulant genera-
tor matrices. As a particularly small example, suppose H is
described by the single circulant with the first row [1 10 10
0 0], and size 7x7. As noted above, this only has rank 4. One
codeword is [1 1 1 0 1 0 0], and because the code is quasi-
cyclic (in fact cyclic, because H consists of a single circulant),
all cyclic shifts of this codeword are also codewords. How-
ever, the circulant with the first row [1 1 10 1 0 0] only has
rank 3, and so cannot be used in its entirety as a generator
matrix.

8
In the remainder of this section, reference will be made

again to the AR3A and AR4A codes discussed earlier.

3A. Generator Matrix forAR3A
The 3Tx5T parity check matrix forAR3A is full rank, and

5
so a generator matrix for this code will have dimension 2T.
The matrix H is partitioned into [Q S], where Q contains the
columns to make systematic, and S is the square matrix of
parity symbols that must be invertible. If Q is chosen to
include the circulants corresponding to variable nodes 4 and

10
2 in the protograph, as done for the iterative encoder, it can be
found that S has rank rT-1, deficient by 1. This misfortune
occurs because of the closed loop of degree-2 variable nodes
created by protograph nodes 5 and C.

Alternatively, one can choose to make protograph variable
15

nodes 4 and 5 systematic. In this case, S has full rank, and a
systematic block-circulant G can be calculated exactly as
described. When this is done for the parity check matrix in
FIG. 5, the result is the generator matrix shown in FIG. 7. An
encoder that performs matrix multiplication by G is particu-

20
larly suitable for hardware implementation as described in the
next section.

3B. Generator Matrix for AR4A
The AR4A code will be now taken into consideration. For

25 this code, there is no set of R columns that can be selected
from H to form an invertible square matrix S, because H itself
is rank deficient by 1. Remarkably, these two defects cancel
and the method for constructing G can proceed with minor
modifications. Variable nodes 4 and 2 are selected to be sys-

30 tematic, and when H is arranged to put these on the left, it
appears as shown in FIG. 3. The left two fifths of H is the
matrix Q, and the remaining square portion on the right is S.
The equations are solved to find codewords of the form C4_11
02T-1 p i ps p 3] and of the form cz [O T 1 OT-1 pi P

p3] where
35 0 is a string of i zeros, and each px is a binary string of length

T. By expanding these solutions into circulants, a block-
circulant "generator" matrix can be formed,

40	 ['IC2

of size 2Tx5T. This is one dimension short, and the missing
45 codeword is c=103T 1 T 0T]. Note that if c were expanded into

circulants, the resulting TxnT matrix has rank 1. For imple-
mentation, it is preferable to use thi s G as the generator matrix
and discard the one additional dimension in the code, accept-
ing the miniscule performance loss. The generator matrix G,

50 corresponding to the parity check matrix of FIG. 3, is shown
in FIG. 8. Because the last T code symbols are punctured, the
rightmost columns of circulants would be deleted from G in
implementation. By design, the first two columns of circu-
lants form an identity matrix; the remaining circulants could

55 have been dense by the construction algorithm, but theAR4A
protograph structure assures that many remain sparse.

3C. Generator Matrix forAR34JA
A third example is the AR347A codes, built from the pro-

60 tograph,

00012

H= 2 2 1 0 1

65	 1 1 1 0 2

US 7,499,490 B2
9

These codes do not have an iterative encoder of the form
described earlier, because H cannot be lower triangularized.
However, quasicyclic encoders do exist. It is not hard to show
that the two columns of H chosen for systematic symbols
must be one of the first two (identical) columns, and either the
third or the fifth column. For these choices, a quasicyclic
encoder can be constructed in the usual way, just as for the
AR3A code described earlier. Any other choice fails to yield
a quasicyclic encoder, because it results in a rank-deficient
sub-matrix S that cannot be inverted.

4. Software Implementation
The iterative encoders described so far can often be imple-

mented efficiently in software. This is because the computa-
tions can be performed in parallel, operating on T symbols at
a time. Moreover, the use of circulants means that the required
reordering of symbols is typically minimal, unlike the situa-
tion with more general permutations. Preliminary results
from a software implementation of this algorithm finds that it
runs at 90 Kbps/MHz for several rate 1/2 AR3A codes. In
particular, the software encoder runs at 128 Mbits/sec on a
1.42 GHz Macintosh, and can be expected to run at something
like 1.8 Mbits/sec on a 20 MHz RAD6000 spaceflight quali-
fied microprocessor.

10
binary sequences describe the circulants of the generator
matrix, and so are called circulant patterns. The first set of
circulant patterns used is given by the first row of the genera-
tor matrix G, and it is stored from right to left in the boxes 190

5 across the top of FIG. 10.
The first T message bits are encoded sequentially as fol-

lows. The first bit is sent directly to the output as the first
codeword symbol. Simultaneously, the sequence stored in
each RCE 250, 260 is either Exclusive ORed with the corre-

10 sponding circulant pattern (if the message bit is a 1) or taken
unmodified (if the message bit is a 0), and is right circularly
shifted one position. Then the second bit is encoded the same
way: it is taken as the second codeword symbol, and simul-
taneously determines whether the circulant patterns are

15 Exclusive ORed with the contents of each RCE, before the
next right circular shift. This process is repeated until T mes-
sage bits have been encoded.

Before encoding the next T message bits, a new set of
circulant patterns are computed and provided to the RCEs.

20 Then message bits T+1 through 2T are encoded by condi-
tional Exclusive OR operations and right circular shifts.
These steps are repeated until all kT message bits have been
encoded.

5. Hardware Implementation 	 25

The systematic block-circulant generator matrices devel-
oped in the previous sections are particularly amenable to
hardware implementation. A hardware encoder can pass the
kT message bits to the output as code symbols, while inter-
nally performing a multiplication by the (dense) kx(n—k) 30

matrix in the right hand portion of G. The resulting vector
serves as the remaining (n—k)T code symbols.A direct imple-
mentation of this dense matrix multiplication is shown in
FIG. 9, as proposed in S. Lin, "Quasi-Cyclic LDPC Codes."
CCSDS working group white paper, October 2003. The set of 35

n—k cyclic shift registers at the top of the figure, each of length
T, are loaded with the circulant patterns for the first row of G.
For each message bit m, in turn, these registers are cycled
once and, if m,-1, exclusive-ORed with the n—k symbol out-
put register. When each row of circulants is completed, 40

sequences for the next row of circulants in G are loaded into
the shift registers.

In accordance with the present disclosure, an improvement
in the hardware encoder is to cyclicly shift the output register,
rather than the circulant registers, as shown in FIG. 10.	 45

The hardware encoder of FIG. 10 comprises one-bit stor-
age units 200 shown as squares, one-bit multipliers (logical
AND gates) 210 shown as circled crosses, one-bit adders
(logical Exclusive OR gates) 220 shown as circled plusses,
and switches 230, 240. Many of these are organized into 50

structures 250, 260 known as Recursive Convolutional
Encoders (RCEs), as shown. For a block-circulant generator
matrix G of size kTxnT, this encoder comprises primarily n—k
RCEs, each of length T.

The encoder is initialized by setting all the storage units 55

200 within the RCEs to zero, and setting the n—k switches 230
as shown in the figure. Setting of the switches 230 as shown in
FIG. 10 allows the contents of the last storage unit of each
RCE to be fed back to the first adder of that RCE. Then
encoding is performed in a bit-serial fashion, T bits at a time. 60

Before encoding the first T bits, each RCE is provided with a
binary sequence of length T via the incoming arrows shown
270 along its top edge 280. This binary sequence could be
computed and placed in the collection of (n—k)T storage units
190 shown by the row of boxes across the top of FIG. 10. 65

Alternatively, the binary sequence could be provided directly
by combinatorial logic driven by a message bit counter. These

To complete generating the codeword, all n—k switches are
changed to the opposite position from that shown, and all
circulant patterns are set to zero. The contents of the n—k
RCEs are then sequentially read out via right shifts as the
parity portion of the codeword.

In other words, when the output switch 240 is set as drawn
in FIG. 10, all kT input message bits go straight through the
RCEs unchanged, and serve as output codeword symbols.
Simultaneously, each message bit is multiplied by a circulant
pattern, and the result is added to the shifted register contents.
Then, the switch 240 is flipped and (because the other (n—k-
1) switches 230 are flipped too) the daisy-chain of all (n—k)T
registers in the RCEs are read out sequentially. The result is a
codeword of length nT, of which the first kT symbols are just
a copy of the input message (i.e. the encoder of FIG. 10 is a
systematic encoder).

For each set of T message bits input through the input line,
the circulant pattern is generally different for each of the
RCEs. For example, FIG. 8 shows the block-circulant gen-
erator matrix for an AR4A code. The first 128 columns of the
matrix of FIG. 8 just have a diagonal line: this is an identity
matrix that passes the input bits to the output unchanged. The
remaining 192 columns comprise an 8x12 array of circulants,
each of size T=16. Except for the occasional coincidence, all
96 circulants are different.

This encoder has been implemented in hardware. It
requires n—k D-latches, n—k exclusive-OR gates, and a mod-
est amount of additional combinatorial logic. The size
(k=1024, n=2048) LDPC code fits comfortably in a Xilinx
XC3S200 Spartan Field Programmable Gate Array (FPGA),
and runs at 100 Msymbols/second. Speed is determined by
the maximum clock rate of the FPGA. The maximum sup-
ported code size is determined primarily by the number of
D-latches required to accumulate the parity, and so scales
linearly with n—k.

5. Conclusion
As many research groups have discovered in the last couple

years, block-circulant LDPC codes have well structured
decoders, and offer excellent error correction performance
when designed carefully. The Applicants have shown in the
present disclosure that block-circulant LDPC codes possess
attractive encoders as well, of a couple different forms.

US 7,499,490 B2
11

An iterative encoder is often possible for block-circulant
LDPC codes, based on the standard erasure correction algo-
rithm. Due to the circulant structure of the parity check
matrix, the computational steps are typically sparse matrix
multiplication by a circulant, permutation, and modulo-2
accumulation. The circulant matrix multiplications operate
on long strings of sequential bits, so parallel computations are
practical and permit fast encoders.

Encoders composed of linear feedback shift registers are
another attractive alternative for block-circulant LDPC
codes. These are based on the block-circulant generator
matrices that these LDPC codes often possess. Such an
encoder requires remarkably little hardware, and provides a
fast, simple, bit-serial architecture. The Applicants have
implemented these decoders in a small FPGA operating at
100 Msymbols/second.

The encoders and encoding methods disclosed herein are
applicable to a wide range of communication problems. They
would be of interest to any application that requires the excel-
lent performance that LDPC codes provide, and that would
benefit from low-complexity LDPC encoders. Examples
include communications systems onboard spacecraft in deep
space or in orbit around the earth, digital encoders in cellular
telephones, encoders within data storage devices such as hard
disk drives and magnetic tape recorders, and encoders within
computer modems.

While several illustrative embodiments of the invention
have been shown and described in the above description,
numerous variations and alternative embodiments will occur
to those skilled in the art. Such variations and alternative
embodiments are contemplated, and can be made without
departing from the scope of the invention as defined in the
appended claims.

What is claimed is:
1.An encoding apparatus to encode message input symbols

in accordance with an accumulate-repeat-accumulate code
with repetition four, the apparatus comprising:

• first multiplier to multiply a first portion of the input
symbols with a first matrix, forming first intermediate
symbols;

• second multiplier to multiply a second portion of the
input symbols with a second matrix, forming second
intermediate symbols;

• first adder to sum the first intermediate symbols with the
second intermediate symbols, forming third intermedi-
ate symbols;

• third multiplier to multiply the third intermediate sym-
bols with a third matrix, forming fourth intermediate
symbols;

• fourth multiplier to multiply the third intermediate sym-
bols with a fourth matrix, forming a first set of output
symbols;

• second adder to sum the fourth intermediate symbols
with the second portion of the input symbols, forming
fifth intermediate symbols;

• permuter to permute the fifth intermediate symbols,
forming permuted symbols; and

an accumulator to accumulate the permuted symbols,
forming a second set of output symbols.

2. The apparatus of claim 1, wherein the first portion of the
input symbols corresponds to a first half of the input symbols
and the second portion of the input symbols corresponds to a
second half of the input symbols.

3. The apparatus of claim 1, wherein output symbols are
obtained by combining the first set of output symbols, the
second set of output symbols, and the input symbols.

12
4. The apparatus of claim 1, wherein each row of the first

matrix has Hamming weight 2, each row of the second matrix
has Hamming weight 3, each row of the third matrix has
Hamming weight 3, and each row of the fourth matrix has

5 Hamming weight 2.
5. The apparatus of claim 1, wherein the first matrix, sec-

ond matrix, third matrix and fourth matrix are block-circulant
matrices.

6.A method for encoding message input symbols in accor-
io dance with an accumulate-repeat-accumulate code with rep-

etition four, comprising:
multiplying a first portion of the input symbols with a first

matrix, forming first intermediate symbols;
multiplying a second portion of the input symbols with a

15	 second matrix, forming second intermediate symbols;
adding the first intermediate symbols to the second inter-

mediate symbols, forming third intermediate symbols;
multiplying the third intermediate symbols with a third

matrix, forming fourth intermediate symbols;
20	 multiplying the third intermediate symbols with a fourth

matrix, forming a first set of output symbols;
adding the fourth intermediate symbols withthe input sym-

bols, forming fifth intermediate symbols;
permuting the fifth intermediate symbols, forming per-

25	 muted symbols; and
accumulating the permuted symbols, forming a second set

of output symbols.
7. The method of claim 6, wherein output symbols are

obtained by combining the first set of output symbols, the
so second set of output symbols, and the input symbols.

8. The method of claim 6, wherein the first portion of the
input symbols corresponds to a first half of the input symbols
and the second portion of the input symbols corresponds to a

35 second half of the input symbols.
9. The method of claim 6, wherein each row of the first

matrix has Hamming weight 2, each row of the second matrix
has Hamming weight 3, each row of the third matrix has
Hamming weight 3, and each row of the fourth matrix has

40
Hamming weight 2.

10. The method of claim 6, wherein the first matrix, second
matrix, third matrix and fourth matrix are block-circulant
matrices.

11. An encoding apparatus to encode message input sym-
45 bols in accordance with an accumulate-repeat-accumulate

code with repetition three, the apparatus comprising:
• puncturing device, puncturing k input symbols and out-

putting k/2 input symbols, forming a first set of output
symbols;

50	 a first multiplier to multiply the k input symbols with a first
matrix, forming first intermediate symbols;

• second multiplier to multiply the k input symbols with a
second matrix, forming a second set of output symbols;

• permuter to permute the first intermediate symbols, form-
55	 ing permuted symbols; and

an accumulator to accumulate the permuted symbols,
forming a third set of output symbols.

12. The apparatus of claim 11, wherein an output codeword
is obtained by combining the first, second and third sets of

60 output symbols.
13. The apparatus of claim 11, wherein the first matrix is a

block matrix of size kxk, comprising two on-diagonal sub-
matrices each of size k/2 xk/2 and two off-diagonal sub-
matrices eachof size k/2 xk/2, andthe second matrix is of size

65 kxk/2, k being an integer.
14.The apparatus of claim 13, wherein the two on-diagonal

sub-matrices are zero and the two off-diagonal sub-matrices

US 7,499,490 B2
13

each have rows of Hamming weight 2, and the second matrix
has k/2 rows with Hamming weight 1 and k/2 rows with
Hamming weight 2.

15. The apparatus of claim 11, wherein the first matrix and
the second matrix are block-circulant matrices.

16. A method for encoding message input symbols in
accordance with an accumulate-repeat-accumulate code with
repetition three, comprising:

puncturing k input symbols and outputting k/2 input sym-
bols, forming a first set of output symbols, k being an
integer;

multiplying the k input symbols with a first matrix, forming
first intermediate symbols;

multiplying the k input symbols with a second matrix,
forming a second set of output symbols;

permuting the first intermediate symbols, forming per-
muted symbols; and

accumulating the permuted symbols, forming a third set of
output symbols.

17.The method of claim 16, further comprising combining
the first, second and third sets of output symbols to obtain an
output codeword.

18. The method of claim 16, wherein the first matrix is a
block matrix of size kxk, comprising two on-diagonal sub-
matrices each of size k/2 xk/2 and two off-diagonal sub-
matrices eachof size k/2 xk/2, andthe second matrix is of size
kxk/2.

19. The method of claim 18, wherein the two on-diagonal
sub-matrices are zero and the two off-diagonal sub-matrices
each have rows of Hamming weight 2, and the second matrix
has k/2 rows with Hamming weight 1 and k/2 rows with
Hamming weight 2.

20. The method of claim 16, wherein the first and second
matrix are block-circulant matrices.

21. An encoding apparatus to encode input symbols in
accordance with a block-circulant low density parity check
(LDPC) code, the apparatus comprising:

a plurality of recursive convolutional encoders, each recur-
sive convolutional encoder comprising storage units,
multipliers and adders to encode the input symbols; and

a plurality of circulant patterns to be fed to the recursive
convolutional encoders, one set of patterns for each
recursive convolutional encoder.

22. The apparatus of claim 21, wherein the recursive
encoders further comprise switches, each switchhaving a first

14
condition where contents of a rightmost storage unit of a
recursive convolutional encoder are sent back to that recur-
sive convolutional encoder and a second condition where
contents of a rightmost storage unit are sent towards the

s output.
23. The apparatus of claim 21, wherein output symbols are

obtained by combining the input symbols with the contents of
the storage units within the recursive convolutional encoders.

24. A method for encoding input symbols in accordance
io with a block-circulant LDPC code, comprising:

providing a plurality of recursive convolutional encoders,
each recursive convolutional encoder comprising stor-
age units, multipliers and adders;

setting the storage units to a first binary value;
is	 repeating the following operations:

i) computing a set of circulant patterns,
ii) providing each recursive convolutional encoder with a

binary sequence of T message bits, each message bit sent
to the output as a codeword symbol, and each message

20 bit being multiplied with a circulant pattern, summed to
the result of a previous multiplication, stored in a storage
unit and shifted, until the T message bits have been
encoded,

until kT message bits have been encoded; and
25 generating an output codeword by reading the contents of

the storage units of the recursive convolutional encod-
ers,

wherein k and T are integers.
25. The method of claim 24, wherein the binary sequences

so are provided through an additional plurality of storage units.
26. The method of claim 24, wherein the binary sequences

are provided by combinatorial logic.
27. The method of claim 24, wherein the binary sequences

correspond to circulant patterns of a generator matrix.
ss 28. The method of claim 24, wherein the plurality of recur-

sive convolutional encoders comprises n-k convolutional
encoders, n being an integer, wherein n-k-1 recursive convo-
lutional encoders comprise a switch, the switch having a first
condition where the contents of the rightmost storage unit of

4o a recursive convolutional encoder are sent to the leftmost
adder of that recursive convolutional encoder, and a second
condition where the contents of the rightmost storage unit of
a recursive convolutional encoder are sent towards the output.

	7499490-p0001.pdf
	7499490-p0002.pdf
	7499490-p0003.pdf
	7499490-p0004.pdf
	7499490-p0005.pdf
	7499490-p0006.pdf
	7499490-p0007.pdf
	7499490-p0008.pdf
	7499490-p0009.pdf
	7499490-p0010.pdf
	7499490-p0011.pdf
	7499490-p0012.pdf
	7499490-p0013.pdf
	7499490-p0014.pdf
	7499490-p0015.pdf

